Subscribe to our weekly newsletters for free

Subscribe to an email

If you want to subscribe to World & New World Newsletter, please enter
your e-mail

Defense & Security
The Map and Flag of China and Japan.

The Effect of China-Japan Conflict on Global Economy

by World & New World Journal Policy Team

I. Introduction Relations between Japan and China entered a state of crisis on November 7th, 2025, after Japanese prime minister Sanae Takaichi said in the Japanese parliament that a Chinese attack on Taiwan potentially constituted an “existential crisis” under the Legislation for Peace and Security, allowing Japan to take military action in collective self-defense [1]. Following Takaichi’s remarks, the Chinese general consul in Osaka, Xue Jian, made threatening comments against Takaichi on X, triggering a diplomatic row between the two countries. Both sides protested the other’s remarks. In response to questions from the members of Japanese parliament, Takaichi refused to withdraw her remarks, claiming that they were consistent with the Japanese government’s existing position on the issue. Japan requested that China take “appropriate measures” against Xue. China refused the Japanese request and instead demanded Takaichi retract her statements. Then the Chinese government issued numerous retaliatory measures against Japan, including restricting travel and cultural exchanges, issuing a travel advisory, and cutting off seafood imports from the country. Moreover, On November 15th, the China Maritime Safety Administration announced that the People’s Liberation Army would conduct live-fire exercises in the central Yellow Sea from November 17th to 19th, and that navigation in this area would be prohibited during this period. The notice drew criticism from Taiwan, which accused China of saber-rattling in Japan for political gain [2]. On November 16th, the China Coast Guard announced that a formation of its ships carried out a patrol within the territorial waters of the Senkaku Islands, a territory disputed between Japan, China, and Taiwan. On December 2nd, Chinese and Japanese coastguard vessels engaged in a standoff over the islands. China said that it had implemented “necessary control measures” and driven a Japanese fishing boat away from the islands. On the other hand, Japan stated that it had intercepted and driven away two Chinese coastguard vessels, which approached the Japanese fishing boat. [3] From December 6th to 7th, Chinese Liaoning aircraft carrier transited through the Miyako Strait between the islands of Okinawa and Miyakojima and began takeoff and landing drills with Shenyang J-15 jets; aircraft took off from and landed on the aircraft carrier roughly 100 times in two days. [4] On December 7th, Japanese defense minister Shinjirō Koizumi accused China of two incidents on December 6th in which Shenyang J-15 jets from the Liaoning aircraft carrier at locking their fire-control radar at Japanese F-15 jets near the Miyako Strait. The Japanese government strongly protested to China. Takaichi also called the incident “extremely disappointing.” Japanese vice foreign minister Takehiro Funakoshi summoned Chinese ambassador Wu Jianghao over the incident. [5] In response, the PLA Navy spokesperson Wang Xuemeng accused Japan of a “slander and smear campaign,” saying that the Liaoning was carrying “routine carrier-based fighter jet flight training. [6]” In addition, he said that Japan Self-Defense Forces' aircraft had repeatedly approached and disrupted its fighter jet training. Japanese officials later said that their Chinese counterparts didn’t answer the hot line during the incident. Japanese defense minister Koizumi also said that while notified, Japan “did not receive sufficient information” regarding the military exercises, while Kihara said Japanese jets were far away from the Chinese jets while training. [7] The US criticized the radar targeting of Japanese aircraft and strengthened the US alliance with Japan. A US State Department spokesperson also said that “China’s actions do not contribute to regional peace and stability.” [8] The Liaoning aircraft carrier group traveled northeast from their position east of Kikai Island following the incident. A Chinese naval Type 054 frigate also sailed through the Miyako Strait on December 8th, while another traveled through the Osumi Strait. On December 9th, two Russian Tupolev Tu-95 bombers, four Chinese Shenyang J-16 fighter jets, and two Chinese Xi’an H-6 bombers flew through the Miyako Strait into the Pacific Ocean as part of joint military drills. On December 10th, two US B-52 bombers flew together with three Japanese F-15 jets and three F-35 jets. The Japanese defense ministry said that the US and Japan “reaffirmed their strong resolve to prevent any unilateral attempt to change the status quo by force.” [9] With this recent tension between China and Japan in the background, this paper explores the impacts of the China-Japan conflict on the global economy. This paper first explains major conflicts between China and Japan in the past and then examines the effects of the China-Japan conflict on the global economy. II. Past Conflicts between China and Japan The First Sino-Japanese War The First Sino-Japanese War (July 25th, 1894 – April 17th, 1895) was a conflict between the Qing dynasty of China and the Empire of Japan primarily for influence over Korea. [10] After more than six months of unbroken successes by Japanese naval and land forces and the loss of the ports of Lüshunkou (Port Arthur) and Weihaiwei, the Qing government sued for peace in February 1895 and signed the unequal Treaty of Shimonoseki with Japan two months later, thereby ending the war. In the late 19th century, Korea remained one of the Qing tributary states, while Japan viewed Korea as a target of imperial expansion. In June 1894, the Qing government, at the request of the Korean emperor Gojong, sent 2,800 troops to aid in suppressing the Donghak Peasant Revolution. The Japanese government considered this a violation of the 1885 Convention of Tientsin and sent an expeditionary force of 8,000 troops to Korea. The Japanese force landed in Incheon. The Japanese army moved to Seoul, seized the Korean emperor, and set up a pro-Japanese government on July 23rd, 1894 in the occupation of Gyeongbokgung. The Qing government decided to withdraw its troops, but rejected recognition of the pro-Japanese government, which had granted the Imperial Japanese Army the right to expel the Qing’s Huai Army from Korea. However, approximately 3,000 Qing troops remained in Korea, and could be supplied only by sea; on July 25th, the Japanese Navy won the Battle of Pungdo over the Qing navy and sank the Qing’s steamer Kowshing, which was carrying 1,200 Qing reinforcements. Japan declared war against the Qing on August 1st. Following the Battle of Pyongyang on September 15th, Qing troops retreated to Manchuria, allowing the Japanese army to take over Korea. Two days later, the Qing’s Beiyang Fleet suffered a decisive defeat at the Battle of the Yalu River, with its surviving ships retreating to Port Arthur. In October 1894, the Japanese army invaded Manchuria, and captured Port Arthur on November 21st. Then Japan captured Weihaiwei on the Shandong Peninsula on February 12th, 1895. This gave the Japanese army control over the approaches to Beijing, and the Qing court began to negotiate with Japan in early March. The war concluded with the Treaty of Shimonoseki on April 17th, which required the Qing government to pay a massive indemnity and to cede the island of Taiwan to Japan. Japan gained a predominant position in the Korean peninsula. The war demonstrated the failure of the Qing dynasty’s attempts to modernize its military and fend off threats to its sovereignty, especially when compared with Japan’s successful Meiji Restoration. For the first time, regional hegemony in East Asia shifted from China to Japan; the prestige of the Qing dynasty, along with the classical tradition in China, suffered a major blow. [11] Inside China, the defeat was a catalyst for a series of political upheavals led by Sun Yat-sen and Kang Youwei, culminating in the 1911 Revolution and ultimate end of the Qing dynasty in China. The Second Sino-Japanese War The Second Sino-Japanese War was fought between the Empire of Japan and the Republic of China and between 1937 and 1945, after a period of war localized to Manchuria that started in 1931. [12] It was the largest war in Asia in the 20th century. [13] On September 18th, 1931, the Japanese staged the Mukden incident, a false flag event fabricated to justify their invasion of Manchuria and establishment of the puppet state of Manchukuo. This is sometimes marked as the beginning of the war between the Empire of Japan and the Republic of China. From 1931 to 1937, China and Japan engaged in skirmishes, including Shanghai, as well as in Northern China. The military forces of Nationalist and Chinese Communist Party, led by Chiang Kai-shek and Mao Zedong respectively, had fought each other in the Chinese Civil War since 1927. In late 1933, Chiang Kai-shek encircled the Chinese Communists in an attempt to finally destroy them, forcing the Communists into the Long March. The Communists lost almost 90% of their men. Although a Japanese invasion became imminent, Chiang still refused to form a united front with the Communists before he was placed under house arrest by his subordinates who forced him to form the Second United Front in late 1936 in order to resist the Japanese invasion together. [14] The full-scale war started on July 7th, 1937 with the Marco Polo Bridge incident near Beijing, which prompted a full-scale Japanese invasion of the rest of China. The Japanese army captured the capital of Nanjing in 1937 and perpetrated the Nanjing Massacre. After failing to stop the Japanese capture of Wuhan (China’s de facto capital at that time) in 1938, the Nationalist government relocated to Chongqing in the Chinese interior. After the Sino-Soviet Non-Aggression Pact, Soviet aid bolstered the National Revolutionary Army and Air Force. By 1939, after Chinese victories at Changsha and with Japan’s lines of communications stretched deep into the interior, the war reached a stalemate. The Japanese forces could not defeat the Communist forces in Shaanxi, who waged a campaign of sabotage and guerrilla warfare. In November 1939, Nationalist forces carried out a large-scale winter offensive, and in August 1940, Communist forces launched the Hundred Regiments Offensive in central China. In April 1941, Soviet aid was halted with the Soviet–Japanese Neutrality Pact. [15] In December 1941, Japan launched a surprise attack on Pearl Harbor in Hawaii and declared war on the US. The US increased its aid to China under the Lend-Lease Act, becoming its main financial and military supporter. With Burma cut off, the US Air Forces airlifted material over the Himalayas. In 1944, Japan launched Operation Ichi-Go, the invasion of Henan and Changsha. In 1945, the Chinese Expeditionary Force resumed its advance in Burma and completed the Ledo Road linking India to China. China launched large counter-offensives in South China, repulsed a failed Japanese invasion of West Hunan, and recaptured Japanese occupied regions of Guangxi. [16] Japan surrendered on September 2nd, 1945, after the atomic bombings of Hiroshima and Nagasaki by the US, Soviet declaration of war against Japan and subsequent invasions of Manchukuo and Korea. The war resulted in the deaths of approximately 20 million Chinese. China was recognized as one of the Big Four Allied powers in World War II and one of the “Four Policemen,” which formed the foundation of the UN. [17] It regained all lost territories and became one of the five permanent members of the UN Security Council. The Chinese Civil War resumed in 1946, ending with a communist victory and the Proclamation of the People’s Republic of China in 1949. The government of the Republic of China relocated to Taiwan. Senkaku Islands Dispute September 2010 Senkaku Boat Collision The Senkaku boat collision incident occurred on the morning of September 7th, 2010, when a Chinese trawler (Minjinyu 5179) collided with Japanese Coast Guard patrol boats near the Senkaku Islands. The Senkaku Islands are a group of five uninhabited islands and three islets located in the East China Sea, which are under the administrative control of Japan, but also claimed by China and Taiwan. The Senkaku Islands have both economic and military value. There are rich fishing grounds in the exclusive economic zone (EEZ) surrounding the Senkaku islands, as well as significant oil and gas deposits. The islands are also of great geostrategic value, facilitating control over the East China Sea. [18] The Senkaku Islands are claimed by Japan, the People’s Republic of China and the Republic of China (Taiwan). [19] In 2008 a sports fishing boat from Taiwan, Lien Ho, was rammed and sunk by Japanese Coast Guard patrol ships which led to an official apology and monetary compensation of NT$10 million paid by Japan. Multiple events involving Japanese Coast Guard and fishing boats from nearby Chinese provinces and Taiwan have occurred since 1972. From 2005 to the 2010 incident, however, bilateral relations between Japan and China had been positive.  [20] According to the Japanese Coast Guard, the patrol boat Mizuki of the 11th Regional Coast Guard Headquarters encountered Minjinyu 5179 at around 10:15 (JST) on September 7th, 2010. Mizuki ordered Minjinyu 5179 to stop for inspection since Minjinyu 5179 was traveling 12 km (7.5 mi) north-west of the Senkaku Islands, which is outside the agreed area for Chinese fishing, and within disputed Japanese territorial waters. Minjinyu 5179 refused to follow the order and attempted to flee from the scene. During the chase and interception, Minjinyu 5179 collided with Japanese Coast Guard patrol vessels. On September 8th, 2010, Japanese Coast Guard boarded the Chinese trawler and arrested its captain for obstruction of performance of public duty and illegal fishing. [21] The trawler, the captain, and 14 crew members were transported to Ishigaki Island of Japan for detention. A Japanese investigator told the press that he smelled alcohol on the arrested captain but apparently no alcohol test results were ever released. The collision and Japan’s subsequent detention of the captain, Zhan Qixiong resulted in a major diplomatic dispute between Japan and China. When China’s repeated demands for the release of the captain were refused and his detention extended for ten more days, the Chinese government canceled official meetings of the ministerial level and above. [22] In response to the arrest, the Chinese government made a series of diplomatic protests, demanding the immediate release of the trawler and all its crew. China summoned Uichiro Niwa, the Japanese ambassador to China in Beijing, six times, each time with an official of higher diplomatic rank, on one occasion after midnight. Moreover, China initiated a series of escalatory measures, including rhetorical threats, encouraging popular protests across China, the arrest of four Japanese citizens in China for allegedly photographing military targets and the implementation of an unofficial embargo on Rare Earth Elements (REE). These measures were implemented with various degrees of ambiguity and designed to exploit a number of Japanese vulnerabilities – including the Japanese government’s weakened domestic position and the Japanese economy’s high dependency on Chinese REE exports. [23] In the short-term, China attempted to force Japan to release the detained trawler captain immediately. In the long-term, however, China tried to demonstrate its ability to use a strong economic instrument which could be used as deterrent, and as coercive measure. The detained Chinese crew members were released without charge and were allowed to return home. In China, the overall event is perceived as a diplomatic victory, while the Japanese government’s “weak-kneed” handling of the issue was criticized in Japan, in particular by former Prime Minister Shinzo Abe. [24] One hundred Japanese conservative lawmakers signed a letter criticizing the release of the Chinese captain, and Japanese citizens took to the street to protest both China’s behavior and the “weakness” of the Japanese government. Video footage proving the deliberate nature of the boat ramming was only shown to Japanese lawmakers in a closed screening, but not released to the wider public, likely out of fear of further diplomatic clashes with China. The footage was eventually leaked online and led to increased criticism of the Japanese government for keeping details of the incident from the public. The crisis was resolved by the end of November 2010 when diplomatic dialogue between Japan and China was fully restored, and a significant de-escalation of measures took place. September 2012 Japanese Government’s Island Purchase The Senkaku Islands dispute in September 2012 was a major flare-up between Japan and China, triggered by Japan‘s purchase (from private owners) and nationalization of three of the uninhabited islands, which China claims as its territory. In April 2012, the governor of Tokyo, Shintaro Ishihara, a right-wing nationalist, announced a plan for his municipal government to purchase three of the islands (Uotsuri, Minamikojima, and Kitakojima) from their private owner and build on them in order to assert Japanese sovereignty. In August 2012, Chinese activists from Hong Kong briefly landed on the islands, triggering a visit by Japanese activists in response. In September 2012, the Japanese government completed the purchase of the three islands from a private Japanese owner. This action triggered massive anti-Japanese protests across China, disruptions to Japanese businesses, boycotts of Japanese products, and increased patrols by Chinese vessels near the islands, thereby escalating tensions between China and Japan over sovereignty. This action also impacted trade between the two countries and tested the US-Japan security alliance. Consequences of the conflict were as follows: First, the dispute intensified nationalist feelings in both China and Japan, with demonstrations occurring in more than 100 Chinese cities, coinciding with the anniversary of the Mukden Incident. The Japanese embassy in Beijing was attacked. Major Japanese companies temporarily shut their factories and offices in China. Two more Japanese activists landed briefly on the islands. Secondly, Chinese Boycotts and business disruptions hit Japanese companies like Panasonic, Honda, and Canon, with significant drops in Japanese car sales and exports to China. Third, in response to Japan’s purchase of the three islands, China sent patrol boats to the area, challenging Japan’s administration and marking a new, more confrontational status quo. Later six Chinese ships sailed into the waters around the islands, staying for a short period of time to assert China’s territorial claim. Chinese maritime surveillance vessels made 12 forays into the waters close to the Islands after Japan bought the three islands in September 2012. Japan increased the number of coastguard vessels patrolling the island from three to thirty. Moreover, in December 2012, a Chinese maritime surveillance plane flied over the islands for the first time. Japan responded by scrambling eight F-15 fighter jets. The incident demonstrated that the dangers of an armed clash existed not only at sea, but also in the air. The dispute wasn’t resolved; instead, it marked a significant escalation, with Japan solidifying its de facto administrative control and China increasing its assertive presence. Fourth, since 2012, China has maintained a daily presence with its coast guard vessels near the islands, thereby creating the situations of confrontation with the Japanese navy. III. The Economic Effects of Conflicts between China and Japan 1. Evolution of China-Japan Conflict It is hard to predict what effects China-Japan conflicts will have on global economy, as well as the economy of both countries. Cambridge Centre for Risk Studies at University of Cambridge carried out research on this issue in June 2014 after Japanese government purchased three of the uninhabited Senkaku islands and then the conflict between China and Japan took place in September 2012. Cambridge Centre for Risk Studies categorizes China-Japan Conflict as a magnitude 3 conflict. Table 1: Magnitude scale of conflict (source: Cambridge Centre for Risk Studies) Cambridge Centre for Risk Studies provided three scenario for the China-Japan Conflict (S1, S2, and X1). Standard Scenario S1 consists of 9 months of conflict before stalemate occurs and intervention enables peace to be concluded. Scenario Variant S2 is similar to the standard scenario, but the conflict period lasts for 2 years, with trade disruption continuing for a further 3 years. An important aspect of the macroeconomic consequences is the duration of the disruption to international trade. Phase 4 in the scenario is prolonged, with double the economic losses and around 250,000 people dead. Scenario Variant X1 (Extreme 1) is the most severe variant considered in the impact analysis. Conventional weapons are still preferred but the conflict lasts more than 5 years, thereby causing over 3 times the losses and nearly 500,000 deaths. Such a variant plunges the whole world into a three-year recession after 90% of export trade is lost. According to Cambridge Centre for Risk Studies, the China-Japan Conflict evolves through Phase 1 through 7. Phase 1: escalating tensions Diplomatic posturing, Naval maneuvers, and large-scale war-games have defined recent tensions between Japan and China. Amid military modernization, increased Chinese nationalism, the legacy of conflict (Sino-Japanese wars) and an extreme thirst for natural resources, Japan and China have continued to clash over the Senkaku Islands. As Japan imports 90% of its energy, it is eager to maintain an open and free flow of maritime trade, but despite bilateral trade reaching US$ 345 billion, China has pursued a more assertive position, fueled by nationalism and a rise in anti-Japanese sentiment. [25] Since Japan’s nationalization of three of the disputed Senkaku islands in 2012, China has increased the frequency and scale of incursions. For example, Chinese aircraft have entered the disputed airspace, and Chinese frigates have engaged Japanese destroyers. Tensions have reached their highest level since the end of World War II in 1945. In a show of self-determination, Japan’s Diet (parliament) passed new laws that repealed limitations of the Constitution on use of military force to settle international disputes. There is a growing concern that the situation in the East China Sea will soon escalate beyond the disputes in the South China Sea, where the Chinese navy attacked commercial Vietnamese vessels over proximity to the Spratly Islands. [26] A Japanese fishing vessel is fired upon after straying into Chinese waters. Although the crew of the damaged boat are returned safely, angry diplomatic exchanges begin from the highest levels of both Japanese and Chinese governments. Japan acknowledges the error of the fishing boat and promises immediate action to prevent further incidents. [27] Although tight-lipped at first, details emerge that the Japanese government deployed naval engineers to install radar equipment on the disputed Senkaku islands to ‘help ships and boats navigate the area safely.’ The Chinese government and state-run media react angrily to the news, stating that the objective of ‘preventing marine accidents’ is a ‘thinly veiled attempt to disguise a notorious, unlawful and dangerous attempt to claim Japan’s sovereignty over the Senkaku islands.’ Phase 2: provocation and posturing Stocks tied to Japanese businesses suffer heavy losses on Chinese stock markets as tensions between Japan and China increased amid uncertainty over the Chinese response. Although expected to call for a UN Security Council meeting, the Chinese government bypass diplomatic protocols and issue a public condemnation and ultimatum, demanding that Japan remove immediately the radar and personnel within 72 hours. Failure to do so, the statement from the Chinese government continues, is considered “an unacceptable act of aggression against Chinese sovereignty.” Despite international calls for calm action and volatility in global stock markets, Japan refuses to remove the radar equipment, reiterating their “honest and responsible intent to protect all in the East China Sea.” After 24 hours, China orders an immediate cessation of all trade import agreements with Japan. China also issues a travel advisory, warning all Chinese citizens to leave Japan immediately. The US and several EU countries urge calm. The Dow Jones and FTSE100 are among many global markets that suffer heavy losses on fear of war and the implications for long-term economic growth. The world waits anxiously for the deadline. Rumors of negotiations excite the press and prop up the markets but the sudden and conspicuously coordinated departure of all non-essential personnel from the Chinese embassies and consulates in Japan creates widespread pessimism. Many international operations decide to withdraw executives from their offices in key cities in the region. Phase 3: military incidents Seventy-two hours after the ultimatum, a Chinese People’s Liberation Army Navy (PLAN) Lanzhou-class destroyer launches a C-602 cruise missile against the radar installation on the disputed islands. The missile destroys the radar along with a naval transportation unit, killing 18 members of Japan’s Maritime Self-Defense Force (JMSDF). The Western countries condemn the Chinese missile attack with UK, US, and France calling an urgent meeting of the UN Security Council. Japanese citizens are outraged. The Japanese government publicly promises retaliation against China. The US government urges restraint on Japan and warns that any proactive Japanese actions to provoke China could compromise US ability to support them in future actions. Stock markets plunge as fear of war sets in, with commodity prices, in particular oil, increasing significantly. The following evening two Japanese Mitsubishi F2 fighter planes from Tsuiki Air Base in Fukuoka, armed with ASM-2 anti-ship missiles, destroy the Chinese ship responsible for the missile attack on Senkaku Islands. China state news agencies report 37 Chinese sailors killed in the attack, with the destroyer afloat in open water but damaged beyond repair. Protestors in China take to the streets, criticizing Japan’s attacks. Japanese citizens are jubilant, with nationalistic media coverage. The wider international community condemns the retaliation act. China instigates a full blockade of Japanese vessels traveling through the Taiwan Strait and South China Sea, while promising safe passage for all non-Japan bound ships; China closes its airspace to airplanes coming to or from Japan. Japan reacts similarly, restricting movement of Chinese ships and airplanes. To prevent any attempt on the part of Japan’s Maritime Self-Defense Force to access the islands, Chinese PLAN enacts a familiar mine warfare strategy to block access. The ‘Elfreida’, a commercial US$200m Ultra Large Container Vessel traveling from Busan in South Korea to Singapore, is lost at sea along with nearly 15,000 TEUs (twenty-foot equivalent units) of cargo. Although the cause is not confirmed, speculation mounts that the ship struck a Chinese mine that had drifted into open water. Japan is quick to label it as another Chinese act of recklessness, while China blames a Japanese submarine attack for the disaster. Amid the high level of tension, another civilian disaster occurs as a commercial aircraft carrying 400 passengers disappears. A 747-400 heading from Beijing to Sydney disappears from the radar over the East China Sea. Accident investigators cannot determine whether it was destroyed in an act of war. Aside from the human cost, insurance claims are expected of up to a billion dollars. The US, Australia, and India create a total blockade of the East China Sea. Ships traveling from Japan are forced to travel south of the Philippines, thereby increasing journey times by over 30%. South Korea’s trade routes with Asia and Europe are also severely affected, however, as it is summer, trade with Europe suffer less, as they can use Arctic-shipping lanes and actually reduce shipping times by almost one week. China’s imports and exports are hit hardest. Their cross-Pacific journeys are rendered almost impossible, severely hampering trade and diplomatic relations with the US. [28] Chinese citizens take to the streets in protest. Although protests are generally anti-Western, they focus on anti-Japanese protests. Japanese businesses are ransacked and burned, and Japanese commercially branded products destroyed on the street. A Japanese factory in Shanghai is stormed by an angry mob, killing Japanese managers. Dozens more Japanese workers are taken hostage by Chinese protestors. Phase 4: all-out conflict Japan’s Special Forces mount a clandestine operation to rescue the Shanghai hostages, bringing commandoes ashore and into the factory compound in central Shanghai, undetected by Chinese defense forces. The clandestine operation successfully extracts the Japanese hostages, and the Japanese Special Forces escape before the Chinese army react, but several Chinese protestors are killed. China responds with a subtle but devastating act. A cyber attack shuts down Japan’s Futtsu Power station, near Tokyo, the second largest gas power station in the world and key provider of energy to the Keihin and Keiyo Industrial Zones (the largest industrial region in Japan). The attack cripples Japan’s industrial sector and denies power to military bases in the region. Power shortages restrict industries to three-day weeks as Japan starves for energy. At the same time, Washington D.C. suffers a mysterious but temporary power outage. Despite China denying responsibility for computerized hacking of the US power grid, military commentators interpret it as ‘virtual shot across the bow’, to warn the US away from military intervention in the China-Japan conflict. Trading is suspended on global stock markets as fear of a world war triggers sharp falls. Panic strikes Japan as people begin to evacuate the major cities in Japan. Many foreign nationals have already left but those who remain struggle to find ways to exit Japan. A full diplomatic effort is launched to remove citizens from both China and Japan. Foreign governments provide a constant stream of flights to India, Singapore and Australia as fear of escalation spreads. After a short period of relative calm, Japan carries out a pre-dawn air strike against mainland China. Ship-launched cruise missiles and aircraft-launched air-to-ground missiles target the military bases and radar stations around Shanghai, Beijing, and the Hong Kong - Guanghzou region. It is the start of a major period of offensive action by Japanese military forces, which continues for nearly three months of nightly bombing. As the anti-aircraft defenses around the cities in China are degraded, air raids are launched targeting the major industrial and commercial centers, in a concerted action of strategic bombing to reduce the economic power of China and change the strategic balance of military power and global influence in the region after the conflict. Assembly plants, office buildings, factories, ports, trucking and rail facilities are destroyed in concerted waves, night after night. Chinese air defense is fierce, and Japanese aircraft suffer heavy losses. Despite the night timing of the attacks, and air raid warnings, tens of thousands of Chinese workers are reported killed in the first few weeks. The death toll mounts over the coming months. China’s retaliation is swift; carrying out similar airstrikes against industrial and commercial sites in Japan’s Sendai region, and commencing an intensive bombing campaign of Japan’s power plants, liquid petroleum gas plants and shipping terminals. Japan’s already restricted energy supply is further damaged, and China’s strategy is now to cripple Japan’s economic infrastructure and to place pressure on the Japanese government to back down. China launches waves of missile attacks against industrial sites in the Tokyo-Yokohama region. In addition to tens of thousands of casualties, Japan’s industrial capacity suffers severe damage. Phase 5: stalemate The hostilities between Japan and China provokes global condemnation and the international community suffers economically from the fallout of the war, but for some period of time nobody can prevent the conflict from continuing. China’s membership of the UN Security Council is suspended. The UN Security Council calls for an immediate ceasefire and de-militarization of the area, but is unable to get agreement to mandate trading sanctions against the belligerent nations. Shipping of gas and oil supplies to both Japan and China are severely curtailed and energy reserves in both countries are reported running low, but critically so in Japan. The US declares that it is not prepared to let the Japanese citizens run out of fuel, and soon will provide Japan with the gas and oil supplies it needs. Japan agrees to suspend military attacks against China. A US shipping convoy of oil tankers heads for Japan, and the US demands that China withdraws its naval blockade around Japan to let it pass. Aircraft carriers and supporting ships from the US Pacific fleet move into tactical positions around the South China Sea. The implication is clear. The US can not allow Japan to lose the conflict and now prepare to intervene militarily if necessary. Russia protests against the US action and hints that it will make its gas and oil available to China in reciprocation, but after diplomatic pressure Russia finally aligns with the international consensus to end the China-Japan conflict. The rest of the ‘democratic security diamond’- i.e. Australia and India, as well as the UK, France, Germany, and regional actors, Vietnam and the Philippines – shows public solidarity around the initiative to end the war. For weeks the US navy and Chinese navy face off at sea, circling and withdrawing, but no shots are fired. There are no further attacks on the Japanese mainland and there is a period of stalemate between the two countries. Phase 6: negotiated peace The US, along with Russia as a partner, calls for an immediate ceasefire, the removal of the weapons on the disputed islands, and the opportunity for both China and Japan to address the UN on the issue of each country’s Exclusive Economic Zone (EEZ). The Chinese premier and the Japanese prime minister finally meet at peace talks in Singapore. After three days of negotiations, a peace treaty is signed, thereby guaranteeing the free flow of trade through the South and East China Sea and gestures towards the reconstruction of each other’s infrastructure. Global markets respond positively. Phase 7: aftermath China agrees to the conditions that any further attack would void all agreements, and that Pacific and South China Sea shipping lanes will be opened as soon as possible so that trade with the US and Canada can begin again. Japan also agrees to the ceasefire and to the US and Russia’s role in negotiating trade relations with China and restoring most of the US$ 345 billion agreement. The free flow of shipping routes returns within 3 months, causing an increase in global stock markets as some normality returned. It requires a large presence and deployment of US Naval forces, at significant cost to their economy. Commodity prices began to drop within hours of the agreement. Ownership of the Senkaku islands remains disputed, but after 9 months of conflict, 100,000 deaths, and billions of dollars in losses, neither side has the political will, energy supplies, the public support, or the money to continue the conflict. 2. Examination of the Effects of China-Japan Conflict on Global Economy To model the effects of a China-Japan conflict, Cambridge Centre for Risk Studies at University of Cambridge selected a number of key indicators. Shocks were chosen based on historical precedents that would be expected to occur during a China-Japan conflict. While the conflict may last for only a few months, most of the shocks applied in the model persist and generally last for a period of one year before returning to baseline over the next several years. Several of the variables were shocked for a longer period to represent the ongoing macroeconomic effects created by conflict. The effects of conflict. on some variables were very long lasting and have very high macroeconomic inertia in the system, thereby taking several years to return to pre-disaster levels. Such an example is the effect of conflict on global trade. The modeling by Cambridge Centre for Risk Studies was carried out in 2014, but the Cambridge Centre is interested in generic results for whenever a conflict might break out in future years. Variable descriptions The three independent scenarios (S1, S2, and X1) have been modeled using the Oxford Economics Global Economic Model. Following are the variables in the model to which the shocks were applied. Table 2 provides an overview of the input (parameter) variables applied. Table 2: Input (parameter) variables in macroeconomic modeling   Inward foreign direct investment is investment in business and capital. China has significant inflows of foreign direct investment and is therefore much more affected by a conflict shock to this variable than Japan. A 40% reduction of inward foreign direct investment represents a loss of approximately US$ 100 billion per year to the Chinese economy at its peak in year 2. In Japan, this represents a loss of about US$ 2.1 billion per year at its peak in year 2. Government consumption increases during the conflict to pay for military, ammunition and additional resources required for conflict. China spent 2% (US$ 166 billion) of GDP on defense in 2014, while Japan spent 1% (US$ 59.3 billion) of GDP on defense. In each of the three scenarios, government spending increased 7% in the first year and then returned to baseline levels by the end of the second year. This represents an increase in government spending of US$ 86 billion per year for China and US$ 70 billion per year for Japan. Exports and imports account for a significant share of GDP for both Japan and China. In China, exports account for 26% of GDP and in Japan, exports account for 18%. One of the largest economic effects that will occur as a result of this conflict will result from exports and imports being prevented to entering the East China Sea. Exports and imports are both shocked simultaneously and equally in each scenario. The peak of the shock to exports and imports occurs at the outbreak of conflict but takes a further six years to recover to pre-conflict levels. Capital destruction is defined as capital that can no longer be used as a productive resource and is an expected but unfortunate consequence of conflict. A declining capital base therefore has very serious consequences for economic growth and output. The level of capital destruction increases in each of the three scenarios from 2% of the capital stock in S1, 5% in S2 and 10% in X1. Share (stock) prices capture the market valuation of firms within an economy and incorporate the assets into a firm’s books and the expected value of future revenue and profit. Share prices therefore capture the level of confidence that the market has in the future profitability of a firm. Any firm that operates in a country that is in conflict will face increasing risks to its normal business operation and long-term strategic objectives. Increased uncertainty about future growth will have significant downward pressure on the market valuation of firms that operate in these areas. Share prices have been shocked 2% in S1, 5% in S2 and 10% in S3 compared to the baseline. Share prices are also expected to decline in other parts of the world as future global expectations are amended downward. These effects are modeled directly on neighboring Asian countries and the US stock market. In all three scenarios, however, share prices return to baseline by the end of second year after the conflict began. Capital flight occurs when assets and money rapidly move out of a country or region. Capital flight is most likely to occur when investment and business outlooks are uncertain, and investments are placed at risk. In Japan, capital flight is modeled as a devaluation of its exchange rate benchmarked against the US dollar. A 10% devaluation of the Japanese currency takes place in S1, 15% in S2 and 50% in X1. Modeling capital flight from China is more problematic. China has strict controls on capital, and the Yuan does not float on international currency markets. As a result, the exchange rate in China is fixed at present levels across all scenarios. Capital flight from China is therefore indirectly captured through a decline in investment funded by loans. This is represented by a shock of 40% in S1, 60% in S2 and 80% in X1 with recovery back to baseline projections taking six years. World oil prices typically rise during conflict due to increased demand for energy and heightened uncertainty around supply. This is modeled as a 20% increase in S1, 30% increase in S2 and 50% increase X1. The rise in oil prices lasts for 12 months during the conflict and then is allowed to return to base during the second year. Impact of China-Japan conflict on exports and imports A shock on exports and imports to Japan and China represents one of the most significant effects that will affect global economic output. Figures 1 and 2 show the international exports from Japan and China which are halted by the conflict. The biggest recipient of exports from Japan and China, apart from each other, is the US. Figure 1: China exports by value and type to different countries IFigure 2: Japan exports by value and type to different countries. As a result of the conflict, total exports in China for the year 2 drop by 80% in the X1 scenario or approximately US$ 1.5 trillion. And for Japan exports decline by US$ 726 billion. Behind Japan and China, exports from the US are the most adversely affected international market dropping in traded value by over US$ 450 billion in the X1 scenario. Globally, the aggregate value of total exports declines by over US$ 6 trillion. A similar picture can be described for imports. Imports to the US reach a minimum in year 2 with a drop of US$ 165 billion, while the value of aggregate global imports drops by almost $4 trillion across all markets and sectors. Impact of China-Japan conflict on energy prices Brent crude spot price spikes at US$ 120 per barrel in scenario X1 and roughly US$ 110pb in each of the other two scenarios. This occurs despite downward pressure on global aggregate demand due to a decline in aggregate output, a substantial shock to global trade and a significant drop in market confidence. The biggest impact on global oil prices occurs 12 months after the conflict began with a steep decline in oil prices as the world recovers from the shock of conflict. There is then a period of two years of persistent decline in oil prices until the end of year 3. Global oil prices does not fully recover to pre-conflict levels by the end of the model period in year 7. Impact of China-Japan conflict on commodity prices A similar pattern will occur in the price of most other natural resources and commodities. Prices of raw commodities will initially rise as Japan and China increase demand for raw materials and resources in preparation for conflict. Coal, iron ore, natural gas and other rare earth metals will all spike in price as the threat of conflict looms. Once a long and protracted conflict between Japan and China looks unlikely and the international community is successful in getting the peace treaty signed, the price of natural resources will then decline rapidly as aggregate demand drops. By this point, the signs of a global recession are imminent. Aggregate demand is down, and trade between Japan and China has ceased. And market confidence will be at an all-time low. China, which was once the world’s largest exporter, struggles to attract foreign direct investment and cannot find sufficient buyers for its manufactured goods. This leads to lower demand for raw materials, which in turn leads to persistently low prices for raw commodities and resources for the next several years. Impact of China-Japan conflict on employment A drop in global aggregate demand leads to a rapid increase in unemployment caused primarily by a drop in exports and a loss in the value of share price. In both Japan and China, there is a rapid increase in unemployment as the economy adjusts in the post-conflict period between year 2 and year 7. Unemployment in Japan skyrockets after the end of the conflict and reaches a peak at 14% in year 5, 10% higher than baseline. In China, the effects of unemployment are much more acute, reaching a peak unemployment rate of 9% during the first year, 5% above baseline. Similarly, unemployment in the rest of the world is also adversely affected. Unemployment in the US reached 9.4% in year 3, 2 years after the conflict has started, 3.8% above baseline projections. Impact of China-Japan conflict on inflation Historically, one of the most devastating macroeconomic consequences in post-conflict periods is high and runaway inflation. Figure 3 shows the effects of the conflict on inflation in different countries in the scenario S1. Figure 3: Impact of the conflict on inflation in different countries, in scenario S1 In the conflict scenario, both Japan and China experience inflationary pressure and a rise in consumer prices precipitated by a combination of import inflation and cost-push inflation. Cost push inflation occurs because important resources and goods are diverted away from the real economy and used for the war effort. Manufacturing plants that once made goods for general consumption are now used to produce weapons required for conflict – this drives up the price of normal goods in the economy as there are limited supplies of alternatives. Import inflation will occur because the import of goods from international markets are blocked from coming through the South and East China Seas, with a limited supply of local substitutes, prices for these goods will also rise. In China, prices are down in line with a drop in aggregate demand, a direct result of a reduction in foreign direct investment. In the most extreme scenario X1, there is a short period of deflation in the Chinese economy, peaking at -1.5%, which is followed by increasing inflationary pressure after the conflict ends. Inflation reaches a peak at 9.6% in year 4 in the S1 scenario before declining to pre-conflict levels by year 7. In Japan, where FDI is quite small, inflationary pressure accompanies the start of the conflict. Scenario S1 peaks at 5% inflation in year 2 before going into deflation in year 6. In scenario X1, inflation reaches 20% in year 2 before plunging to negative levels (deflation) from year 5 onwards. The global economy experiences a similar pattern of inflation. During the conflict, inflation increases and reaches peaks in scenarios S2 and X1 before starting a long decline. Average global consumer prices then go down for 4 to 5 years before returning to positive growth rates from year 6. Impact of China-Japan conflict on government balance and reserves The scenario results in a significant decrease (compared to baseline) in foreign reserves for both Japan and China. In the X1 scenario, Japan and China will decrease their foreign reserve holdings by US$ 2.2 trillion and US$ 430 billion respectively when compared to baseline by year 7. In a similar way, gross government debt as a percentage of GDP will also increase. In China, the debt to GDP ratio approaches 45% in scenario X1 and a little over 30% in scenario S1 by year 7. In Japan, the debt to GDP ratio increases from 212% in year 0 to around 277% in year 7. Impact of China-Japan conflict on interest rates Interest rates are often used exogenously as a policy instrument to affect economic activity. Lowering interest rates gives the economy a boost and encourages borrowing, while raising interest rates has the effect of slowing down an economy that is overheating. In the scenario, interest rates are allowed to adjust endogenously (not through policy intervention) to reflect economic pressures that occur in the economy. For example, interest rates adjust to inflationary expectations and demand. When inflation is expected to go up in the future, borrowers need to compensate lenders for the expected drop in the value of money. Figure 4: Short-term interest rate impacts from the conflict, scenarios S1 and X1. Inflation in both Japan and China increases over the scenario period, contributing to a rise in the interest rates in both nations. Interest rates also increase because of increased risk. During and after the conflict both Japan and China experience increased exposure to risk, which places upward pressure on interest rates. Exchange rates represent the relative value of a nation’s currency and are closely correlated with a nation’s interest rates. In the scenario, Japanese exchange rates are free to adjust on currency markets, reflecting relative value of the Japanese Yen, while China controls its currency on international markets, depressing the value of the Yuan to favor its own exports. This different policy approaches to currency will result in different impacts on interest rates in both countries. In China, where exchange rates are fixed during the modeling period, short-term interest rates experience the highest increase in scenario S1, reaching a peak at a little over 12%. Because the Yuan is fixed and not allowed to devalue, the major forces acting on interest rates are dominated by inflation and the money supply. In Japan, where exchange rates are allowed to fluctuate on international markets, high interest rates are caused by an increase on the risk premium of US denominated debt and the lagged effects of the exchange rates affecting investment and consumption. In Japan, therefore, the highest interest rates will occur in scenario X1. Figure 5: Long-term interest rate impacts from the conflict, scenarios S1 and X1. As Figures 4 and 5 show, short-term interest rates increase over the medium term before steadily declining. In China, a small decline in short-term interest rates for a period of 18 to 24 months after the conflict began is caused by the drop in foreign direct investment and increase in capital flight. Short-term interest rates then start to rise above baseline projections two to three years after the conflict started due to rising inflation and an increase on the risk premium of US denominated debt. By contrast, Japan experiences an immediate increase in short- term interest rates caused by rising inflation and increased risk premiums. Interest rates in the rest of the world are represented by the US in Figure 5. Historically, UK and US interest rates behave very similarly. Short-term interest rates are shown to decrease and plateau at a little over 0% for four years after the conflict before rising again. In a similar way, long-term interest rates drop to a low of 0.5% and 1.5% in the UK and US respectively in year 6 before rising once again. Impact of China-Japan conflict on productivity and growth In all scenarios, both Japan and China go into recession in the first year of the conflict, year 1. In China, the recession lasts approximately 12 months, with negative growth reaching a peak at -10% in scenario X1 (see Figure 6). Figure 6: Result of the conflict on China GDP In Japan, the recession is much more protracted, lasting five years in scenario X1 (see Figure 7). Figure 7: Result of the conflict on Japan GDP Globally, the recession lasts 1.5 years in scenario S2 and 2 years in scenario X1 with negative growth peaking at -2%. The conflict is shown to have a significant effect in terms of lost output (see Figure 8). Figure 8: Result of the conflict on Global GDP Table 3 shows the cost of the conflict compared to baseline over a five-year period between the start of year 1 and the end of year 5 for different regional economies. It is notable that the global economic consequences of the conflict are almost as significant in the US and the EU as they are in Japan and China. Table 3: Lost output over 5 years from China-Japan Conflict scenario, ‘GDP@Risk’, US$ Trillions.   IV. Conclusion This paper examined the effects of China-Japan conflict on global economy through three scenarios. The conflict had negative effects on all aspects of global economy, including exports & imports and GDP. As the China-Japan conflict prolongs, the negative economic impacts of the conflict became bigger. Therefore, the negative economic impacts were largest in the scenario of X1. References [1] See Wikipedia, 2025 China-Japan diplomatic crisis. [2] Su, Yung-yao; Chin, Jonathan (16 November 2025). "Taipei slams Beijing for Yellow Sea live-fire drill". Taipei Times. [3] Wei, Alcott (2 December 2025). "Chinese and Japanese coastguard ships confront each other near disputed islands". South China Morning Post. [4] Kobara, Junnosuke (9 December 2025). "Japan says China didn't answer hotline during radar incident". Nikkei Asia. [5] Wang, Orange (8 December 2025). "Mid-air military stand-off triggers duelling protests in China-Japan row latest". South China Morning Post. [6] Hernández, Javier C. (7 December 2025). "Japan Says China Aimed Military Radar at Its Fighter Jets". The New York Times. [7] Murakami, Sakura; Gale, Alastair (10 December 2025). "Japan and China Remain at Odds Over Radar Use as US Weighs In". Bloomberg News. [8] Psaledakis, Daphne; Geddie, John (10 December 2025). "US backs Japan in dispute with China over radar incident". Reuters. [9] Kaneko, Kaori; Kelly, Tim (11 December 2025). "US bombers join Japanese jets in show of force after China-Russia drills, Tokyo says". Reuters. [10] Kim, Samuel S. (2006). The Two Koreas and the Great Powers. Cambridge University Press. p. 2. [11] The Defeat That Changed China's History -- Beijing Review". [12] China's War with Japan". Faculty of History, University of Oxford. Retrieved 13 July 2024. [13] Bix, Herbert P. (1992). "The Showa Emperor's 'Monologue' and the Problem of War Responsibility". Journal of Japanese Studies. 18 (2): 295–363. [14] Hotta, E. (25 December 2007). Pan-Asianism and Japan's War 1931–1945. Palgrave Macmillan. [15] See Wikipedia, the Second Sino-Japanese War [16] See Wikipedia, the Second Sino-Japanese War [17] Frank, Richard (2020). Tower of Skulls: A History of the Asia-Pacific War: July 1937-May 1942. W. W. Norton & Company. [18] Lee, Seokwoo et al. (2002). Territorial disputes among Japan, Taiwan and China concerning the Senkaku Islands. [19] Lee, Seokwoo et al. (2002). Territorial disputes among Japan, Taiwan and China concerning the Senkaku Islands. [20] Unryu Suganuma (2000). Sovereign Rights and Territorial Space in Sino-Japanese Relations. University of Hawaii Press. [21] "High-seas collisions trigger Japan-China spat". Agence France-Presse. 7 September 2010. [22] Zhao, Suisheng (2023). The dragon roars back : transformational leaders and dynamics of Chinese foreign policy. Stanford, California: Stanford University Press. [23] Zhao, Suisheng (2023). The dragon roars back : transformational leaders and dynamics of Chinese foreign policy. Stanford, California: Stanford University Press [24] Lee, Seokwoo et al. (2002). Territorial disputes among Japan, Taiwan and China concerning the Senkaku Islands. [25] Storey, Ian. “Japan’s Growing Angst ov er the South China Sea ”, ISEA’S Perspective, In stitute of Southeast Asian Stu ies, Singapore. [26] Kyodo News International; March 3, 2014; ‘Japan eyes revising current laws to enable collective self-defense’. [27] Senkaku air intrusion prompts radar upgrade”, December 15, 20102, Japan Times, http://www.japantimes.co.jp/news/2012/12/15/national/senkaku-air-intrusionprompts- radar-upgrade/#.Ugz9oxapBYI [28] Lim Jae-Un, Korea gains permanent observer s tatus on Arctic Council, May 21 2013, http://www.korea.net/NewsFocus/Policies/view?articleId=108026 [29] Ministry of Foreign Affairs, Japan (http://webjapan.org/factsheet/en/pdf/02RegionsofJap.p df)

Diplomacy
Ulsan, South Korea - September 28th, 2024: View of HD Hyundai Heavy Industries Ulsan Headquarters, South Korea. A key player in shipbuilding, this landmark facility.

South Korea, Taiwan and Vietnam show that economic statecraft is not just the preserve of great powers

by Robyn Klingler-Vidra

Make American shipbuilding great again (Masga) may sound like an effort by the US to bolster its economic strength and project power internationally, but Masga is not an American policy. It is a South Korean initiative that emerged following trade talks with the US in June. Rather than responding to the Trump administration’s tariff threats solely through trade negotiations, Korean officials saw an opportunity to show their American counterparts that South Korea deserved better treatment. They suggested that South Korea bring its shipbuilding prowess to the US. South Korea is perhaps most famous as an exporter of K-pop, cars and semiconductors. But it is also a global powerhouse in shipbuilding. The shipyard in the south-eastern Korean city of Ulsan alone produces roughly ten times more ships annually than the entire US shipbuilding industry. And as the US tries to counter China’s rapidly growing naval fleet, Korean assistance is something that is clearly needed. The US navy secretary, John Phelan, declared earlier in 2025 that US shipbuilding programmes “are a mess”. He added: “I think our best one is six months late and 57% over budget … That is the best one.” Masga was launched in August, with South Korean conglomerates HD Hyundai and Samsung Heavy Industries signing a US$150 billion (£112 billion) deal to modernise US shipbuilding capabilities. It is a clear example of a middle power, a term for countries that lack the dominance of great powers but matter because they possess distinctive industrial, resource or diplomatic capabilities, using economic statecraft to punch above its weight. Economic statecraft has largely been used to describe actions taken by great powers like the US and China to enable and restrict access to their consumer markets, investment coffers and production capabilities. The aim is to achieve foreign policy goals or national security objectives by inflicting damage on or beating the capabilities of a rival power. One classic example is the US government’s use of sanctions against Russia over its war in Ukraine and Iran over its nuclear programme. The overt linking of economic tools like sanctions and tariffs to defence objectives in Washington’s recent national security strategy is another striking illustration of this. Middle powers have traditionally not actively pursued economic statecraft to achieve their objectives. They have instead looked to secure a seat at key tables through cooperative participation in regional and multilateral forums. But some of these countries are now asserting their power more explicitly, through preemptive moves like Masga. Using economic statecraft Taiwan is perhaps the most obvious case of a middle power engaging in economic statecraft. The country has used its critical role in global semiconductor supply chains as leverage to protect itself against Chinese invasion. Former Taiwanese president Tsai Ing-wen referred to international reliance on the island’s chip industry as a “silicon shield” in 2021. Taipei imposes strict controls on tech sales and screens investment, particularly from China, to protect its position. And Taiwan’s industry-leading firms, such as TSMC, also invest heavily to maintain their technological edge. Vietnam offers another example. Consistent with its “bamboo diplomacy” foreign policy model, Hanoi hosts leaders from China, Russia and the US, seeking flexibility rather than rigid alignment. The aim is clear: to maximise Vietnam’s national interests pragmatically and with autonomy. With the world’s sixth-largest reserves of rare earths, Vietnam is now looking to use critical minerals as a tool of economic statecraft. The government voted to ban rare-earth exports on December 11, citing the need to reorient the sector towards domestic processing and higher-value manufacturing rather than merely the export of basic raw materials. Rare earths are essential components in numerous products that are central to our daily lives, including smartphones, semiconductors and electric vehicles. By restricting foreign access to these essential inputs, Vietnam is striving to secure its long-term position in the supply chains of highly in-demand resources. Together, these cases show how economic statecraft is not only the preserve of great powers. Middle power states are selectively granting and restricting access to their economic strengths to reshape markets and security relationships. Korea’s shipbuilding, Taiwan’s chip production and Vietnam’s rare earths illustrate this more assertive approach. They are no longer confined to reactive measures or behind-the-scenes diplomacy in regional forums or multilateral negotiations. These states are proposing economic and military partnerships, as seen in initiatives such as Masga and Tsai’s assertion that everyone needs to care about Taiwan, given how essential chips are to the world economy. Great powers are taking notice. In October, HD Hyundai and US defence contractor Huntington Ingalls Industries announced they are together building next-generation navy vessels. This marks the first time a South Korean firm will build a US navy ship. And Washington has also reportedly been courting Hanoi with elevated diplomatic status and promises of mining support. For other middle powers, the lesson is clear: identify and leverage the strategic economic strengths that other countries depend on.

Defense & Security
Dugu beach, Donghae-myeon, Nam-gu, Pohang-si, South Korea - October 1, 2021 : South Korean Navy Jangbogo submarine at Dogu Coast for 2021 Armed Forces Day

Development of South Korea’s Submarines and Future Prospects

by World & New World Journal Policy Team

In the 21st century, the maritime security environment in Northeast Asia is changing more rapidly than ever, with information superiority and covert operational capabilities at sea emerging as core components of national security. At the heart of this shift lies the submarine force, which possesses both strategic deterrence and surveillance/reconnaissance capabilities. As China, Japan, and North Korea advance their submarine technology, South Korea finds itself in a situation demanding independent maritime strategic assets to counter these developments. The Republic of Korea Navy (ROKN) submarine force, which initially relied on foreign technology, has now grown into a submarine technology powerhouse capable of indigenous design and construction. The introduction of the KSS-III Dosan Ahn Changho-class submarine, in particular, has equipped South Korea with SLBM operational capability and advanced AIP (Air-Independent Propulsion) and electric propulsion technology, establishing a strategic-level submarine force.  This technological advancement not only strengthens national defense but also elevates the international status of the Korean defense industry, leading to enhanced export competitiveness. Concurrently, amidst the military expansion of surrounding countries, the need for nuclear-powered submarines (SSNs)—which offer far greater strategic survivability and sustained operational capability—is being raised in South Korea. Despite the high cost, the SSN is a strategic asset that provides overwhelming stealth, range, and operational endurance in the long run.  This article will comprehensively examine the importance and technical characteristics of submarines, followed by an analysis of South Korea's submarine force development, its international standing, and comparisons with neighboring countries. Furthermore, it will explore the implications of the nuclear submarine acquisition debate for South Korea's future security strategy. 1. The Importance of Submarines  The submarine is an extremely important weapon system in the defense industry from strategic, technological, and economic perspectives.  1) Strategic Deterrence and Control: Submarines act as a strategic deterrent to covertly check the enemy's maritime activities and protect a nation's sea lines of communication and security. The strategic deterrence of a submarine is based on its 'stealth' and 'lethality'.  - Stealth (Psychological Pressure): A submarine can move and be deployed secretly underwater without being exposed to the enemy, placing psychological pressure on the enemy's maritime operations and strategic weapon deployment during peacetime. Because it is extremely difficult for an attacking enemy to predict or neutralize the submarine's location, the enemy always harbors the fear of a potential strike. - Lethality (Retaliatory Capability): If the enemy attempts an actual invasion or provocation, the submarine can conduct a sudden and precise strike with high-power weapons like torpedoes or missiles. Specifically, a Strategic Nuclear Submarine (SSBN), equipped with strategic weapons like the SLBM (Submarine-Launched Ballistic Missile), provides a 'second-strike capability' to retaliate against the opponent's core targets at any time. - Maximizing Deterrence: The mere existence of strategic submarines maximizes the 'psychological deterrent effect', making the enemy's political and military leaders hesitate to initiate an attack. Due to the nature of submarines being covertly deployed anywhere in the ocean, the enemy is constantly exposed to threats, making it difficult to attempt military provocations recklessly. In essence, the core principle of strategic deterrence is the creation of a 'deterrence effect through uncertainty', combining the submarine's covert and unpredictable operational methods, its powerful striking capabilities, and the psychological fear it instills.  2) Enhancing National Defense and Economic Effects: The development of advanced submarines is central to a nation's naval power. It enhances defense self-reliance by securing indigenous design and construction technologies and promises enormous economic benefits through overseas exports. - Asymmetric Warfare Power: With its stealth and lethality, the submarine wields the most potent deterrent force and asymmetric warfare effect among all maritime forces. When surface fleet power is relatively insufficient, an advanced submarine can effectively check large enemy vessels or aircraft carriers and deny access to maritime domains. - Advanced Mission Capabilities: Advanced submarines are deployed for various missions, including long-duration submerged operations, strategic surprise, and special warfare support, utilizing cutting-edge technologies like next-generation guided missiles and sophisticated sonar/navigation systems that make detection and tracking difficult. - Increased Defense Industry Competitiveness: When advanced submarines are developed and operated with indigenous technology, it not only boosts the nation's defense industry capacity and technological self-reliance but also significantly increases related industry development and economic effects. In short, the advanced submarine is the qualitative and strategic linchpin of national naval power, encompassing defense, offense, intelligence deterrence, and the securing of cutting-edge technology. 3) Driving Advancement in Overall Defense Technology: The development of highly sophisticated weapon systems (e.g., SLBMs, advanced sonar, low-noise technology, etc.) also promotes the advancement of overall cutting-edge defense technologies. - SLBM Development: Developing SLBMs is not just missile technology; it complexly requires materials engineering to withstand the extreme pressure of the underwater launch environment, precise guidance systems, and miniaturized propulsion technology. The technology secured during this process naturally transfers to other fields, such as space launch vehicles and precision strike weapons. - Advanced Sonar Technology: The process of increasing the precision of underwater acoustic detection advances capabilities in signal processing, AI-based pattern recognition, and big data analysis. Such technology can also be utilized in civilian sectors, including marine resource exploration, underwater communication, and seismic detection systems. - Low-Noise Technology Development: The ripple effect of low-noise technology development is even greater. Vibration reduction in propulsion systems, special hull coatings, and hydrodynamic optimal design enhance the competitiveness of the shipbuilding industry as a whole. Propeller noise reduction technology, in particular, contributes to improving the fuel efficiency of commercial vessels and protecting the marine ecosystem. Furthermore, the process of developing these advanced technologies fosters high-level research personnel, strengthens industry-academia-research cooperation networks, and promotes the domestic production of materials, components, and equipment. Consequently, the single weapon system of a submarine has the effect of elevating the nation's overall scientific and technological capabilities to the next level. 4) High Competitiveness and International Credibility: The limited number of nations capable of manufacturing submarines ensures high competitiveness and international credibility in the global defense market. Currently, only about 12 countries are capable of independently designing and building submarines: the U.S., Russia, China, the U.K., France, Germany, Sweden, Italy, Spain, India, Japan, and South Korea. This technical rarity offers several strategic advantages. - Favorable Negotiation Power: Due to the high barrier to entry, a limited supplier market is formed, securing favorable negotiation power during exports. - Proof of Overall Defense Technology: Submarine construction capability serves as proof of comprehensive defense technology, raising the credibility of other weapon systems. South Korea, in particular, has demonstrated strengths in technology transfer and localization by successfully achieving domestic production after introducing German technology. This establishes South Korea as an attractive partner for middle-power countries that desire advanced submarines but find self-development difficult. The interest shown by nations like Indonesia and the Philippines in South Korean submarines is within this context. - Sustainable Economic Effects and Strategic Ties: Submarine projects lead to long-term follow-up businesses, including maintenance, upgrades, and crew training, ensuring sustained economic effects and strengthening strategic ties between nations. As such, the submarine is considered a core capability of the defense industry in terms of national security, industrial competitiveness, technological innovation, and economic benefits. 2. Technical Characteristics of Submarines The technical characteristics of submarines can be broadly divided into three key domains: stealth and survivability, propulsion and power systems, and weapons and combat systems. 2.1. Stealth & Survivability This is the technology area most directly tied to the fundamental purpose of submarines. In underwater environments, radar (radio-wave detection) cannot be used, so detection relies on sonar (sound-wave detection). While radar can detect surface targets from up to 500 km, sonar detection of a quiet, stealthy submarine is typically limited to around 30 km. - Acoustic Quieting Technology is essential for avoiding enemy sonar detection. Submarine noise reduction involves suppressing mechanical noise (machinery vibration), flow noise, structural vibration, and propeller noise through an integrated set of technologies. This is not just a matter of equipment but a comprehensive quieting process that spans the entire lifecycle of a submarine—from design and manufacturing to operation and maintenance. - Non-Acoustic Stealth Technology minimizes physical signatures other than sound—such as magnetic fields, heat/infrared emissions, radar/optical reflections, and surface disturbances—to prevent detection by non-acoustic sensors. Figure 1. Dosan Ahn Chang-ho class (Jangbogo-III) sonar system (Source: Hanwha Ocean) 2.2. Propulsion & Power System This system is key to determining a submarine's range and submerged operational endurance. It is broadly divided into conventional (non-nuclear) and nuclear propulsion. 1) Conventional Submarines (Diesel-Electric) - Diesel-Electric System: This is the traditional method where a diesel engine powers a generator to charge batteries, and an electric motor provides propulsion. It is favored for its cost-effectiveness and quietness, making it the standard for small and medium-sized submarines. However, because the diesel engine requires oxygen from the atmosphere, the submarine must periodically surface or use a snorkel, which severely limits continuous submerged endurance (to a maximum of about 3 days). Submarines equipped with the latest Lithium-ion batteries can extend this submerged time up to 7 days. - Air-Independent Propulsion (AIP): An innovative technology that produces power underwater without relying on an external oxygen supply. The main types include the Fuel Cell (PEMFC), Stirling Engine, and Closed-Cycle Diesel. AIP is used in conjunction with the diesel-electric system and significantly extends submerged endurance, often up to 3 weeks. Because it is cheaper than nuclear power while offering high strategic value, many nations have adopted it. - Hybrid Propulsion System (Cutting-Edge Technology): The integrated operation of three systems—the diesel generator, Fuel Cell AIP (Air-Independent Propulsion), and Lithium-ion batteries—allows for continuous submerged operation for up to 4 weeks. South Korea's Dosan Ahn Changho-class (KSS-III) utilizes the integrated operation of these three systems: a diesel generator, Fuel Cell AIP, and Lithium-ion batteries. Excluding nuclear power, the current cutting-edge technology is considered to be the Fuel Cell AIP + Lithium-ion battery hybrid system. Each propulsion system is selected based on operational range, mission sustainability, cost-effectiveness, and technological sophistication. South Korea is actively pursuing the development of next-generation submarines that combine both AIP and Lithium-ion battery technologies. However, the maximum continuous submerged endurance (up to 4 weeks) is only achievable when operating at low speeds (5–10 knots, or approx. 9–18 km/h). When operating at maximum speed (around 20 knots, or approx. 37 km/h), the battery consumption is extremely high, causing the submerged time to sharply decrease: - Older Submarines: Can sustain maximum speed for only 1–2 hours. - Li-ion/AIP Submarines: Can sustain maximum speed for 3–6 hours. After high-speed maneuvering, the submarine requires snorkeling for recharging, which significantly increases the risk of detection by the enemy. Figure 2. Dosan Ahn Chang-ho class (Jangbogo-III) lithium battery system (Source: Hanwha Ocean) Figure 3. Dosan Ahn Chang-ho class (Jangbogo-III) fuel cell AIP system (Source: Hanwha Ocean) 2) Nuclear-Powered Submarines (SSN/SSBN) Nuclear-powered submarines use nuclear fission reactors to generate steam, which drives turbines and provides virtually unlimited propulsion. Because they do not require refueling for months, their submerged endurance and operational range are effectively unlimited, enabling them to operate anywhere in the world. Only a small group of states—including the United States, Russia, China, the United Kingdom, France, and India—possess such submarines. Nuclear propulsion is used in both strategic ballistic missile submarines (SSBN: nuclear-powered submarines equipped with ballistic missiles carrying nuclear warheads) and nuclear-powered attack submarines (SSN: fast attack submarines powered by nuclear reactors). However, nuclear submarines are extremely expensive to build and operate, require large hull sizes (especially SSBNs), and demand sophisticated reactor noise-management technologies. Compared to conventional submarines, nuclear submarines can operate at much higher sustained speeds for long periods. Their average top speed is typically 25–30 knots (46–55 km/h), while specialized Soviet/Russian designs such as the Alfa-class have demonstrated speeds exceeding 40 knots in trials. This makes nuclear submarines more than twice as fast as most conventional submarines, with the added advantage of being able to maintain high speeds for extended durations without limitations. 2.3. Weaponry & Combat Systems This category encompasses the submarine’s offensive capabilities and intelligence-gathering functions. Submarine weapons and combat platforms can be divided into four major types: 2.3.1. Launch Weapons Launch weapons are categorized as follows: - Torpedoes: Underwater weapons fired from a submarine’s horizontal launch tubes, used to attack underwater targets such as other submarines, surface ships, and mines. - Missiles: This includes anti-ship missiles (ASM) and sea-launched cruise missiles (SLCM) designed to strike surface or land targets. Some missiles are launched through Vertical Launch Systems (VLS). - Nuclear Weapons: The primary example is the SLBM (Sea-Launched Ballistic Missile), equipped with a nuclear warhead. These form the core of a nation’s strategic nuclear deterrence capability. Table 1. Types of Launch Weapons Table 2. Ballistic/Guided Missiles Table 3. Submarine-Launched Weapon Systems Figure 4. Weapon systems of the Dosan Ahn Chang-ho–class (Jangbogo-III): Torpedoes/Mines (Horizontal Launch) and Missiles (Vertical Launch) (Source: Hanwha Ocean) Figure 5. Vertical Launch System of the Dosan Ahn Chang-ho–class (Jangbogo-III) (Source: Hanwha Ocean) 2.3.2. Underwater Drones / Unmanned Underwater Vehicles (UUV/AUV) Unmanned Underwater Vehicles (UUVs) and Autonomous Underwater Vehicles (AUVs) are unmanned underwater platforms deployed from submarines. They can perform missions such as intelligence collection, reconnaissance, mine detection, and even underwater attacks. In the latest technology trends, AUVs serve as important auxiliary assets for submarines, used for tasks such as detecting specific targets, locating and neutralizing naval mines, and tracking enemy submarines. Figure 6. Combat Unmanned Underwater Vehicle (Source: Hanwha Ocean) 2.3.3. Electronic Warfare Systems A submarine’s electronic warfare (EW) systems defend against enemy detection through electronic surveillance countermeasures. By transmitting deceptive or disruptive signals, these systems help conceal the submarine’s presence and significantly enhance survivability. Capabilities such as electronic deception, electronic jamming, and counter sonar/radar measures enable the submarine to evade enemy tracking and maintain strategic advantage. In addition, electronic attack (EA) capabilities can inflict direct damage on enemy military assets by disrupting or degrading their electronic systems. 2.3.4. Naval Mines Naval mines are explosive devices used by submarines to block enemy sea routes or hinder the approach of surface vessels. Submarines can deploy underwater mines or launch them from dedicated systems, allowing them to disrupt maritime traffic and defend against the movement of hostile fleets through area denial tactics. 3. Economic Impact of Submarine Strategy Submarine capabilities are not only crucial for military security but also represent a high-value industry that generates substantial direct and indirect economic effects for the nation. 3.1. Direct Industrial Impact (Manufacturing and Employment) Submarine construction is a highly technology-intensive, large-scale project, creating significant economic effects for the shipbuilding and defense industries: • Development of high-value shipbuilding: Submarines require extremely high precision and complex construction within much tighter spaces than commercial ships. The construction process itself represents the pinnacle of shipbuilding technology, directly enhancing the competitiveness and qualitative growth of the shipbuilding industry. • Job creation: Building a single submarine involves thousands of workers over several years, from design and component production to final assembly and sea trials, creating a large number of highly skilled technical jobs. • Activation of component and partner industries: Submarines consist of numerous precision components (sonar systems, propulsion units, special alloys, batteries, etc.), which stimulates supply chains largely composed of small and medium-sized defense companies and elevates technological capabilities across the sector. 3.2. Indirect Economic Impact (Security and Exports) The existence of a submarine fleet generates invisible economic benefits and opportunities: • Reduction of national security costs: Submarines are one of the most effective tools of asymmetric deterrence — a military strategy where a country at a disadvantage in conventional forces or numbers neutralizes an adversary’s attack intentions and deters war through unique and unpredictable means. Maintaining submarine capabilities helps prevent potential economic damages in crises (trade disruptions, destruction of industrial facilities) and raises the cost of potential aggression, effectively reducing national security expenditures. • Protection of sea lines of communication (SLOCs): As a highly trade-dependent nation, Korea relies critically on maritime routes. Submarines deter hostile naval forces threatening these routes during crises and protect major trade arteries, ensuring the continuity of economic activity. • Opportunities for defense exports (K-Defense): o Demonstrating Korea’s ability to independently design, build, and operate submarines (Dosan Ahn Changho-class / Jangbogo-III KSS-III) establishes technological credibility in global markets. o This capability generates high-value defense export opportunities, not only for the submarines themselves but also for related components, maintenance, and training systems (Korea has already exported submarines to Southeast Asia). In conclusion, submarine capabilities serve as a form of national security insurance while fostering domestic advanced technology industries and opening export markets, providing significant economic value as a future growth engine. 4. History of South Korea’s Submarine Forces Although the history of the Republic of Korea Navy’s submarines is relatively short, it has made significant leaps in both independent technological development and force enhancement. The following outlines the chronological development and progress of Korea’s submarine forces. Figure 7. Timeline of Submarine Acquisition and Operations of the Republic of Korea. Note: SSM: Submersible Ship Midget (small submarine), KSS: Korea Submarine System (the systematic development plan for the ROK Navy’s submarine force) 4.1. Early Stage (1975–1990): Direct Acquisition of Cosmos-class and Foundation of Submarine Forces Starting in 1975, the ROK Navy acquired seven small Italian-made Cosmos-class submarines (70-ton class) for intelligence missions and special operations, laying the foundation for Korea’s underwater capabilities. These submarines were primarily used for special operations, such as special forces infiltration, mine-laying, and intelligence gathering, rather than as conventional warships. Crew members of the Cosmos-class submarines later became key personnel in the development of the Dolphin-class indigenous submarines in the early 1980s. 4.2. Formative Stage (1983–1991): The Dolphin-class Small Submarine Era In the beginning in 1977, the Agency for Defense Development (ADD) started developing a submarine modeled after Italy’s Cosmos-class. Construction took place at Tacoma Korea’s Masan Shipyard, and a total of three submarines were commissioned starting in 1983. This marked Korea’s first domestically built submarines, and the experience gained became the foundation for developing South Korea’s own underwater weapons. Based on operational results from the first submarine delivered in 1984, the second and third units were designed and built, being commissioned in 1990 and 1991, with reinforced pressure hulls and improved armament: SSM-051 1985 commissioned, 2003 decommissioned, SSM-052 1990 commissioned, 2016 decommissioned, SSM-053 1991 commissioned, 2016 decommissioned. The experience with the Dolphin-class played a critical role in advancing domestic submarine construction technology, serving as the stepping stone for the introduction and deployment of medium- to large-sized submarines. Table 4. Specifications of the Dolphin-class Submarines (Source: Namuwiki) 4.3. Development Stage (1992–2006): Introduction and Localization of the Jangbogo-class (Jangbogo-I) In 1987, the ROK Navy signed a contract with the German company HDW for three Type 209 submarines (license for design acquisition), officially launching the Jangbogo-class (KSS-I) 1,200-ton program. Among these, one submarine was delivered as a complete unit from Germany in 1992, while the other two were assembled and constructed at Daewoo Shipbuilding & Marine Engineering’s Okpo shipyard using imported German parts, delivered in 1994 and 1995 respectively. Subsequently, six additional submarines were built, bringing the total to nine in service by 2001. This program was not merely an import project; the core goal was to transfer German technology and secure domestic assembly and construction capabilities. It laid the foundation for Korea’s submarine technology independence and advanced development. Leveraging the experience gained from constructing the Jangbogo-class, Daewoo Shipbuilding & Marine Engineering (DSME) signed a contract in 2011 to build three 1,400-ton submarines for Indonesia. Known as the DSME1400, these submarines are named the Nagapasa-class in the Indonesian Navy, marking Korea’s advancement in export capabilities. Table 5. Specifications of the Jangbogo-class Submarine (Source: Namuwiki). Note: A batch refers to a group of submarines of the same model built in series, with incremental performance improvements applied in each production run. Table 6. Development Stages of the Jangbogo-Class Submarine 4.4. Leap Period (2007–2020): Son Won-il Class (Jangbogo-II) and AIP Technology In 2000, the Republic of Korea Navy signed a contract with Germany’s HDW to acquire three Type-214 submarines under a design-license arrangement, launching a full-scale 1,800-ton Son Won-il–class program with Hyundai Heavy Industries. The first submarine, Son Won-il, was delivered in 2007, and an additional six submarines were subsequently built by Hyundai Heavy Industries and Daewoo Shipbuilding & Marine Engineering (DSME). The key feature of the Son Won-il class is its AIP (Air Independent Propulsion) system, which uses fuel cells to allow submerged operations for 2–3 weeks without surfacing. Construction was divided between Hanwha Ocean (formerly DSME) and HD Hyundai Heavy Industries. The vessels are named Son Won-il, Jeong Ji, An Jung-geun, Kim Dae-geon, Hong Beom-do, Yu Gwan-sun, Yun Bong-gil, Ahn Chang-ho, and Baekdusan. Table 7. Specifications of the Son Won-il Class Submarines (Source: Namuwiki) Table 8. Development Stages of the Son Won-il-Class Submarine   Over time, the armament and electronic systems have progressively advanced. Below is a simplified cross-sectional diagram of the HDW Type 214, which was used as a reference for the construction of the Son Won-il class submarines. The diagram helps to easily understand the complex internal structure by showing the main components. Here, the Fuel Cell Plant represents the AIP (Air Independent Propulsion) technology. Figure 8. Simplified cross-section of the Type 214 Submarine (Source: TKMS) Figure 9. Cross-section of the Son Won-il-class Submarine (Source: Defense Mirror) 4.5. Independent Period (2021–Present): Dosan Ahn Chang-ho Class (Jangbogo-III) Indigenous Design Achievements of Complete Domestic Design In December 2012, the Defense Acquisition Program Administration (DAPA) signed a contract with Daewoo Shipbuilding & Marine Engineering (DSME) for the construction of two Dosan Ahn Chang-ho class submarines. The contract amount for the two submarines was approximately 1.675 trillion KRW (1.14 billion USD). The project was based on the construction experience of the Jangbogo-class and Son Won-il-class submarines, as well as the technology transferred from HDW and the experience in developing the DSME-1400 submarine (Nagapasa-class submarine) based on the Type 209 design. Dosan Ahn Chang-ho (launched in August 2021) is the first submarine fully designed, built, and equipped with its own weapon systems by South Korea. It has a displacement of 3,000 tons, making it a large submarine. It is the first in the world to be equipped with lithium-ion batteries, enabling long-term submerged operations without the need for an AIP system. Strategic Weapon Deployment Capability The most notable feature of the Dosan Ahn Chang-ho class is the vertical launch system (VLS) with 6 launchers (Batch-II will have 10 launchers), which allows the operation of the Hyunmoo-4-4 submarine-launched ballistic missile (SLBM). This capability is considered the most powerful strategic strike capability among non-nuclear nations. Currently, the Dosan Ahn Chang-ho, Kim Jong-seo, and Yun Bong-gil have been commissioned, with a total of 9 submarines planned: 3 from Batch-I, 3 from Batch-II, and 3 from Batch-III. Table 9. Specifications of the Dosan Ahn Chang-ho Class Submarine (Source: Namuwiki)   The following is information on the improvement projects for Batch 2 and Batch 3. Table 10. Development Stages of the Dosan Ahn Chang-ho Class Submarine   Over time, the missile payload and electronic systems continue to evolve. Below is a cross-sectional diagram of the Dosan Ahn Chang-ho-class submarine, including a comparison of its size with the North Korean Romeo-class and the German Type 214 submarines. It also includes the proposed diagram by Daewoo Shipbuilding & Marine Engineering (now Hanwha Ocean) for the BrahMos missile-equipped version, which was part of their bid for the Indian next-generation submarine construction project. Figure 10. Cross-sectional Diagram of the Dosan Ahn Chang-ho-class Submarine (Source: Naval News) 4.6. Comparison of 3 Generations of ROK Submarines Table 11. Development Stages of South Korean Submarines 5. Exports and International Status The history of South Korean submarines follows a trajectory of introduction, indigenization, technological accumulation, advancement, and international expansion. In 2011, South Korea became the first Asian country to export submarines by selling three Jangbogo-class derivative Nagapasa-class submarines to Indonesia for 1.1 billion USD. Currently, South Korea owns 18 submarines, making it the 8th largest submarine-owning country in the world. When it comes to conventional (diesel-electric) submarines, South Korea is regarded as one of the top global powers, along with Germany and Japan. Current Submarine Power Rankings 1. United States (68 nuclear submarines) - Overwhelming leader 2. Russia (45 nuclear submarines + 20+ diesel submarines) 3. China (12 nuclear submarines + 50+ diesel submarines) 4. United Kingdom (11 nuclear submarines) - Entirely nuclear-powered submarines 5. France (10 nuclear submarines + diesel) 6. India (2 nuclear submarines + 15 diesel submarines) 7. Japan (22 diesel submarines) 8. South Korea (18 diesel submarines) 9. Germany (6 diesel submarines, export power) 10. Sweden (5 diesel submarines, technological powerhouse) Detailed Classification by Country A. Nuclear Submarine Exclusives B. Nuclear + Conventional Submarine C. Conventional Submarine   The following are the rankings of the leading countries in conventional submarine exports: 1. Germany - 100 years of tradition, top exporter 2. Japan - Highest technological capabilities 3. South Korea - Only country with VLS/SLBM capability 4. Sweden - Specializes in stealth technology 5. France - Combines nuclear and diesel capabilities The following compares the key features of export submarines from each country. Table 12. South Korean KSS-III Competitor Submarines Export Competitiveness Evaluation Top Exporting Countries 1. Germany - Type 209/214 series, more than 100 units exported 2. France - Scorpène, 16+ units (additional orders in progress) 3. South Korea - 3 units exported, actively competing in various tenders Latest Trends • Lithium-ion Batteries: South Korea (Jang Yeong-sil class), Japan (Taigei class), France (Scorpène Evolved) • VLS (Vertical Launch System): South Korea (SLBM), Sweden (Cruise Missiles) • Stealth Technology: Germany (Diamond hull), Sweden (Ghost), Japan (Low noise) Hanwha Ocean, the builder of the Dosan Ahn Chang-ho-class KSS-III submarines, and the South Korean government are actively engaging with the following countries for submarine exports: • Canada: The Canadian Navy's Submarine Replacement Program (CSCP) is a major project worth up to 40 billion USD (with an acquisition cost of about 14 billion USD and operation and maintenance costs of around 27 billion USD). Canada plans to introduce 12 new submarines. The KSS-III, at 4,000 tons, is considered a strong candidate due to its suitability for Canada’s operational environment (including the Arctic). South Korean defense companies are offering technical cooperation and local construction options in an effort to secure the deal. • Poland: Poland is pursuing the Orka project to modernize its navy, aiming to acquire 3 new submarines project worth about 14 billion USD. The KSS-III is consistently mentioned as one of the main contenders by the Polish government. • Philippines and other Southeast Asian countries: The Philippines is focused on strengthening its naval power to counter China. Other Southeast Asian nations are also looking to enhance maritime security through submarine acquisitions. South Korea, having previously exported submarines (e.g., the Nagapasa-class to Indonesia), is actively pursuing KSS-III sales in the region. 6. Comparison of the Latest Submarine Capabilities of Countries Surrounding South Korea This section examines the key features of the latest submarine technologies of South Korea, North Korea, China, and Japan. Table 13. Comparison of the latest submarines of South Korea and neighboring countries Overall Assessment • Military Ranking: Evaluated as top-tier in Asia in the order of China > Japan > South Korea > North Korea. • Advanced Technology: Japan, South Korea, and China are rapidly advancing in technological innovation, while North Korea focuses on strategic threat capabilities. • Operational Capability: Japan and South Korea excel in maritime route defense and blockade capabilities, whereas China’s strength lies in ocean-going and strategic power projection. Asian military experts particularly regard South Korea’s KSS-III, Japan’s Soryu-class/Taigei-class, and China’s latest submarines as the pinnacle of their respective national defense technologies. North Korea, while still relatively underdeveloped, raises the threat level through the public display of its strategic nuclear-powered capabilities. 7. Future Prospects: Development of Nuclear-Powered Submarines South Korea is considering the development of next-generation submarines over 4,000 tons in the 2030s, with nuclear-powered submarines being a key option under discussion. In the past, in 2003, the basic design for a 4,000-ton reactor was completed, but at that time, cooperation with the United States was essential due to restrictions such as the Korea–U.S. nuclear agreement (“123 Agreement”). Recently, with the revitalization of Korea–U.S. shipbuilding cooperation through Hanwha Ocean and Philly shipyards, the possibility of acquiring nuclear submarine technology has increased. In particular, following the official U.S. approval of South Korea’s nuclear-powered submarine construction at the 2025 APEC Summit, technical, fuel, and policy cooperation with the U.S. is expected to move forward in earnest for South Korea’s project. 1. Scope of Future Cooperation • The U.S. has agreed to share key technologies for South Korea to build nuclear-powered submarines. • Cooperation will also include securing nuclear fuel for propulsion (highly enriched uranium or HALEU – high-assay low-enriched uranium) and the design and fabrication of small reactors for submarine use. • Both countries have agreed to expand mutual investment and technical collaboration in shipbuilding, marine plants, and submarine construction industries. 2. Technology Transfer and Conditions • South Korea has requested U.S. approval and supply for submarine propulsion nuclear fuel, and the U.S. is reported to have approved the use of nuclear fuel for South Korea’s submarine construction. • However, based on currently available information, this does not automatically include the full transfer of submarine reactor design or propulsion systems; the scope and method of technology transfer (joint development vs. full transfer) are still under discussion. • If South Korea transitions to third-country technology transfer or domestic development under U.S. cooperation, there could be restrictions linked to the Non-Proliferation Treaty (NPT) and the 123 Agreement. 3. Potential Timeline • According to the fact sheet released at the APEC Summit, this cooperation is linked to investment in the shipbuilding industry, and South Korea is reported to have pledged around US$150 billion to U.S. shipbuilding. • South Korean government reports indicate the goal is to secure four or more medium-sized (approximately 5,000-ton or larger) nuclear-powered submarines by the mid-2030s. • However, specific milestones such as design completion, project start, construction, and delivery dates have not been officially finalized, and Korean officials have stated that detailed schedules are still under coordination. 8. Comparison of Nuclear Submarines and Conventional Submarines & the Importance of Nuclear Submarines Nuclear submarines can be broadly divided into two types based on their primary missions: 1) Strategic Nuclear Submarine (SSBN: Ship Submersible Ballistic missile Nuclear) • Primary Mission: Equipped with ballistic missiles (SLBMs) carrying nuclear warheads, SSBNs patrol covertly for extended periods to maintain nuclear deterrence. This means deterring adversaries from using nuclear or major conventional attacks by maintaining the capability to retaliate with nuclear weapons, thereby preventing war. • Characteristics: Large in size, prioritizes extreme stealth and long-range operational capability. 2) Torpedo-Attack Nuclear Submarine (SSN: Ship Submersible Nuclear) • Primary Mission: Engage enemy submarines (Sub Hunter) or surface ships (Ship Killer), conduct intelligence, surveillance, and reconnaissance (ISR), support special operations forces, or carry out land-attack missions using cruise missiles. • Characteristics: Smaller and faster than SSBNs, emphasizes agility and maneuverability. Summary: • SSBN: Strategic missions with nuclear missiles. • SSN: Tactical attack missions with torpedoes and cruise missiles. 8.1. Nuclear-Powered Submarines vs. Conventional (Diesel-Electric) Submarines – Propulsion Comparison The most fundamental difference is in the power source: • Nuclear propulsion: Uses a reactor; heat from nuclear fission boils water to produce steam, which drives turbines to generate propulsion and electricity. • Diesel-electric submarines: Operate differently on the surface/snorkeling versus submerged. o Surface / Snorkeling: Diesel engines are run to propel the submarine or charge the batteries. The submarine must surface or use a snorkel to intake air and expel exhaust gases, reducing stealth. o Submerged: Diesel engines are turned off; the submarine runs solely on large charged batteries powering electric motors. This allows for very quiet, stealthy operation, but operational endurance is limited. Once the batteries are depleted, the submarine must surface to run diesel engines and recharge. Table 14. Comparison of Nuclear Submarine and Conventional Submarine Specifications Key Points • A nuclear-powered submarine is similar to an aircraft carrier: it provides long-range, high-endurance capability and serves as a powerful tool for global power projection. It is designed to dominate the open ocean. • A conventional submarine is comparable to a coastal patrol craft or a hunter-killer submarine: a stealthy and cost-effective weapon optimized for controlling regional waters and coastlines. Its greatest advantage is extremely low noise during battery-powered operation, making it a deadly threat in shallow waters—like “a hole in the water.” • Choosing a submarine type is not about absolute superiority, but about selecting the model best suited to a country’s strategic goals, budgetary limits, and geographic operational environment. 8.2. Maintenance Comparison Between Nuclear-Powered and Conventional Submarines Which force should a nation prioritize: Nuclear submarines, the backbone of strategic deterrence thanks to their unlimited underwater endurance, or conventional submarines, which offer excellent cost-effectiveness and are easier to field in larger numbers? One of the core factors in this decision is operational cost-efficiency. Beyond construction cost, the long-term burden of decades of maintenance, training, reactor refueling, and life-cycle logistics must be considered. The comparison below outlines these sustainment requirements. Table 15. Maintenance Comparison: Nuclear vs. Conventional Submarines 8.3. Total Life-Cycle Cost Comparison Between Nuclear-Powered and Conventional Submarines Let us compare two submarines of similar class size as examples: • Dosan Ahn Changho–class (KSS-III, South Korea) — conventional (diesel-electric + AIP) • Virginia-class (SSN, United States) — nuclear-powered Between these two types, the Total Lifetime Cost is 3 to 4 times higher for the nuclear-powered submarine. Below, we analyze the causes of this massive cost difference using concrete figures. Table 16. Total Life-Cycle Cost Comparison: Nuclear Submarine vs. Conventional Submarine 8.4. Importance of Nuclear-Powered Submarines for the Republic of Korea Navy Despite the enormous cost gap shown earlier, the South Korean government has strong reasons for wanting to acquire nuclear-powered submarines. These reasons are rooted in national security, strategic autonomy, and enhanced maritime defense capability. Key strategic motivations include: 1) Responding to North Korea’s SLBM Threat North Korea: Developing the Sinpo-class SSBN (armed with SLBMs). If a North Korean SLBM submarine hides in the deep waters of the East Sea, it becomes impossible to track with conventional submarines. Only nuclear-powered submarines can conduct continuous 24-hour tracking due to their unlimited underwater endurance 2) Monitoring Chinese Submarine Activity: China has ~12 nuclear submarines + ~50 diesel-electric submarines and is increasing activity in the East China Sea and Western Pacific. To monitor Chinese submarines operating in the open ocean, nuclear-powered submarines are essential 3) Strengthening Strategic Deterrence: Current South Korean SLBM range: ~500 km, requiring operations near the Korean Peninsula. A nuclear submarine can launch from anywhere in the Pacific, drastically expanding deterrence. Provides a “survivable second-strike capability”—a retaliatory force that cannot be located or neutralized 4) National Prestige: Nations that operate nuclear submarines are considered major military powers. Only six countries currently possess them. Strengthens technological sovereignty and diplomatic leverage South Korea’s desire to operate nuclear-powered submarines is driven by strategic and security needs that far outweigh cost considerations. For over 30 years, South Korea has pursued nuclear submarine capabilities as part of a long-term defense strategy, aiming to achieve: enhanced nuclear deterrence, increased strategic autonomy, breakthroughs in defense technology, effective countermeasures against the expanding submarine forces of North Korea and China. Nuclear-powered submarines are seen as essential platforms capable of long-duration, high-speed, and highly covert operations—capabilities that are crucial in Korea’s security environment. Figure 11. Conceptual Cross-Section of the Korean Nuclear-Powered Submarine (KSS-N) Conclusion The Republic of Korea began with the small Dolgorae-class submarines in 1983, and in 42 years has risen to become the world’s 8th-largest submarine operator and one of the “Big Three” diesel-electric submarine powers (Germany, Japan, Korea). The Dosan Ahn Chang-ho class (KSS-III), in particular, is the world’s only diesel-electric submarine equipped with 10 VLS cells for SLBMs, and with its combination of AIP and lithium-ion batteries, it possesses some of the strongest underwater endurance and operational capability in the world. It has proven its real-world combat performance by eluding detection from a U.S. aircraft carrier during the RIMPAC exercises, and has demonstrated strong export competitiveness—Korea has already secured a 1.1 billion USD contract with Indonesia, and is competing for additional tenders in Canada, Poland, and the Philippines. Despite the overwhelming cost burden of nuclear-powered submarines, they remain essential for South Korea to counter North Korea’s SLBM-equipped SSBNs, and China’s expanding submarine fleet. Only nuclear-powered submarines can perform unlimited submerged operations and maintain high-speed, long-duration tracking of North Korean SSBNs 24/7. They also allow South Korea to exercise strategic deterrence across the entire Pacific, not just near the Korean Peninsula. While challenges remain—such as restrictions from the U.S.–Korea 123 Nuclear Agreement and various technological barriers—ongoing Korea–U.S. naval cooperation through Hanwha Ocean’s Philadelphia Shipyard significantly increases the likelihood of acquiring nuclear-submarine technology. Securing 4 to 6 nuclear-powered submarines would mark a transformational leap for the ROK Navy and a historic turning point in Korea’s rise as a true maritime power. South Korea’s submarine industry is not just a weapons program—it is an advanced technology sector and a driver of economic growth. It represents a core capability for self-reliant defense and national security. Based on its world-class diesel-electric submarine expertise, if Korea succeeds in acquiring nuclear-powered submarines as well, it will firmly establish itself as one of the world’s top five submarine powers. As history teaches that “those who command the seas command the future”, the continued advancement of South Korea’s submarine capabilities will serve as the foundation for peace and stability on the Korean Peninsula and in Northeast Asia in the 21st century.

Diplomacy
The Japanese and Chinese flags are being pulled apart, with the Taiwanese flag in the middle. This suggests that Japan's stance is,

Why Japan’s support for Taiwan has gone down so badly in China

by Lewis Eves

Tensions are rising between China and Japan again over a dispute in the East China Sea. Such tensions are usually over the Senkaku Islands, an uninhabited chain administered by Japan but claimed by China. The current row, however, stems from international anxiety over a possible Chinese invasion of democratically ruled Taiwan. On November 17, in her first parliamentary address since taking office in October, Japan’s prime minister Sanae Takaichi suggested that her country could intervene militarily in the event of an attack on Taiwan. Takaichi’s comments sparked anger in China, with state media framing her rhetoric as reminiscent of Japanese acts of violence towards China during the second world war. Beijing has demanded that Takaichi retract her comments – a call she has rebuffed – and is advising Chinese citizens against travelling to Japan, claiming there has been a deterioration in public security there. China has also introduced a blanket ban on Japanese seafood imports as the row continues to escalate. The ruling communist party, which frames itself as the protector of the Chinese nation, has long sought to reunify China following the so-called “century of humiliation”. Starting with the first opium war in 1839 and concluding with the end of the second world war in 1945, this period saw China victimised and partitioned by various foreign powers. Taiwan is thus problematic for the party. The island state broke away from China in 1949 at the end of the Chinese civil war, and its autonomy from Beijing contradicts the goal of national unity that the party has promised. Some observers fear that China will seek reunification through force, with some predictions suggesting it will be ready to invade Taiwan as soon as 2027. There is no guarantee that an invasion will occur. But the international community, led by the US, is preparing for a confrontation over Taiwan regardless. On the same day Takaichi made her comments, the US government announced it had agreed to sell US$700 million (£535 million) of arms to Taiwan. In this context, Japan’s show of support for a strategic partner in the region is not surprising – yet Takaichi’s remarks about Japanese intervention are particularly provocative for China. One reason is that Japan occupied and colonised Taiwan from 1895 to 1945, contributing to China’s century of humiliation. This makes Japanese threats to intervene in Taiwan’s defence a contentious prospect for China to consider. Another reason is that anti-Japanese sentiment is a prominent characteristic of Chinese nationalism. Many Chinese nationalists are vocal in condemning Japan for any provocation, pointing to historical atrocities committed against China as evidence of a need to stay vigilant against renewed Japanese aggression. The idea of Japan intervening to maintain the status quo in what China considers a breakaway province probably falls under their idea of an aggressive act. Will tensions escalate? Outright conflict between China and Japan remains unlikely. It is possible that Takaichi’s remarks were simply an effort to shore up domestic political support, rather than a genuine military threat. Her rightwing Liberal Democratic party (LDP) previously governed Japan in coalition with the centre-right Komeito party. This coalition broke down in October 2025, forcing the LDP to rely increasingly on its nationalist base for support – a group that is generally suspicious of China’s growing military and economic strength. Irrespective of Takaichi’s motive, China has responded assertively. It sent its coast guard to the Senkaku Islands in what it called a “rights enforcement patrol”. The Japanese government has also accused China of flying military drones near Japan’s most westerly territory, Yonaguni, which is close to Taiwan’s east coast. Any misfire risks open hostility between the two nations. The Senkaku Islands are administered by Japan but claimed by China as the Diaoyu Islands. vadimmmus / Shutterstock Relations between Japan and China are tense, yet I see cause for optimism. Takaichi has positioned herself as a successor to the late Shinzo Abe, who served as Japan’s prime minister from 2006 to 2007 and again from 2012 to 2020.Like Takaichi, Abe promoted an assertive Japanese foreign policy. He oversaw reinterpretations of Article 9, the pacifist clause of Japan’s constitution, to lessen restrictions on his country’s use of military force. This included passing legislation in 2015 which allows Japan’s self-defence force to deploy to protect the country’s allies. This legislation has enabled Takaichi to consider military intervention in Taiwan’s favour. When Abe entered office in 2012, it was also a tense time for China and Japan. Japanese nationalist activists swam to the Senkaku Islands and raised their country’s flag, triggering massive anti-Japanese protests in China. Tensions remained high for several years, with both countries deploying ships and warplanes to the region. This resulted in several near-misses that could have escalated into outright conflict. In 2014, Chinese fighter jets flew extremely close to a Japanese surveillance plane and intelligence aircraft near the islands, passing about 30 metres from one plane and 50 metres from another. However, once tensions passed, Abe and China’s leader, Xi Jinping, oversaw several years of relative calm and cooperation between their two countries. In fact, this is usually linked to the familiarity Abe and Xi developed through their interactions while managing their countries’ mutual animosity over the disputed islands. So, if Takaichi can follow her mentor’s lead and successfully navigate the tensions to build an effective working relationship with Xi, a more stable relationship between China and Japan in the future is still possible.

Diplomacy
President Donald Trump greets Chinese President Xi Jinping before a bilateral meeting at the Gimhae International Airport terminal, Thursday, October 30, 2025, in Busan, South Korea. (Official White House Photo by Daniel Torok)

Between Tactical Easing and Strategic Confrontation: The Busan Moment in China-US Relations

by Bo Ma , Yiyi Xu

On 30 October 2025, Chinese President Xi Jinping and US President Donald Trump held their first in-person meeting since 2019 on the sidelines of the Asia-Pacific Economic Cooperation summit in Busan. The encounter marked a cautious “tentative reengagement” after six years of sustained friction, signalling neither a diplomatic thaw nor a substantive breakthrough, but a forced recalibration. Both sides recognised that prolonged confrontation was increasingly costly, yet neither was willing to display strategic vulnerability or compromise on core interests. The central challenge of this “six-year reunion” was how to balance unavoidable competition with limited cooperation. The Busan meeting did not resolve long-standing disputes, but it did illuminate the evolving structure of bilateral engagement: limited economic de-escalation coexisting with sustained tensions in security and technology. Trust remained thin, and risk management defined the tone. Within this framework of cautious interaction and enduring rivalry, both sides resumed dialogue while leaving key structural contradictions unresolved. Tactical Easing: A “Mutual Ceasefire” over Rare Earths and Tariffs Building on preliminary understandings reached during earlier Kuala Lumpur discussions, the Busan meeting yielded limited but concrete outcomes. Washington agreed to suspend part of its planned tariff increases and delay the expansion of export restrictions. Beijing, in turn, postponed implementation of newly announced controls on rare earth elements and related technologies. These reciprocal measures were explicitly time-limited, with a one-year horizon.While framed as mutual concessions, the steps reflected pragmatic political calculations within each country’s domestic context. President Trump sought short-term economic calm to support financial markets and reassure key Midwestern constituencies ahead of the election cycle. Beijing, for its part, aimed to preserve a stable external environment through managed openness, gaining room for continued economic restructuring and technological adaptation. Yet the truce was fragile. China’s decision to delay export controls was not a concession but a strategic withholding of leverage. As the supplier of roughly 60 percent of the world’s mined rare earths – critical to semiconductors, electric vehicles, wind turbines, and US defence platforms such as the F-35—Beijing retains significant influence over global supply chains. The Busan easing was therefore less a structural breakthrough than a tactical pause: a deferral of escalation rather than a resolution of underlying tensions. Diplomatic Silence over Taiwan: Strategic Caution and Latent Risks The Busan meeting made no reference to the Taiwan issue—an omission that is rare in the history of China–US summitry. Following the talks, President Trump remarked that President Xi “understands the consequences” of attempting to seize Taiwan but declined to clarify whether the United States would intervene militarily. Secretary of State Marco Rubio similarly emphasised that Washington would not trade Taiwan’s interests for economic concessions. Taiwan thus became the “elephant in the room”: too consequential to ignore, yet too politically volatile to confront directly. For Beijing, Taiwan constitutes an inviolable sovereignty red line. For Trump, raising the issue risked derailing trade-focused dialogue and undermining his image of diplomatic control. Both leaders chose strategic silence as a means of avoiding escalation. This silence did not indicate convergence, but rather mutual restraint under high pressure. Taiwan has become a latent variable in every round of China–US engagement: absent from formal discussions, yet structurally embedded in the broader strategic equation. The longer it is avoided, the more its political cost accrues. In the future, renewed tensions—whether triggered by trade disputes or maritime incidents in the South China Seas—could rapidly return Taiwan to the center of bilateral confrontation. Taiwan’s “absence” in Busan does not reduce its relevance; it only signals that the crisis has been temporarily displaced from public diplomacy rather than defused. Institutionalised Decoupling: From Policy Choice to Structural Reality The diplomatic silence over Taiwan reflected tactical caution, while at a deeper level, the Busan meeting underscored the entrenched technological and institutional divergence between China and the United States. Trump signalled that US firms such as NVIDIA might engage in selective transactions involving mid-range AI chips, but reaffirmed that the most advanced semiconductor products would remain tightly restricted. This reaffirmed Washington’s “technology defense logic,” in which high-tech rivalry is governed by national security imperatives rather than market access concerns. In Beijing’s view, technological self-sufficiency is equally central to national resilience and regime security. Both sides now frame their strategic contest as a “struggle over national trajectory,” where concession is viewed as structural vulnerability. As a result, each is doubling down on domestic institutional insulation rather than pursuing negotiated guardrails. This bifurcation has produced a dual trajectory: modest stabilisation in trade flows paired with accelerating fragmentation in high-end technologies. Both governments are using this brief “technological cooldown” to advance structural measures. Washington is deepening coordination with allies and expanding export control and investment screening regimes. Beijing, for its part, is formulating new legal instruments—including draft frameworks akin to a Science and Technology Security Law and prospective regulations on critical technologies—to consolidate oversight over strategic sectors. While these initiatives are not yet fully codified, they reflect a clear intent to embed technology governance within national security architecture. In this context, technology has lost its value as a bargaining lever in diplomacy. Both sides tacitly acknowledge that strategic technologies can no longer be traded without compromising sovereignty. Technological decoupling has thus evolved from a temporary response into a systemic condition. The Busan “easing” did not reflect progress toward convergence, but rather a managed pause in an increasingly institutionalised contest. From High-Intensity Confrontation to Managed Competition The Busan meeting marked a shift in China–US relations from high-intensity confrontation to limited management. The two sides temporarily stabilised trade and exercised restraint on political and security fronts, while competition in technological and institutional domains remained entrenched. This was not reconciliation, nor a turning point, but the formation of a provisional equilibrium. For China, Busan offered a space for economic adjustment and accelerated efforts toward technological autonomy. For the United States, it maintained strategic pressure while averting short-term escalation. Beneath the optics of diplomacy, structural divergence and strategic mistrust persist. Across the Indo-Pacific, this “uneasy coexistence” is increasingly becoming the regional default. The significance of Busan lies not in concrete outcomes, but in the shared recognition that strategic confrontation must be managed, even if it cannot yet be resolved. This article was published under a Creative Commons license and may be republished with attribution, check original source for more information.

Defense & Security
Silhouette of missiles with South Korea flag against the sunset. Air defence concept

Major military weapons of South Korean Defense Industry II

by World & New World Journal Policy team

I. IntroductionAccording to the Stockholm International Peace Research Institute, Middle Eastern countries spent $243.5 billion on defense in 2024 — a 15 percent increase from 2023. Saudi Arabia led the region with $80.3 billion in defense spending, ranking seventh in the world. It was followed by Israel with $46.5 billion, Turkey with $25 billion, the United Arab Emirates(UAE) with $24 billion, Qatar with $14.4 billion, Iran with $7.9 billion, Kuwait with $7.8 billion, Iraq with $6.2 billion and Oman with $6 billion.[1] Pro-US countries like Saudi Arabia, the UAE and Qatar increased their military spending in response to perceived threats from Iran. Experts say that they have focused not just on deterrence but also on enhancing real-world capabilities. “These Middle East countries witnessed the consequences of being unprepared during the Israel–Hamas war and the Israeli–Iranian conflict,” said Kang Eun-ho, head of Jeonbuk National University’s defense industry research center and former chief of the Defense Acquisition Program Administration in South Korea. “Given the Middle East’s geopolitical tension, South Korean defense firms face growing opportunities.”[2] A key area of focus for Middle Eastern countries is the modernization of ground-based weapons like missiles, multiple launch rocket systems and self-propelled howitzers. As aging inventories in Middle East countries face obsolescence, the need for replacements is growing. According to a March 2025 report by Kyobo Securities, 2,350 out of 6,088 tanks, howitzers and multiple launch rocket systems (MLRS) units currently in use across Egypt, Saudi Arabia, the UAE and Iraq — or 39 percent — require replacement due to age or maintenance issues.[3] This presents a major opportunity for South Korean defense firms. South Korea has already exported K9 self-propelled howitzers to Turkey and Egypt, Chunmoo MLRS to the UAE and Saudi Arabia, and the Cheongung-II missile to multiple countries, including Iraq. Saudi Arabia and Egypt have recently shown strong interest in Hyundai Rotem’s K2 tanks, while the UAE is eyeing Hanwha Aerospace’s K9s. Air power modernization is also on the agenda of several Middle East countries. Korea Aerospace Industries (KAI) is promoting its FA-50 light attack aircraft to Egypt, the KF-21 fighter to Saudi Arabia and the Surion helicopter to Iraq and the UAE.   The appeal of K-defense lies in its cost-effectiveness. A single Cheongung-II interceptor, for example, costs approximately 1.5 billion won ($1.1 million), which is roughly a third of the price of a US Patriot missile, which ranges from 4 billion to 6 billion won. “US ground weapon offerings are limited, and some high-end fighter jets may be overkill for the region,” said Kim Ki-won, a professor of military studies at Daekyeung University. “South Korean weapon systems carry less political baggage and offer options like technology transfers and local production — attractive incentives for buyers.”[4]   Under this circumstance of the Middle East, this paper aims to introduce South Korean major weapons to government officials and businessmen in Middle Eastern countries.   This is the second paper in a series on South Korean defense industry. Focus is on South Korean weapons that were exported to Middle East countries, as well as on the weapons that have the potential to be exported to the Middle East. The first paper dealt with South Korean weapons that were exported to European countries.   This paper first provides an overview of South Korean defense industry and then introduces major Korean weapons exported and to be exported to Middle East countries.   1.South Korean Defense Industry: World’s top 10 arms exporter   It was 72 years ago that the bloody 1950-53 Korean War ended with an armistice.   Today, South Korea, the once-war-ravaged nation, stands among global leading arms exporters, and its factories turn out advanced tanks, artillery systems and fighter jets destined for battlefields far beyond the Korean Peninsula.   As Figure 1 shows, South Korea’s arms industry has been riding a wave of global demand. South Korea’ arms exports increased from 2.5 billion dollars in 2019 to 23 billion dollars (estimate)in 2025. South Korean weapons are in high demand for their advanced technology and fast delivery.   As a result, in recent years, South Korea has often been listed among the world’s top 10 arms exporters, competing with the US, Russia and China. As Figure 2, South Korea ranked No. 10 in global arms exports, with a 2.2 % share of the world arms market in the 2020-2024 period, according to the Stockholm International Peace Research Institute. The South Korean government is now setting its sights on breaking into the ranks of global top 4 arms exporters.   Figure 1: South Korea arms exports Figure 2: world’s biggest arms exporters   1.South Korean ‘Big 4’ defense companies   According to the Defense News Top 100 list for 2020, four of South Korea’s defense companies were ranked in the top 100 defense companies in the world. These four companies are Hanwha (32nd), Korea Aerospace Industries (KAI 55th), LIG Nex1 (68th), and Hyundai Rotem (95th).   These South Korea’s top four defense companies are expected to surpass 100 trillion won ($72 billion) in total order backlog in 2025, driven by strong export growth. More European and other countries adopt self-reliant defense strategies as US President Donald Trump warn that the US will no longer protect them for free and as he calls for increasing military spending. Moreover, the Ukraine war and the Gaza conflict continue. Thus, there are higher expectations that South Korea’s leading defense firms will secure more orders.   According to data compiled by the Chosun Ilbo, a top Korean newspaper, on May 6, 2025, the combined backlog of South Korea’s top four defense companies stands at around 94.5 trillion won. The figures for Hanwha Aerospace and KAI are based on the results of the first quarter in 2025, while those for LIG Nex1 and Hyundai Rotem reflect data from the end of 2024.[5]   All four companies secure more export deals, thereby enhancing both the scale and quality of their order books. Hanwha Aerospace, for example, holds 31.4 trillion won in ground defense orders, led by exports of K9 howitzers and Chunmoo multiple rocket systems. Exports account for 65% of that backlog. KAI’s backlog at the end of the first quarter in 2025 reached 24.3 trillion won, up 32% from 18.4 trillion won in 2020. The KAI aims to exceed 29 trillion won by year-end. Its export share has also risen from 50% in 2020 to 63% by the end of 2024.   LIG Nex1 holds a backlog of around 20 trillion won as of the end of 2024, while Hyundai Rotem’s stands at 18.8 trillion won. More than half of the orders for both companies come from overseas. Hyundai Rotem is also expected to finalize a second contract with Poland to export around 820 K2 tanks, valued at over 8 trillion won. If finalized, the deal would significantly boost its backlog this year.   According to updated data from the Chosun Ilbo, as Figure 3 shows, South Korea’s four major defense companies saw their combined order backlog surpass 100 trillion won ($72 billion) for the first time, driven by strong overseas demand. Data in second quarter of 2025 show that Hanwha Aerospace, LIG Nex1, Hyundai Rotem, and Korea Aerospace Industries held backlogs totaling 103.48 trillion won, more than double the 42.23 trillion won recorded at the end of 2021. Industry officials say that these companies now have enough work secured for the next four to five years.[6]   Figure 3: South Korea top 4 defense companies’ order backlog (source: the Chosun Ilbo, August 19, 2025)   This jump in exports of Korean-made conventional weapons has led to the Korean defense industry boom. Orders for Korean artillery weapons and armored vehicles from Eastern Europe and the Middle East have significantly increased since the outbreak of the Ukraine war.[7]   Sales of Hyundai Rotem Co., the supplier of the K-2 Black Panther tank, and Hanwha Aerospace Co., the supplier of the K-9 Thunder howitzer, have skyrocketed over the same period. Their parts suppliers have also seen their sales double over a year.   The South Korean defense industry’s current heyday is expected to continue for a while as global demand for Korean-made weapons and combat systems has surged amid growing geopolitical conflicts around the world.   According to defense industry sources, Hanwha Aerospace is expected to soon close a deal with Vietnam to export the K9 self-propelled howitzers, a contract expected to be worth 1 trillion won. Indeed, Hanwha Aerospace signed an agreement to export its K9 self-propelled howitzers worth US$250 million to Vietnam.  Hyundai Rotem is also reportedly nearing the final stage of inking a second agreement with Poland for K2 battle tanks that could be worth over 7 trillion won. LIG Nex1 has supposedly been in talks with Malaysia to export its surface-to-air missile system Cheongung. KAI is looking to export its KF-21 fighter jet to the Middle East.[8]   As the Korean defense companies continue to rack up orders and look to expand their list of clients worldwide, JP Morgan released a report on the four major defense firms -- Hanwha Aerospace, Hyundai Rotem, LIG Nex1 and KAI – in March 2025, increasing their stock price targets by an average of 28 percent while pointing out that there is “plenty of room to go” for their values to rise.[9]   The report surprised investors, industry officials and analysts as it set the target prices of the four defense companies higher than the domestic market consensus. J.P. Morgan adjusted the target stock prices of Hanwha Aerospace, Hyundai Rotem, LIG Nex1 and KAI to 950,000 won, 90,000 won, 370,000 won and 120,000 won, respectively.[10]   JP Morgan noted that it estimates an annual new order market of 19 trillion won -- 14 trillion won from Europe and 5 trillion won from the Middle East -- for Korean land weapons systems companies.   “Korean-made weapons remain one of the top choices for Eastern European countries facing national security issues,” said Lee Tae-hwan, an analyst at Daishin Securities. “Discussions about ordering conventional weapons will gain momentum. The K9 self-propelled howitzers and K2 tanks are excellent candidates with strong potential for scoring additional export deals in Eastern Europe.”[11]   Yu Ji-hoon, a research fellow at the Korea Institute for Defense Analyses, told The Korea Herald that “South Korea has rapidly matured into one of the world’s leading arms exporters, backed by a highly capable manufacturing base, a track record of delivering on time and at scale, and proven platforms.”[12].   II. Importers of South Korean weapons   Table 1. The 20 largest importers of major arms and their main suppliers, 2020–24   Source: SIPRI Arms Transfers Database, March. 2025   According to the SIPRI, as Table 1 shows, during the period of 2020–24, four of the world’s top 10 arms importers were in the Middle East: Qatar, Saudi Arabia, Egypt and Kuwait. More than half of Middle Eastern arms imports came from the US (52 per cent). The next largest arms suppliers to Middle Eastern nations were Italy (13 per cent), France (9.8 per cent) and Germany (7.6 per cent). Israel was the 15th largest arms importer in the world during the period of 2020–24, down from 14th in 2015–19. The US was the biggest supplier of major arms to Israel in 2020–24 (accounting for 66 per cent of Israeli arms imports), followed by Germany (33 per cent). Iran’s arms imports have been at a very low level relative to those of most other arms importers in the Middle East since 1993. Iran’s only supplier of major arms during the period of 2020–24 was Russia. Iran received a total of 6 light combat aircraft from Russia in 2023 and 2024 and has pending deliveries for 42 combat aircraft.[13]   Against the backdrop of tensions with its neighbors, Qatar was the 3rd largest arms importer in the world in 2020–24. Qatari arms imports during the period of 2020–24 were 127 per cent higher than in 2015–19. Qatar’s main arms supplier in 2020–24 was the US (accounting for 48 per cent of Qatari arms imports), followed by Italy (20 per cent), the UK (15 per cent) and France (14 per cent). In 2020–24 Qatar’s imports included 42 combat aircraft from the US, 31 from the UK and 16 from France; Qatar also imported 7 major warships from Italy. Arms imports by Saudi Arabia decreased by 41 per cent between 2015–19 and 2020–24. Saudi Arabia went from the world’s largest arms importer in 2015–19 to fourth largest importer in 2020–24. Saudi Arabia’s main arms supplier during the period of 2020–24 was the US (accounting for 74 per cent of Saudi Arabian arms imports), followed by Spain (10 per cent) and France (6.2 per cent). The decline in Saudi Arabia’s arms imports in 2020–24 can be partly attributed to the cyclical nature of arms procurement. Based on known pending deliveries, Saudi Arabia is expected to remain a major importer of arms in the coming years.[14]   According to data from the Korea International Trade Association and the Korean Herald, Middle Eastern countries occupied most of the top five spots among importers of Korean weapons in 2024 as regional tensions escalated due to the conflicts involving Israel, Hamas, and the Houthis in Yemen.   Saudi Arabia ranked second in the purchase of South Korean weapons with $530 million in 2024, while the United Arab Emirates and Turkey placed fourth and fifth with $145 million and $113 million, respectively. Last year’s biggest importer of South Korean defense systems was Poland, which purchased Korea-made weapons worth about $2.51 billion, more than four times what it bought in 2023. The US was the third-biggest importer of South Korean weapons at $219 million.[15]   As the Gaza conflict has threatened to spiral into a prolonged war, South Korea’s defense industry  sees a surge in international interest — particularly from the Middle East, where Arab governments have been accelerating large-scale military modernization programs.   Saudi Arabia and the United Arab Emirates open the door to South Korean arms manufacturers, as regional demand has been rising for weapons systems that can be delivered fast and customized to local needs and priced more competitively than their US or European counterparts.   As Table 1 shows, Middle East countries have historically relied on US and Russian weapons. However, they are increasingly diversifying their weapons procurement by turning to suppliers in China, Europe and, more recently, South Korea.   South Korean arms appeal to many countries due to their strong performance, faster delivery timelines, competitive prices compared to products from the US and Europe, and the ability to customize systems to local needs. This South Korean approach has already translated into tangible results in the Middle East.   LIG Nex1’s medium-to-high altitude interceptor system, the Cheongung II, secured export contracts worth 12.1 trillion won ($8.7 billion) from the UAE in 2022, as well as from Saudi Arabia and Iraq in 2024. Several countries in the Middle East also reportedly consider purchases of the Cheongung II.   Interest in South Korean naval vessels, submarines and fighter jets has also risen in the Middle East.   Saudi Arabian Navy Chief of Staff Faisal al-Gharibi visited the 2025 International Maritime Defense Industry Exhibition in Busan on May 28, showing particular interest in Hanwha Ocean’s 3,600-ton Jangbogo-III Batch-II submarine. The delegation also visited HD Hyundai Heavy Industries’ booth, showing a strong interest in a 6,500-ton frigate on display.[16]   The UAE has expressed interest in the KF-21, South Korea’s next-generation fighter jet. The UAE Air Defense Commander Rashid Al Shamsi visited Korea Aerospace Industries’ (KAI) headquarters in April 2025 to inspect production facilities for the KF-21 and other aircraft. Azzan A. Ali Al Nuaimi, commander of the UAE’s Air Warfare and Missile Defense Center, even requested to sit in a KF-21 prototype himself.   The KAI also pushes additional exports of the Surion multipurpose helicopter, having already delivered two units to Iraq.[17]Chae Woo-seok, executive director of the Korea Defense Industry Association, said that demand for South Korean weapons is likely to grow due to the region’s urgent security needs. He told that “We expect higher demand for South Korean defense systems that can be delivered quickly in a region such as the middle East with high geopolitical risk.” Chae said that “demand will grow for weapons systems that strengthen air power and build aerial defense networks, particularly those that enhance war deterrence capabilities.”[18]   III. Major military weapons of South Korean Defense Industry   1.South Korea’s expanding arms export portfolio   In South Korea’s expanding arms export portfolio, the K2 tank, called “Black Panther” and built by Hyundai Rotem, has been a flagship item.   The K2 is South Korea’s most advanced main battle tank, designed for speed, precision and adaptability on the mountainous Korean Peninsula. In recent years, the K2 has drawn major international orders, most notably from Poland, as Polish and other nations’ militaries seek modern armor to replace aging Cold War units.   It is central to South Korea’s largest-ever defense export deals, including the one with Poland, signed in 2022, in which Poland ordered 180 K2 Black Panther tanks from Hyundai Rotem in a $3.37 billion agreement. Deliveries began within months, far faster than European or American suppliers could offer.[19]   In 2025, Poland signed with a $6.5 billion contract for 180 upgraded K2PL tanks, making South Korea one of the North Atlantic Treaty Organization’s most important new arms partners and cemented South Korea’s status as a major player in the global defense market.   Other key weapons in the South Korean export portfolio are the K239 Chunmoo Multiple Rocket Launcher System, K9 self-propelled howitzer, FA-50 fighter jets, KP-SAM chirons, M-Sam 2 (천궁 II), KF-21 fight jets, and KUH-1 (수리온 헬기).[20]   Prominent deals made with global clients include K239 Chunmoo MLRS systems purchased by the United Arab Emirates and Saudi Arabia in 2017 and 2022, respectively.   South Korea also signed a $250 million agreement to supply Vietnam with 20 K9 self-propelled howitzers on August 14, 2025, marking the weapon’s first deployment to a member of the Association of Southeast Asian Nations bloc. The K9 howitzers are already in service in countries such as Turkey and Egypt.[21]   In December 2013, Iraq signed a contract for 24 T-50IQ aircraft, a FA-50 variant, plus additional equipment and pilot training over the next 20 years. The first batch of aircraft was delivered in March 2017.   On March 28, 2014, Department of Defense in the Philippines signed a contract for 12 FA-50 fighters worth P18.9 billion (US$421.12 million). Deliveries began in November 2015, all 12 aircraft were delivered by May 31, 2017.[22]   Indonesian Air Force acquired and operated KP-Sam Chirons since 2014 which was integrated with Oerlikon Skyshield 35 mm anti-aircraft gun system. Additionally, 2 Chirons were transferred according to a 2019 SIPRI small arms report. 54 KP-SAM chirons were delivered to Romania in June 2024.   M-Sam 2 (천궁 II) secured export contracts worth 12.1 trillion won ($8.7 billion) from the UAE in 2022 and Saudi Arabia & Iraq in 2024. Iraq purchased KUH-1 (수리온 헬기) in 2024.   As the Israel-Palestine conflict spirals into a prolonged war, South Korea’s defense industry is seeing a surge in international interest — particularly from the Middle East, where governments have been accelerating large-scale military modernization programs. Several countries in the Middle East also reportedly consider additional purchases of South Korean weapons. Interest in South Korean naval vessels, submarines and fighter jets has been also rising.[23]   Saudi Arabian Navy showed strong interest in Hanwha Ocean’s 3,600-ton Jangbogo-III Batch-II submarine. The UAE has expressed interest in the KF-21, South Korea’s next-generation fighter jet. The KAI has also pushed additional exports of the Surion multipurpose helicopter.   2. Major South Korean weapons that were exported to Middle East countries   This is the second paper in a series on South Korean defense industry. Focus is on South Korean weapons that were exported to Middle East countries.   According to data from the Korea International Trade Association and the Korea Herald, last year’s biggest importer of South Korean defense systems was Poland. The most-exported items were from Hanwha Aerospace, which shipped 212 units of its K9 self-propelled howitzers, and Hyundai Rotem, selling 134 units of the K2 battle tank.[24]   Middle Eastern countries occupied most of the top five spots among importers of South Korean weapons as regional tensions escalated due to the conflicts involving Israel, Iran, Hamas, and the Houthis in Yemen.   Saudi Arabia ranked second in the purchase of South Korean weapons with $530 million in 2024, while the United Arab Emirates and Turkey placed fourth and fifth with $145 million and $113 million, respectively. The United States was the third-biggest importer of Korean weapons at $219 million. As Table 2 shows, South Korea has exported the following weapons to several Middle East countries during the period of 2001-2024: K2 tanks, K 9 howitzer, Chunmoo multiple rocket systems, M-Sam 2, FA-50, and KUH-1 Surion.   Table 2: Major defense export contracts with Middle East countries, 2001-2024   Year Destination Name of company Name of weapon Contract money  (₩ Korean won or $ US dollars) 2001 Turkey Hanwha Aerospace K 9 howitzer $1 billion 2007 Turkey Hyundai Rotem K2 tanks $ 0.4 billion (Technology export) 2013 Iraq Korea Aerospace Industries (KAI) FA-50 ₩2.0121 trillion won 2017 UAE Hanwha Aerospace K239 Chunmoo (천무) ₩700 billion won 2022   Saudi Arabia Hanwha Aerospace K239 Chunmoo ₩1 trillion won Egypt Hanwha Aerospace K 9 howitzer ₩2 trillion won UAE LIG Nex1 M-Sam 2 (천궁 II) ₩12.1 trillion won 2024   Saudi Arabia LIG Nex1 M-Sam 2(천궁 II) Iraq LIG Nex1 M-Sam 2 (천궁 II) Iraq KAI KUH-1 Surion (헬기) ₩1.358 billion won (source: Chosun Biz, 12 February, 2025 & several Korean newspapers)   3. Major South Korean weapons that have the potential to be exported to Middle Eastern countries   As the Gaza conflict spirals into a prolonged war, demand for defense products in the Middle East has rapidly increased. Moreover, Middle Eastern countries have been transforming their defense industry and accelerating large-scale military modernization programs. In particular, Saudi Arabia has been actively advancing the transformation of its defense industry under ‘Vision 2030,’ with the goal of localizing 50% of military spending by 2030. To this end, Saudi Arabia has made strategic investments to develop its domestic defense manufacturing capabilities, increase self-sufficiency, and reduce reliance on foreign suppliers. One of the key events showcasing these advancements is the World Defense Show (WDS) 2026, scheduled to take place in Riyadh, where Saudi Arabia will highlight its growing defense capabilities and industry partnerships.[25]   Since the launch of Vision 2030 in 2016, Saudi Arabia has made significant progress in localizing its defense industry. The localization rate of military expenditures increased from 4% in 2018 to 19.35% by the end of 2023. In addition, the number of licensed and authorized facilities in the Saudi military industry sector increased from five in 2019 to 296 by the third quarter of 2024. This growth is the result of policies and regulations designed to oversee and stimulate the sector, enhancing the competitiveness of domestic products. These efforts aim to establish a robust industrial base and foster a national ecosystem capable of attracting investment and strategic collaborations with global entities.[26]   Several initiatives have been introduced to achieve these ambitious goals. The General Authority for Military Industries (GAMI) stands at the forefront of this movement, acting as the regulatory and enabling body for the Saudi defense industry. GAMI’s mandate includes overseeing technology transfer, streamlining military procurement, and supporting the growth of local defense production.[27]   The GAMI has signed over 53 industrial cooperation agreements, amounting to approximately 35 billion riyals ($9.32 billion), with local and international companies. Among these agreements, approximately 13 billion riyals ($3.46 billion) pertain to orders for local firms, supporting the development of national capabilities. Saudi Arabia seeks to strengthen ties with major global manufacturers and accelerate technology transfer to its domestic industry through these initiatives.   In parallel, Saudi Arabian Military Industries (SAMI), established in 2017, plays a central role in this transformation. As a wholly owned subsidiary of the Public Investment Fund (PIF), SAMI aims to rank among top 25 global defense firms by 2030. The SAMI focuses on the development of air, land, naval, and defense systems while forming strategic partnerships to facilitate technology transfer and enhance local capabilities.[28]   During this Saudi Arabia’s modernization of its defense industry, Saudi Arabia and South Korea have strengthen defense cooperation. In particular, Saudi Crown Prince Mohammed bin Salman’s visit to South Korea in 2019 led to the signing of an MoU aimed at strengthening defense and industrial partnerships, focusing on military acquisitions, research, and technology.   Since then, defense ties between Saudi Arabia and South Korea have grown through several agreements. For example, in February 2024, defense ministers in Saudi Arabia and South Korea discussed closer collaboration, and they signed an MoU to establish a joint committee for weapons research and development.[29]   This MoU signing was followed by a $3.2 billion deal, with South Korea’s LIG Nex1 agreeing to supply Saudi Arabia with mid-range surface-to-air missile systems.   On the other hand, for several decades, the UAE has been the undisputed regional economic leader, attracting foreign investors. Recently, however, Saudi Arabia has doubled down on its efforts to compete with the UAE and present itself as the new regional economic & defense leader. This competition could reshape Saudi-UAE relations and have impacts on the entire region.   As the competition between Saudi Arabia and UAE has intensified, rifts between the two Arab nations have deepened, occasionally leading to strained relations and divergent geoeconomic and geopolitical agendas.   Without a doubt, the UAE is the regional leader not only in the economic sector, but also in the defense sector, offering advanced autonomous solutions, air defense systems including missiles, land systems, electronic warfare, and even space technologies. The UAE has surpassed Egypt, previously the Arab world’s largest industrial power.[30]   The UAE’s decision to develop its domestic capabilities in defense stems from the UAE’s recognition of the risks that rely totally on a partnership with the US, particularly after the Biden administration imposed export restrictions on Saudi Arabia. In addition, UAE leaders see building their own industrial base as a necessary hedge against the oil rentier model, whose longevity cannot be assured. Moreover, as Saudi Arabia made significant transformation in its defense sector under ‘vision 2030,’ the UAE also needed to embark on major restructuring of its defense sector and programs.[31]   The UAE approach has emphasized forming joint ventures with various foreign partners. This strategy has allowed the country to acquire foreign technologies, develop them further, and eventually implement and market them as its own. One notable example is the Falaj 3, a 60-meter offshore patrol vessel. In January 2025, Abu Dhabi Ship Building (ADSB), which is owned by EDGE (an Emirati advanced technology and defense conglomerate), launched the first ship of this class, with four planned in total. These vessels are the result of a partnership with Singapore-based ST Engineering that provided technologies from its Fearless-class ships.[32]   Decision-makers in the UAE have not limited their cooperation to the largest defense firms. While major companies were crucial in the initial technology transfer phase, EDGE is now actively seeking industrial agreements with smaller yet ambitious and innovative partners that can significantly expand the offerings of Emirati entities. For instance, in January 2025, EDGE signed a letter of intent with Hungary under which the UAE will supply Caracal sniper rifles to the Hungarian military – marking the first time EDGE has provided such systems to a NATO member state. Not coincidentally, UAE President Sheikh Mohamed bin Zayed Al Nahyan welcomed Hungarian Prime Minister Viktor Orbán to Abu Dhabi at the same time.[33]   As the UAE modernizes its defense industry and actively pursues joint ventures with foreign partners, other Middle Eastern countries are likely to adopt similar strategies.[34]   Under these circumstances, several countries in the Middle East, in particular Saudi Arabia and the UAE, as well as Qatar, shift their focus away from the traditional US- and European-centric arms supply chain and toward South Korean defense companies. South Korea has emerged as a new strategic partner, leveraging the technological prowess and independent defense platform it has accumulated over the past several years.   Saudi Arabia and the UAE opened the door to South Korean arms manufacturers, as regional demand has been rising for weapons systems that can be delivered fast and customized to local needs and priced more competitively than their US or European counterparts.[35]   The Middle East countries have historically relied on US and Russian arms. However, they have been increasingly diversifying their weapons procurement by turning to suppliers in Europe, China, and, more recently, South Korea.   South Korean weapons appeal to many Middle Eastern countries due to their strong performance, faster delivery timelines, competitive prices, and the ability to customize systems to local needs. This South Korean approach has already produced positive results in the Middle East.   LIG Nex1’s medium-to-high altitude interceptor system, the Cheongung II, secured export contracts from the UAE in 2022, as well as from Saudi Arabia and Iraq in 2024. Several countries in the Middle East also consider purchases of the Cheongung II.[36]   Moreover, many Middle Eastern countries have shown interests in South Korean fighter jets, naval vessels, and submarines.   The most noteworthy South Korean weapon is the KF-21 Boramae, a 4.5th-generation fighter jet. The KF-21 is expected to be fully domestically produced in the future, and its component replacement cycle and operational and maintenance costs are lower than those of US or European aircraft. This economic feasibility and maintenance efficiency are highly attractive to Middle Eastern countries seeking to rapidly bolster their military capabilities. The UAE has expressed interest in the KF-21. The UAE Air Defense Commander Rashid Al Shamsi and his delegation visited Korea Aerospace Industries’ (KAI) headquarters in April 2025 to inspect production facilities for the KF-21 and other aircraft.   Moreover, South Korea possesses a diverse portfolio that includes not only fighter jets but also ballistic missile interception systems (e.g., the Cheongung II), unmanned aerial vehicles (UAVs), helicopters, self-propelled howitzers (K9s), maritime patrol aircraft, submarines, tanks, and armored vehicles, allowing it to flexibly respond to the complex security needs of Middle Eastern countries.[37]   The KAI has pushed additional exports of the Surion multipurpose helicopter, having already delivered two units to Iraq. “We’ve seen a sharp increase in visits and inquiries about our fighter jets and helicopters, especially from Middle Eastern countries,” a KAI representative said. “We will focus on country-specific strategies for countries such as the UAE and Saudi Arabia to secure final export deals.”[38]   Saudi Arabian Navy has showed strong interest in Hanwha Ocean’s 3,600-ton Jangbogo-III Batch-II submarine. Saudi Arabian Navy Chief of Staff Faisal al-Gharibi visited the 2025 International Maritime Defense Industry Exhibition in Busan on May 28, 2025, showing particular interest in Hanwha Ocean’s  Jangbogo-III Batch-II submarine. The Saudi delegation also visited HD Hyundai Heavy Industries’ booth, where they inquired about the export readiness of a 6,500-ton frigate on display. 4. Introduction of major South Korean weapons to become the game changer in the Middle East   This paper first introduces South Korean weapons that have the potential to be exported to the Middle East and then shows weapons that were already exported to the Middle Eastern and other countries.   1.M-Sam Block (천궁)   Type Medium-range, mobile surface-to-air missile/anti-ballistic missile system Place of origin South Korea Service history In service 2015–present Production history Designer Agency for Defense Development  Almaz-Antey (Block 1) Designed Block 1: 2001–2011[2]  Block 2: 2012–2017 Block 3: 2024–In development Manufacturer Hanwha Aerospace (launcher, radar)  LIG Nex1 (missile, system) Produced Block 1: 2015–2020 Block 2: 2021–present Specifications Mass Missile: 400 kilograms (880 lb) Length 4.61 meters (15 ft 1 in) Diameter 275 millimeters (10.8 in) Engine Solid-fuel rocket motor Operational range Block 1: 40 km (25 mi) Block 2: 50 km (31 mi) Flight ceiling Block 1: 15 km (49,000 ft) Block 2: 20 km (66,000 ft) Maximum speed Mach 4.5 – Mach 5 (1,530–1,700 m/s; 5,510–6,100 km/h) Guidance system Inertial guidance with midcourse updates through datalink, terminal active radar homing   Figure 4:  M-Sam (천궁) (source: Wikipedia)   The M-SAM (Medium-range Surface-to-Air Missile, 천궁), or often called KM-SAM, is a South Korean medium range surface-to-air missile (SAM) system that was developed by the Agency for Defense Development (ADD) with technical support from Almaz-Antey and Fakel, based on technology from the 9M96 missile used on S-350E and S-400 missile systems. The project was named Cheolmae-2 (Iron Hawk, 철매) during its development phase.[39] M-SAM serves as a key system in South Korea’s Air and Missile Defense (KAMD).   The KM-SAM is the middle-tier of South Korea’s three-tier aerial and missile defense system. Though it was developed in Russia by the Almaz Design Bureau in association with Samsung Thales, LIG Nex1, and Doosan DST, localization and industrialization were done in South Korea enough to consider it an indigenous Korean system. South Korea has independent export rights under international intellectual property law and does not use Russian-made parts. Therefore, export is possible regardless of international sanctions against Russia. The KM-SAM can intercept targets up to an altitude of 15 km (49,000 ft) at a range of 40 km (25 mi). It is to replace upgraded MIM-23 Hawk batteries in South Korea and be made available for export. Almaz-Antey continued with the program after prototypes were transferred and have created a distinctly Russian version called the Vityaz missile system.[40]   The South Korean Air Force revealed in mid-2015 that the KM-SAM would soon enter mass production and begin delivery to the Air Force that September, replacing the Hawk missile that had been in Korean service since 1964, which the US military retired in 2002. The system can intercept up to six targets simultaneously, and the missiles have anti-electronic warfare capabilities to keep functioning despite jamming. The system passed the military’s operational requirement verification test in July 2015, and began deployment in early 2016 near the maritime border with North Korea in the Yellow Sea.   On 28 April 2020, the Defense Acquisition Program Administration (DAPA) in South Korea announced that deliveries of the Cheongung KM-SAM Block-1 system to South Korean Air Force had been completed. In July 2021, South Korea retired its last MIM-23 Hawk system, phasing it out for the Cheongung Block-1.[41]   LIG Nex1 participated in International Defence Exhibition held in the UAE in 2021 and showed off the South Korean weapon system, including KM-SAM and AT-1K Raybolt.[42]   On 16 November 2021, the UAE’s Ministry of Defense tweeted that it plans to acquire the M-SAM as a “qualitative addition” to its existing air defense capabilities and that the deal could reach US$3.5 billion. An official at South Korea’s DAPA said that the announcement was "positive" but "we still need to see how negotiations on the details will proceed." On 16 January 2022, the DAPA announced that the UAE would purchase the system in a deal worth $3.5 billion. At that time, it was the largest arms export deal ever made by South Korea.[43]   In 2022, the US requested South Korea to send this missile system to Ukraine during the Russian invasion of Ukraine. However South Korea declined the request on the basis of its security situation.   In February 2024, the South Korean Defense Ministry announced that Saudi Arabia would purchase 10 KM-SAM Block II batteries, in a deal worth $3.2 billion.[44] In September 2024, the Iraqi Ministry of Defense signed a deal with LIG Nex1 worth $2.8 billion, in order to acquire an unspecified number of KM-SAM Block II batteries.[45]   Currently South Korean Air Force is the only operator of KM-SAM, operating KM-SAM Block I & Block II. Future operators may be Iraqi, Saudi, UAE Armed Forces (unspecified number of batteries). The Iraqi armed forces ordered Block II (unspecified number of batteries) in September 2024 for USD $2.8 billion. Royal Saudi Air Defense Forces also ordered Block II (10 batteries) in February 2024 for USD $3.2 billion. In addition, United Arab Emirates Army ordered Block II (12 batteries) in January 2023, and to be produced partially in the UAE, worth USD $3.5 billion.[46]   Figure 5: on May 13, 2025, the UAE officially unveiled M-SAM II (source: https://en.topwar.ru/264565-oaje-oficialno-predstavili-zakuplennuju-ranee-v-juzhnoj-koree-sistemu-perehvata-ballisticheskih-raket-m-sam-ii.html)   The South Korean government recently took two major steps toward strengthening its air defense shield against attack from North Korea’s ballistic-missile arsenal. First, on 28 July 2025, the South Korean government announced that it had deployed a first Medium Surface-to-Air Missile (M-SAM) Block II system after it had been upgraded from a Block I. Secondly, on 1 August 2025, the government revealed that it had awarded contracts for development of the M-SAM Block III (also known as the Cheongung-III) as its next-generation air defense system.[47]   Original Cheongung-I missiles, in a mobile, medium-range system focused on aircraft threats, were fielded in 2016. Since then, the South Korean government has pursued a phased improvement program rather than developing entirely new systems.   The South Korean Air Force formally deployed its first new-build M-SAM Block II batteries in 2023, with each battery containing 32 missiles that possess an anti-ballistic capability. The latest milestone covered the upgrade of Block I systems into the Block II.[48]   The Cheongung-II is a key element of the multi-layered South Korea Air and Missile Defense (KAMD) network. It addresses both fixed-wing aircraft and high-speed, maneuvering missile threats. The Cheongung-II has a hit-to-kill capability and improved low-altitude target detection, plus it allows multi-target engagements, thus increasing response to saturation or complex attacks.[49]   The Block II system uses a ground-based, multifunction, X-band, 3D, active electronically scanned array (AESA) radar with a 100km range; it is capable of tracking up to 40 targets simultaneously. Detection or jamming of the radar is minimized by employing electronic beam steering and reducing sidelobe emissions.[50]   The interceptor missiles employ active radar guidance in their terminal phase. Each has a range of 40km at altitudes of up to 15km. An M-SAM Block II battery consists of a truck-mounted AESA radar, a command post vehicle and four eight-cell missile launchers.   The upgrade path to the future Cheongung-III, which should be completed by 2034, will realize similar cost savings as occurred with the Block II.   The primary contract award to LIG Nex1 involves development of the engagement control system, command-and-control unit, interceptor missile and full system integration. Hanwha, although not selected as a prime contractor, will provide missile launchers, propulsion system and multifunction radars.   The Block III program is valued at KRW3 trillion (US$2.2 billion), and it will extend the current system’s capabilities by intercepting envisioned future ballistic-missile threats. It will have five times the operational range and increase the engagement altitude to 30km. The solid-fuel missile will achieve speeds of Mach 4.5, and use inertial guidance and active radar homing to address both short- and medium-range targets.[51]   The density and multi-layered structure of the KAMD network reflect South Korea’s clear appreciation of the threat posed by North Korea and its anticipated attack tactics.   Continued development of indigenous defense systems also demonstrates the country’s commitment to increased self-reliance and to establishing itself as a top-tier exporter of defense equipment.   The new system, upon completion, will upgrade the multi-layered defense network alongside other defense systems, such as the Cheongung-II and L-SAM systems. “We will develop the M-SAM Block-III system that satisfies both performance and price to ensure it contributes to strengthening our competitiveness in exports,” said DAPA Vice Commissioner Kang Hwan-seok.[52]   The M-SAM system (Cheongung)with this high quality is comparable to US Patriot system and Israeli Iron Dome. This paper compares M-Sam 2, Patriot (PAC-3) and Iron Dome. As Table 3 shows, M-Sam 2, Patriot (PAC-3) and Iron Dome have their own strengths and weaknesses. M-Sam 2 is better than Patriot (PAC-3) and Iron Dome in terms of high interception capability, high mobility, and low cost of purchase & maintenance. For more information about the M-SAM system, please watch the following Youtube videos:   الدفاع الجوي M SAM II الذي تعاقد علية العراق   Saudi Arabia Ordered Multi-Function Radar for Medium Range Surface-to-Air Missile from South Korean   UAE STRENGTHENS AIR DEFENSE IN 2025 — M-SAM II NOW INTEGRATED WITH PAC-3 & THAAD SYSTEMS   Table 3: Comparison of M-Sam 2 (천궁 II), Patriot (PAC-3), and the Iron Dome   Name of system M-Sam 2 Patriot (PAC-3), The Iron Dome Country of Origin South Korea USA Israel Period of use 2017-current (with ABM capabilities) 2009-current 2011-current Intercept Terminal Terminal Terminal Role against SRBM SRBM, MRBM Short-range rockets, artillery shells, drones Range (Max) Up to 50 km Up to 160 km Up to 70 km Ceiling (Max) 20km 24km + 10km Speed Mach 4.5+ 6,170 km/h (3,830 mph) Mach 2.2 Cost Export cost for Saudi Arabia, 10 batteries for US$ $3.2 billion, 2024 Export cost: US$2.37–2.5 billion for battery; US$6–10 million (FY 2018) for a single missile $50 million per battery; $100,000–150,000 per interception Interception success rate 100% (claim). No real war records 95% (claim). Operational experience in Ukraine demonstrates the increasing problem: on June 28, 2025, seven Russian ballistic missiles were fired, with one intercepted. above 90% (claim) Strength High interception capability, High mobility, low cost of purchase & maintenance Long-range interception, wide defense range, effectiveness against a wide range of targets, including aircraft, cruise missiles, and tactical ballistic missiles. Extensive real combat experience Extensive real combat experience Weakness Limited range, No real combat experience High cost of purchase & maintenance, lack of full 360-degree radar coverage, difficulty with hypersonic threats and saturation attacks Limited range, difficulty with saturation attacks & long-range ballistic missiles with larger and more powerful warheads, not effective against very short-range rockets that are fired from close proximity. (source: Wikipedia & https://en.wikipedia.org/wiki/Comparison_of_anti-ballistic_missile_systems, & https://gallery.modernengineeringmarvels.com/2025/10/09/russias-missile-maneuvers-expose-patriot-defense-weakness/, & https://defencesecurityasia.com/en/irondome-flaws-system/)   2. KUH-1 Surion General information Type Medium utility helicopter Role Transport National origin South Korea Manufacturer Korea Aerospace Industries Designer Agency for Defense Development (mission equipment package)  Korea Aerospace Industries (with technical assistance from Eurocopter) Status In service Primary users Republic of Korea Army National Police Agency (South Korea) Number built 218+ (including derivatives) History Introduction date 22 May 2013 First flight 10 March 2010 In service 2013–present Developed from Eurocopter AS332 Super Puma Figure 6: KUH-1 Surion (source: Wikipedia)   The KUH-1 Surion is a twin-engine, transport utility helicopter developed primarily by Korea Aerospace Industries (KAI), Agency for Defense Development (ADD) and Korea Aerospace Research Institute (KARI) jointly with Eurocopter. In 2006, the research and development phase of the Korea Helicopter Project - Korea Utility Helicopter (KHP-KUH), costing around ₩1.3 trillion (equivalent to ₩1.67 trillion or US$1.48 billion in 2017), was launched by the Agency for Defense Development.[53]   In June 2008, KAI announced that the first prototype KUH was to be rolled in the following month and that ground tests would begin later that year. The KAI stated that it aimed to conduct the type’s first flight in early 2010 and that the first production aircraft would be delivered in 2013.[54] In August 2009, the first prototype was introduced by President Lee Myung-bak at an unveiling ceremony in Sacheon, South Korea.   On 10 March 2010, KAI announced that a prototype had performed the maiden flight of the Surion. Two test pilots and an engineer performed a series of taxiing and hovering maneuvers, as well as a stationary hover at 30 ft (9.1m), during this initial flight.[55] In May 2010, following three months of flight testing, the prototype performed its first public flight demonstration.[56] In January 2011, Eurocopter and KAI established a joint venture, KAI-EC, for the purposes of marketing the Surion and handling export sales. At the time, it was envisioned that 250-300 units would be sold worldwide by 2021. In December 2012, deliveries of the first Surion model began. In February 2013, low temperature testing in Alaska, US, was completed, leading to development of the KUH-1 Surion being formally recognized as completed in March.[57] In 2012, full-scale production of the Surion began. KAI became the principal manufacturer of the type.   An initial force of around 245 Surions have been ordered by the South Korean Army to replace their aging fleets of UH-1H utility helicopters and 500MD light utility helicopters, which have been in service for decades. KAI will also construct civilian and law enforcement variants of the helicopter.[58]   KAI has offered the Surion to international markets for military and civilian purposes. In late 2013, it was reported that KAI had received requests for proposals regarding the Surion from two South American nations and another Asian nation; at the time, KAI stated that the company hoped to sell 60–120 Surions over the following 15–20 years.[59] International marketing efforts were expected to escalate in 2017, as prior to this point the overwhelming priority had been to fully develop the Surion to conform with existing domestic requirements and roles. KAI has deliberately focused on marketing the Surion to countries in which previous export success had been found for the KAI T-50 Golden Eagle and KAI KT-1 Woongbi trainer aircraft.[60]   KUH-1 export version prototype helicopter was unveiled at the Seoul ADEX in 2019. The new prototype helicopter was developed over four years to meet requirements of foreign customers. This helicopter for export was equipped with a GARMIN G5000H avionics suite, and this equipment strengthened airframe/structures for the installation of external fuel tanks and a weapons wing pylon. It can accommodate VIPs and passengers with enhanced interior and Bluetooth/wi-fi connectivity.   The Korea Utility Helicopter (KUH-1), the Surion, successfully achieved mass production by applying the concurrent engineering design concept, which involved simultaneous design and prototype development. Designed with the Korean Peninsula’s weather and mountainous terrain in mind, the Surion was developed to hover even at high altitudes, such as Mount Baekdu. This makes it a multi-purpose helicopter capable of conducting air operations throughout the Korean Peninsula and various support missions, including airlifting personnel and cargo to high altitudes.[61]   To counter enemy attacks in battlefield environments, critical flight safety components for the Surion, including the rotor system, cockpit, engine, and fuel tank, were designed with ballistic resistance. The rotor blades maintained their functionality even after a hit, ensuring the helicopter’s safe return. The windshield was designed to contain and prevent fragments from dispersing in the event of an external impact, ensuring pilot safety.   The fuel tank sealed itself in the event of a hit to prevent fuel leakage and explosion, and the engine was equipped with a Full-Factor Engine Control Unit (FADEC). The control system employed a dual-compensation design, allowing a backup system to operate in the event of a failure. The main gearbox can operate without lubrication for 30 minutes in an emergency. Furthermore, the integrated digital instrument panel (Glass Cockpit) enhanced pilot convenience. Equipped with a four-axis autopilot and digital power control, the aircraft can autonomously fly to a tactical target point after takeoff, enabling tactical missions even at night and in adverse weather conditions. It also features automatic hover capability.[62]   Current operators of KUH-1 Surions are South Korean Army, Marine Corps and Korea Coast Guard. South Korean government agencies such as National Police Agency, Korea Forest Service, Jeju Fire Department, and Korea Aerospace Industries also operate KUH-1 Surions. Potential customers of KUH-1 Surions are Vietnam and Iraq:   Vietnam: In mid-2023, Korea Aerospace Industries (KAI) signed a Memorandum of Understanding with Viettel Aerospace Institute (VTX) to “cooperate in developing and producing helicopters.” By that, KAI and VTX plan to collaborate on the development and production of helicopter’s rotary wings. The agreement is expected to boost KAI’s presence in the Southeast Asian helicopter market while eventually making Vietnam a very potential customer of the Surion.[63]   Iraq: In August 2024, Korean media reported that a high-ranking Iraqi Army official, Lieutenant General Samir Zaki Hussein Al-Maliki, commander of Iraq’s Army Aviation Command, embarked on a four-day visit to South Korea. The official’s visit to South Korea coincides with Iraq’s exploration of potential acquisitions to modernize its military assets. While Iraq previously secured a deal with KAI for the procurement of 24 FA-50 light attack aircraft in 2013, discussions regarding the Surion helicopter mark a new avenue for collaboration between the two nations. In December 2024, the KAI signed a US$93.7 million deal to export the Surion to Iraq. Under the deal, KAI will supply 2 KUH-1 helicopters to the Iraqi government by March 2029.[64] 3. KF-21   General information Type Block 1: Air superiority fighter  Block 2: Multirole combat aircraft, air superiority fighter  Block 3: Stealth strike fighter, multirole combat aircraft, air superiority fighter National origin South Korea Manufacturer Korea Aerospace Industries Designer Agency for Defense Development Primary user Republic of Korea Air Force, Republic of Indonesia Air Force Number built 6 prototypes History Introduction date 2026 (planned) First flight 19 July 2022   Figure 7: KF 21 (source: Wikipedia)   The KF-21 Boramae (KF-21 보라매) is a South Korean fighter aircraft development program with the initial goal of producing multirole fighters for South Korean Air Force. The airframe uses stealth technology but carries weapons externally, and features such as internal bays will be introduced later with KF-21EX program.[65] The KAI KF-X is South Korea’s second domestic fighter jet development program, following the FA-50.[66]   In April 2021, the first prototype was completed and unveiled during a rollout ceremony at the headquarters of KAI in Sacheon. It was named the Boramae. The first test flight was on 19 July 2022. The serial production started in July 2024. 40 aircraft were planned to be delivered by 2028, with South Korean Air Force expecting to deploy 120 of the aircraft by 2032.[67] It will also be available for export. South Korea will begin replacing its F-4D/E Phantom II and F-5E/F Tiger II jets with KF-21s. Later, F-16 Fighting Falcon and F-15EX Eagle IIs will also be replaced.[68]   The KF-21’s specifications are as impressive as its development speed. This jet can reach a speed of Mach 1.8 (or 1,400 miles per hour), has a ceiling of 50,000 feet, and can carry 17,000 pounds of ordnance.[69]   The KF-21 also has an advanced suite of avionics and other electronics, like an active electronically scanned array (AESA) radar; a cutting-edge system that uses thousands of tiny antennas to rapidly scan, track, and target multiple objects simultaneously. The two-seater variant is expected to be capable of teaming with South Korea’s Low Observable Unmanned Wingman System (LOWUS), a collaborative combat aircraft under development.[70]   Despite its impressive capabilities, the KF-21 is not a 5th-gen fighter, because it does not have the same stealth capabilities as its American, Chinese, and Russian counterparts.[71] While the jet does feature an angular design to reduce its radar cross section, it lacks radar-absorbent materials (RAM) across its entire body and does not have internal weapons bays, instead relying on ten external hardpoints. Thus, KAI and analysts often refer to the KF-21 as a “4.5 generation” fighter — in other words, an advanced 4th-gen fighter with some 5th-gen characteristics.   But that may not be the case for long. KAI announced that it intends to upgrade a version of the KF-21 to a full stealth fighter. Dubbed the KF-21EX, these upgrades will include internal weapons bays, more advanced RAM coatings, conformal antennas (flat sensors embedded in the airframe’s skin that replace protruding antennas), and possibly low-observable exhaust nozzles for engine exhaust and infrared signature reduction. Internal weapons bays are important for a 5th-generation fighter because external weapons produce sizable radar returns.   The KF-21EX may be available by the late 2030s or early 2040s. South Korea’s Air Force signed its first contract for 20 KF-21s in 2024, with deliveries expected between the end of 2026 and summer of 2027. A second order of 20 more is expected to come by the end of this year. The country hopes to acquire 120 of the jets by 2032.[72]   Based on the final basic design (C109) released in late 2018, the KF-21 is a medium-sized fighter jet. The KF-21is larger than smaller fighters like the F-16 or JAS 39 Gripen, but is smaller than larger fighters like the F/A-18E/F, F-15, and F-22, and is comparable in weight to the Dassault Rafale, MiG-35, Eurofighter Typhoon, and F/A-18C/D.[73]   The KF-21 is smaller and lighter than the F/A-18E/F, which uses the same F414-GE-400 engine, and has the advantage of lower wing loading than the F-35, which has a similar thrust rating. Thanks to this, the thrust-to-weight ratio is comparable to that of the Eurofighter Typhoon, and with the application of triple digital FBW, LEX (Leading Edge eXtension), and variable camber wings, it is expected to demonstrate high acceleration, turning ability, and high angle of attack maneuverability. The subjective evaluation of current test pilots is that its maneuverability is similar to or better than that of the F-16. The speed is Mach 1.8 or higher. To ensure survivability in future battlefields, the KF-21 has a low-observable shape design, including a reflection angle alignment design, a flush antenna, S-Duct, a flat fuselage, and a semi-recessed weapons bay. RAM is applied to the canopy, wings, and tail, and RAS is applied to the ducts and flaps inside the fuselage. Frequency-selective surface technology is applied to the radome to prevent radar waves from enemy fighters from reflecting back onto the antenna.[74]   As befitting a cutting-edge 4.5-generation fighter, the KF-21 incorporates sensor fusion technology. This technology integrates various sensors, including an active electronically scanned array (AESA) radar, along with information shared via the AESA radar, IRST, EOTGP, and datalink. This technology determines whether a target is the same target, calculates the target’s flight trajectory, and displays it to the pilot via the radar-activated display (LAD). The IRST and EOTGP are developed based on Leonardo's PIRATE IRST, used on the Eurofighter Typhoon, and Lockheed Martin’s Sniper Targeting Pod, used on fighters such as the F-15K. Contrary to popular belief, the EOTGP is also used in air-to-air missions, enabling more effective detection of enemy aircraft through IRST and sensor fusion, much like the Rafale's Front Sector Optronics (FSO).[75]   The Multi-Function Radar developed by Hanwha Systems is an active electronically scanned array (AESA) radar, and its performance is developed with the goal of being equal to or superior to that of the AN/APG-81. It can detect/track more than 20 targets simultaneously, and supports simultaneous air-to-air/air-to-ground/air-to-ship search modes, air-to-ground SAR mode, air-to-air tracking mode, and LPI mode. The radar signal processing computer was developed by Intellics, a South Korean company, and is equipped with OpenCL for high-speed calculations. It provides a total processing performance of 25 TFLOPS by installing eight of the latest high-performance FPGA Virtex 7, server-grade CPU Intel XEON D, and MXM type AMD Radeon E8950 MXM GPUs in parallel, which is a 47% improvement compared to the 17 TFLOPS of the Mercury product installed on the F-35. By applying this low-observable technology, it achieved a lower RCS than the F/A-18E/F Super Hornet, and at the time of exploration and development, it was predicted that the combat effectiveness would be 4.1 times that of the F-16, 1.2 times that of the F/A-18E/F, and 1.3 times that of the F-16C.[76]   Currently KF-21 is operated only in South Korea, but potential operators of KF-21 are as follows: Egypt, Indonesia, Malaysia, Poland, Peru, the Philippines, Saudi Arabia, and UAE. Because this paper focuses on Middle East countries, it explains only Egypt, Saudi Arabia, and UAE.   Egypt is regarded as a potential purchaser of the FA-50, as well as the newly-developed KF-21 Boramae fighter jet.[77]   Saudi Arabia is seen as another potential purchaser of KF-21. On 30 January 2024, a South Korean Defense Ministry official stated that senior representatives from the Ministry and the Agency for Defense Development made an unannounced visit to Saudi Arabia from 23 to 26 January, 2024. During the visit, the South Korean delegation met with Saudi Arabia’s Deputy Defense Minister, Dr. Khalid bin Hussein Al-Biyari, and other officials to discuss the potential joint development of a 5th or 6th generation multi-role fighter based on the KAI KF-21 Boramae design.[78]   On July 29, 2025, Royal Saudi Air Force Commander Lieutenant General Turki bin Bandar bin Abdulaziz met with South Korean Air Force General Lee Young-soo. The two Generals discussed military cooperation and topics of mutual interest, including potential Saudi involvement in the KF-21 Boramae fighter jet project.   On August 14, 2025, officials from Saudi military company SAMI Aerospace held a meeting with the Chief of Staff of South Korean Air Force to talk about boosting their partnership in the aviation sector.[79]   To strengthen its position in developing and exporting next-generation combat aircraft, South Korea has proposed joint development of the KF-21 and its successor to several countries in Southeast Asia and the Middle East, with a particular focus on the United Arab Emirates and Saudi Arabia.   On 15 May 2024, senior air force officials from South Korea and the UAE signed a letter of intent for comprehensive cooperation on South Korea’s KF-21 Boramae program. The agreement was signed by South Korean Air Force General Lee Young-su and UAE Air Force and Air Defense Commander General Rashed Mohammed A.[80]   In April 2025, the United Arab Emirates Air Force and Air Defense, and the South Korean Air Force signed a letter of intent to further their cooperation on the program.   On July 7, 2025, a friendship flight took place at Sacheon Air Base in South Korea, involving high-ranking officials from both South Korean Air Force and the United Arab Emirates. South Korean Air Force General Lee Young-su piloted an FA-50 fighter jet, while UAE Assistant Undersecretary of the Ministry of Defense, Ibrahim Nasser Mohamed Al Alawi, flew in a prototype of the KF-21 Boramae fighter.[81]   4. KSS-III submarine    Class overview Builders ·Hanwha Ocean ·HD Hyundai Heavy Industries Operators  Republic of Korea Navy (ROKN) Preceded by Son Won-il class (Type 214 submarine) Cost USD $900,000,000 per submarine Built 2014–present In service 2021–present Planned 9 Building 3 Completed 3 Active 3 General characteristics Type Attack submarine with ballistic missile launching capabilities Displacement ·Batch-I:- ·3,358 t (3,305 long tons) (Surfaced) ·3,750 t (3,690 long tons) (Submerged) ·Batch-II:- ·3,600 t (3,500 long tons) (Surfaced) ·4,000 t (3,900 long tons) (Submerged) Length ·Batch-I:- ·83.5 m (273 ft 11 in) ·Batch-II:- ·89.3 m (293 ft 0 in) Beam ·Batch-I/II:- ·9.6 m (31 ft 6 in) Draught ·Batch-I:- ·7.62 m (25 ft 0 in) Propulsion ·Batch-I:- ·Diesel-electric propulsion ·Air-independent propulsion (AIP) ·3 × MTU 16V396SE84L marine diesel engines ·4 × Bumhan Industries PH1 PEM fuel cells, each with 150 kW ·Batch-II:- ·Diesel-electric propulsion ·Air-independent propulsion ·Samsung SDI lithium-ion fuel cells Speed ·12 knots (22 km/h; 14 mph) (surfaced) ·20 knots (37 km/h; 23 mph) (submerged) Range 10,000 nmi (19,000 km; 12,000 mi) Endurance 20+ days (submerged) Complement 50 Sensors & processing systems ·Combat suite: ·Hanwha-developed "Combat Management System" (CMS) ·Sonar: ·LIG Nex1-developed sonar suite ·Thales-developed mine-avoidance sonar ·Electronic warfare: ·Indra-developed radar electronic support measurement (RESM) ·Other processing systems: ·Safran-developed "Series 30" optronic surveillance mast ·Babcock-developed "Weapons Handling and Launch System" (WHLS) ·ECA Group-developed steering consoles Armament ·Batch-I:- ·6 × 533 mm (21 in) torpedo tubes o        LIG Nex1 K761 Tiger Shark heavyweight torpedoes ·6 × K-VLS cells o        6 × Hyunmoo 4-4 submarine-launched ballistic missile ·Batch-II:- ·10 × K-VLS cells o        10 × Hyunmoo 4-4 submarine-launched ballistic missile o        Chonryong land attack cruise missile Notes First-ever AIP-equipped submarine capable of launching submarine-launched ballistic missiles (SLBM).   Figure 8: KSS-III 잠수함 (source: Wikipedia)   The KSS-III (잠수함) is a series of diesel-electric attack and ballistic missile submarines that are currently being built for South Korean Navy, jointly by Hanwha Ocean and HD Hyundai Heavy Industries. The KSS-III is the final phase of the South Korean Attack Submarine program, a three-phased program to build 27 attack submarines for the South Korean Navy, between 1994–2029.[82]   The KSS-III initiative consists of the development of nine diesel-electric attack submarines, capable of firing submarine-launched ballistic missiles (SLBM), to be built in three batches, between 2014–2029.[83]   A total of three submarines of the first batch of the series have been launched, with the first submarine, ROKS Dosan Ahn Chang-ho, commissioned on 13 August 2019. The second ship, ROKS Ahn Mu, was commissioned on 20 April 2023.   On October 30th, 2024, a steel-cutting ceremony for the third and final vessel of the KSS-III Batch-II submarine took place at Hanwha Ocean’s Geoje shipyards. The KSS-III Batch-II submarine, designed and constructed with domestic technology, is the latest and most advanced diesel submarine for the South Korean Navy.[84]   The KSS-III Batch-II, with a displacement of 3,600 tons (surfaced), is 5.5 meters longer than the previous KSS-III Batch-I submarines and is equipped with 10 VLS cells for launching Hyunmoo-IV-4 SLBMs. Additionally, the Batch-II features enhanced combat and sonar systems for improved detection and targeting capabilities, along with a lithium battery system that enables extended underwater operations, making it a core asset in safeguarding national security.[85]   In addition to enhanced sensors and weapon systems, the KSS-III Batch-II is also expected to operate an Anti-Submarine Warfare Unmanned Underwater Vehicle (ASWUUV), currently being co-developed by Hanwha Systems and the Agency for Defense Development. The incorporation of a manned-unmanned teaming (MUM-T) system is anticipated to extend the operational range and enhance the combat capability of its carrier by remaining underwater for extended periods to detect enemy submarines in advance, thereby ensuring the survivability of manned combat vessels. Moreover, with variable operational depth control, the UUV will effectively monitor and gather intelligence on underwater threats. The ASWUUV is planned to be operational with the South Korean Navy by 2030.[86]   The KSS-III Batch-II has also extended its localization rate to over 80% by incorporating more than 70 types of domestically developed and built equipment. With more accessible maintenance, South Korean Navy is expected to achieve more stable submarine operations, while for the shipbuilding industry, this provides a more manageable construction process for future exports, anticipated to boost defense exports.[87]   Current Operators of the KSS-III submarines are South Korean Navy - Three in service, out of a total of nine planned. Potential operators are Royal Canadian Navy - up to twelve conventionally-powered submarines are planned to replace the Victoria class submarines, with long-range patrols being a key factor. The Hanwha has emerged as a frontrunner, formally responding to the request for information by its deadline of 18 November, 2024, offering to have the first in class launched by 2030 and the first four by 2035. Hyundai Heavy Industries made a partner offer to supply artillery, likely the K9 Thunder.[88] On 26 August 2025, the KSS-III was shortlisted as the only qualified options alongside the TKMS Type 212CD developed by ThyssenKrupp Marine Systems.[89]   5. K 2 Black Panther (K 2 tanks)   Service history In service 2014–present Production history Designer Agency for Defense Development  Doosan Mottrol  Hyundai Rotem  Poongsan Corporation  Samsung Thales  Samyang Comtech  WIA Designed 1995–2008 Manufacturer Hyundai Rotem Unit cost ₩7.8 billion (production batch  US$8.5 million (constant 2009 USD) Produced 2008–present No. built · Republic of Korea Army: Batch I: 100, Batch II: 106, Batch III: 54, Batch IV: 150 (ordered) · Polish Land Forces: Batch I: 180 (ordered), Batch II: 180 (ordered) · Total: 440 Specifications Mass Curb weight: 55 metric tons (54 long tons; 61 short tons) Combat weight: 56 metric tons (55 long tons; 62 short tons) Length Overall: 10.8 meters (35 ft 5 in)  Chassis: 7.5 meters (24 ft 7 in) Width 3.6 meters (11 ft 10 in) Height Highest: 2.4 meters (7 ft 10 in) Lowest: 2 meters (6 ft 7 in) Crew 3 (commander, gunner and driver) Armor MIL-12560H armor steel and silicon carbide non-oxide ceramic plate along with ERA and NERA modular add-on armor Main armament Hyundai WIA CN08 120 mm 55 caliber smoothbore gun (40 rounds) Secondary armament 1× 12.7×99mm (.50 BMG) K6 heavy machine gun (3,200 rounds) 1× 7.62×51mm NATO coaxial machine gun (12,000 rounds) Engine · Batch I: STX Engine/MTU Friedrichshafen MT883 Ka-501 4-short stroke, 12-cylinder water-cooled diesel, dry weight: 2,064 kg 1,500 hp (1,103 kW)· Batch II-IV: HD Hyundai Infracore DV27K 4-long stroke, 12-cylinder water-cooled diesel, dry weight: 2,550 kg 1,500 hp (1,110 kW)] Power/weight 27.3 hp/t (20.35 kW/t) Transmission · Batch I-II: RENK HSWL 295 TM (5 forward, 5 reverse gears), dry weight: 2,450 kg · Batch III-IV: SNT Dynamics EST15K (6 forward, 3 reverse gears, in development), dry weight: 2,500 kg Suspension Semi-active in-arm suspension unit (ISU) with dynamic track tension system (DTTS) Fuel capacity 1,296 liters (342 U.S. gal) Operational range 450 km (280 mi) Maximum speed Paved road: 70 km/h (43 mph) Cross country: 50 km/h (31 mph) Acceleration from 0–32 km/h (0–20 mph) in 7.47 seconds (MT883 Ka-501) or 8.77 seconds (DV27K)   Figure 9: K2 Black Panther (source: Wikipedia)   K2 Black Panther (K-2 흑표 tank) is a South Korean fourth-generation main tank,  manufactured by Hyundai Rotem.   The K2 Black Panther has an advanced fire-control system, in-arm suspension, laser rangefinder, a radar, and crosswind sensor for lock-on targeting. The K2’s thermographic camera tracks target up to 9.8 km, and its millimeter-band radar acts as a Missile Approach Warning System, enhancing situational awareness. And its soft-kill active protection system deploys smoke grenades to counter incoming projectiles. The K2’s autoloader reduces crew size from 4 to 3, thereby providing a faster rate of fire, better fuel efficiency, and lower maintenance costs compared to other western main tanks requiring human loaders. In addition, the K2 can operate in indirect fire mode, offering key advantages over Western designs.[90]   The K2’s production started in 2008 and its mass production began in 2013. The first K2 tanks were deployed to South Korean army in July 2014.[91]   The K2 Black Panthers were exported to Turkey and Poland. The potential operators of K2 Black Panthers are Armenia, Egypt, Morocco, Peru, Romania, and Slovakia.   a. Turkey   In June 2007, South Korea and Turkey negotiated a deal worth $540 million that included South Korea’s support for the development of Turkey’s Altay battle tank.   On July 29, 2008, Hyundai Rotem and Turkey’s Otokar (Turkish defense firm) signed a contract to provide design assistance and technology transfer for the Altay tank project. This collaboration included systems integration, critical design elements, and manufacturing expertise from South Korea, specifically tailored to develop Turkey’s domestic manufacturing capabilities.   South Korea’s contributions to the Altay’s development included the transfer of manufacturing technologies for critical components. Hyundai Rotem played a central role in the system design and integration process, and Hyundai WIA provided the 120 mm 55-caliber smoothbore gun technology. Poongsan Corporation supported the development of ballistic protection systems, while Samyang Comtech shared expertise in advanced armor materials. These collective efforts laid the foundation for Turkey’s capabilities in producing the Altay tank.[92]   This cooperation extended beyond technical support, encompassing assistance in establishing production lines for key subsystems. Hyundai Rotem guided Otokar in tank systems development, while MKEK (Turkish mechanical and chemical corporation) received tank gun production technologies. Roketsan (Turkish defense firm) was supported in the design and manufacturing of advanced armor packages. These collaborative efforts were instrumental in the development of prototypes PV1 and PV2, finalized in 2015, and the Altay project's official completion in 2016.[93]   On 10 March 2021, BMC, the Turkish contractor responsible for the production of Altay tanks, made a decision to import engines and transmissions from South Korea to address production delays. Seven months later, on 22 October 2021, South Korea’s DAPA approved the export of Hyundai Doosan Infracore (now HD Hyundai Infracore) DV27K engines and SNT Dynamics EST15K transmissions to Turkey. In August 2022, durability testing of the powerpack, combining the DV27K engine and EST15K transmission from South Korea, was successfully completed. Following this success, the first batch of Altay tanks will be produced using this Korean powerpack including engines from HD Hyundai Infracore and transmissions by SNT Dynamics. The tank is in production according to the Turkish media.[94] In 2025, mass production of the Altay tank officially started on 5 September, 2025.   b. Poland   In January 2020, Poland announced negotiations with Hyundai Rotem for license production of the K2 Black Panther for the Polish Army.   On 13 June 2022, the Polish Ministry of Defense announced that it had signed a memorandum of understanding (MOU) to buy at least 180 K2 tanks for the Polish military.   On 27 July 2022, the Polish Armaments Group (PGZ) and Hyundai Rotem signed a framework agreement to provide 180 K2s and 820 K2PLs. The contract included rapid arms supply and extensive technology transfer from South Korea. According to the contract, 180 K2s will be produced in South Korea and delivered to Poland starting in 2022, and 820 K2PLs will be produced in Poland under license beginning in 2026.[95]   On 26 August 2022, the first executive agreement worth $3.37 billion was signed to procure 180 K2s in Morąg in northern Poland. The contract included logistics packages, training programs, explosive reactive armor packages, 50,000 120 mm, 4.3 million 7.62 mm and 12.7 mm machine gun ammunition for the K2. Soldiers of the 16th Mechanized Division of the Polish Army were sent to South Korea in October 2022 to participate in the training program. The 180 K2 tanks will be delivered during the period of 2022-2025 and then be deployed to the 20th Mechanized Brigade, 15th Mechanized Brigade, and 9th Armored Cavalry Brigade in Poland.[96]   On 7 September 2022, PGZ and Hyundai Rotem signed a partnership agreement to develop and produce tanks, armored vehicles and ground unmanned systems. The contract included joint cooperation in building manufacturing facilities in Poland for the production and maintenance of 1000 K2 tanks and the production of K3 next-generation battle tanks. The facilities to be built in Poland will be used as a hub in Europe for the sale and maintenance of Hyundai Rotem’s armed vehicles and tanks.   On 5 December 2022, the first 10 K2 tanks arrived in Poland, just “six months” after the signing of the agreement. The tanks were delivered to the 20th Mechanized Brigade of the 16th Mechanized Division on 9 December 2022.   On 31 March 2023, the Polish Ministry of Defense signed a foundational agreement with Hyundai Rotem for a consortium to produce K2PL in Poznań.   6. The K9 Thunder (K 9 howitzer)   Service history In service K9: 1999–present K9A1: 2018–present Wars Bombardment of Yeonpyeong in South Korea Production history Designer ●     Agency for Defense Development (main developer) ●     Samsung Aerospace Industries (integration and production) ●     Kia Heavy Industry (main armament) ●     Dongmyeong Heavy Industries (turret and suspension) ●     Poongsan Corporation (ammunition) Designed 1989–1998 Manufacturer ●     Samsung Aerospace Industries (1998–2000) ●     Samsung Techwin (2000–2015) ●     Hanwha Techwin (2015–2017) ●     Hanwha Land Systems (2017–2019) ●     Hanwha Defense (2019–2022) ●     Hanwha Aerospace (2022–present) Unit cost 4 billion KRW (ROK Armed Forces, 2021) Produced K9: 1998–2018 K9A1: 2018–present No. built 1,900 (2025) Specifications Mass K9 & K9A1: 47 t (46 long tons; 52 short tons), combat K9A2: 48.5 t (47.7 long tons; 53.5 short tons), combat, with metal track Length Overall: 12 m (39 ft 4 in) Hull: 7.44 m (24 ft 5 in) Width 3.4 m (11 ft 2 in) Height 2.73 m (8 ft 11 in) Crew K9 & K9A1: 5 (commander, driver, gunner, assistant gunner, loader) K9A2: 3 (commander, driver, gunner) Maximum firing range 18 km (M107, HE) 30 km (M549A1, RAP/HE) 36 km (K310, BB/DP-ICM) 41 km (K307, BB/HE) 54 km (K315, LAP/HE) Sights Panoramic scope (manual mode) Safran MINEO DFSS (option) Armor POSCO MIL-12560H armor steel (South Korean produced variants only, after 2022) Bisalloy armour steel (foreign licensed variants, after 2022) Spall liner (option)  Plasan add-on armor (option) Main armament Hyundai WIA CN98 155 mm 52 caliber, 48 rounds Secondary armament SNT Dynamics K6 12.7x99 mm NATO HMG Engine STX Engine/MTU Friedrichshafen MT881Ka-500 8-cylinder water-cooled diesel engine 735 kW (1,000 hp) @ 2,700 rpm STX Engine SMV1000 8-cylinder water-cooled diesel engine 735 kW (1,000 hp) @ 2,700 rpm (available since 2024) Power/weight 21.3 hp/t (15.88 kW/t) Transmission SNT Dynamics/Allison Transmission X1100-5A3 4 forward, 2 reverse Suspension Mottrol/Horstman Hydropneumatic Suspension Unit (HSU)  Travel distance: ≤ 275 mm Dead weight: 40–45 kN Ground clearance 410 mm (16 in) longitudinal slope: 60 % lateral slope: 30 % vertical: 0.75 m trench: 2.8 m fording: 1.5 m Fuel capacity 850 L (225 U.S. gal) Operational range 360 km (220 mi) Maximum speed 67 km/h (42 mph) Figure 10: K9 Thunder (source: Wikipedia)   The K9 Thunder is a South Korean 155 mm self-propelled howitzer designed and developed by the Agency for Defense Development and South Korean corporations including Samsung Aerospace Industries, Dongmyeong Heavy Industries, Kia Heavy Industry, and Poongsan Corporation for South Korean Armed Forces. It is now manufactured by Hanwha Aerospace. K9 howitzers operate in groups with the K10 ammunition resupply vehicle variant.[97]   The entire K9 fleet operated by South Korean Armed Forces has undergone upgrades to K9A1, and a further upgrade variant K9A2 is now tested for production. As of 2022, the K9 series  had a 52% share of global self-propelled howitzer market.[98]   The K-9 Thunder is superior to the US self-propelled howitzer M109A6 Paladin or the British self-propelled howitzer AS90. The Chinese PLZ-05 has poor recoil and suspension functions as revealed in the released operating video. And the performance of the Russian 2S35 Kalitsa-SV has not been verified. Compared to the German PzH2000 (currently the world’s best self-propelled howitzer), the K-9 Thunder is a cost-effective alternative, offering a similar balance of performance, range, and mobility but at a lower price, making the K-9 a highly successful export system. The main differences between K-9 and PzH2000 lie in cost and performance. The PzH 2000 has been known for its superior automation and slightly higher firing rate, while the K9 Thunder boasts excellent mobility, a better cost-performance ratio, and seamless integration with its K10 ammunition resupply vehicle.[99]   For these reasons, as Table 4 shows, the K9 Thunders were exported to a number of countries such as Turkey, India, Norway, Poland, Finland, Estonia, Australia, Egypt, and Romania.   Table 4: Countries to which K9 howitzers have been exported and the number of units under contract, 2001-2024   Country Number of contract Year of exports Name of K 9 Turkey 280 2001 T-155 Firtina Poland   120 2014 Krab 212 2022 K9 152 2023 K9 India 100 2017 K9 Vajra-T Finland 96 2017 K9 Moukari Norway 28 2017 K9 VIDAR Estonia 36 2018 K9 Kou Australia 30 2021 AS9 Huntsman Egypt 2 trillion won   2022 K9A1EGY Romania 54 2024 K9 Tunet   (source: Hanwha Aerospace)   a. Turkey   In May 1999, the Ministry of Defense in South Korea ordered its military attaché in Turkey to arrange a presentation for K9 Thunder. Although Turkey showed interest in K9 Thunder, there was no business deals made as Turkey was planning to produce German Panzerhaubitze 2000 at that time. As Turkey’s plan to build PzH2000 eventually became halted by Germany, South Korea and Turkey signed MOU to strengthen their military and defense cooperation on 18 November, 1999.[100]   On 12 December, Turkey sent a team of military general and engineers to Korea to inspect K9 Thunder. Satisfied with the K9’s performance, Turkey cancelled its plan to find replacement from Israel, and decided to manufacture K9 Thunder. On 19 February 2000, a technology evaluation team from members of the Agency of Defense Development and Samsung was sent to Turkey and inspected various Turkish companies and facilities including Turkish 1010th Army Factory, MKEK, and Aselsan to optimize manufacturing process of K9 in Turkey. On 4 May 2000, the Ministry of Defense in South Korea and Turkish Land Forces Command signed a memorandum of understanding (MOU) to supply 350 K9 systems untill 2011.[101]   The prototype was finally assembled on 30 December 2000, and earned the nickname Firtina (Fırtına; Storm). Winter test was held in January and February 2001 at Sarıkamış, and Firtina was able to operate in snowy mountain terrain without issue.   A formal contract was signed by Samsung Techwin (formerly Samsung Aerospace Industries) and the Embassy of the Republic of Turkey in Seoul on 20 July 2001. South Korean government promised to transfer the technologies of the Agency for Defense Development to  Turky for free in exchange for Turkey’ purchase of 350 vehicles—280 for Turkish Land Forces and 70 for its future customer—by 2011, which the total is expected to be $1 billion. The first 24 T-155 Firtina consisted of Korean subsystems worth $65 million. The Turkish model was named T-155 Firtina.[102]   Hanwha Defense has generated more than $600 million from Turkey since then, much lower than expected. This is because Turkey produced fewer units than planned and because Turkey  increased its localization efforts gradually by indigenous research and from technology transfer.   b. India   On 25 March 2012, South Korean President Lee Myung-bak and the Indian Prime Minister, Manmohan Singh signed Memorandum of Understanding (MOU) to strengthen their economic and military ties. On 29 March 2012 at DEFEXPO, Samsung Techwin and Larsen & Toubro announced their partnership to produce the K9 Thunder in India. According to the agreement, Samsung Techwin will transfer key technologies, and the vehicle will be manufactured under license in India using 50 per cent of the domestic content such as FCS and communication system.[103]   Two units of K9 were sent to Thar Desert, Rajasthan for firing and mobility test, and competed against Russian 2S19. Operated by Indian military personnel, the K9 fired 587 Indian ammunitions including Nub round and drove a total distance of 1,000 km. Maintenance test was conducted at Pune, EMI (electromagnetic interference) test at Chennai, and technical environment test was held in Bengaluru until March 2014. K9 Thunder achieved all ROC set by Indian military while the Russian counterpart failed to do so. Hanwha Techwin (previously Samsung Techwin) later told in an interview that the Russian engine performance dropped when the air density is low and in high temperature, the placement of the engine also resulted in the center of the mass located at the rear, making the vehicle difficult to climb high angles. On the other hand, K9 benefitted from automatic control system of the engine, providing the optimum performance based on given condition automatically—this was one of the decisive reason why India selected K9 over 2S19.[104]   In September 2015, the Indian Ministry of Defense selected Hanwha Techwin and Larsen & Toubro as preferred bidder to supply 100 K9 Vajra-T to the Indian Army after K9 outperformed 2S19 Msta-S and passed two-year trial. On 6 July 2016, India agreed in purchasing 100 K9 Vajra-T for $750 million. On 29 March 2017, the Government of India approved budget of $646 million for purchasing 100 K9 Vajra-T. A formal contract of $310 million was signed between Hanwha Techwin and Larsen & Toubro in New Delhi on 21 April. According to the contract, Hanwha Techwin will supply first 10 K9 Vajra-T, and 90 K9 will be license produced in India by Larsen & Toubro.[105]   In May 2021, it was reported that India’s Defense Research and Development Organisation was working with Larsen & Toubro on a light tank using the K9 chassis with 105 mm or 120 mm gun system to counter China’s Type 15 tank.[106]   The Indian Army planned to order an additional 40 K-9 Vajra-T from Larsen & Toubro as of 2021 after completion of high altitude trials at Ladakh under cold climatic conditions. At that time, India was also looking to export the K9 Vajra-T variant to third countries in collaboration with South Korea and its industry partners.   As per a report in 2022, the Indian MoD could place a repeat order of 200 K9 Vajra-T worth ₹9,600 crore (equivalent to ₹100 billion or US$1.2 billion in 2023) after satisfactory performance of the guns at high altitude terrain.[107]   According to a report in May 2024, the clearance for next 100 units would be approved after the formation of a new government after Indian general election in 2024. The Cabinet Committee on Security cleared the purchase of 100 units on 12 December 2024.[108] The contract, worth ₹7,628.70 crore (US$900 million), was signed with Larsen & Toubro on 20 December 2024 in the South Block, New Delhi. The entire order is to be processed and delivered by the end of 2025. On 3 April 2025, Larsen &Toubro signed another contract with Hanwha Aerospace at $253 million to execute the order.[109]   c. Norway   In May 2015, Samsung Techwin joined the Norwegian artillery upgrade program to replace Norway’s M109Gs with 24 new systems, competing against the KMW Panzerhaubitze 2000, the Nexter CAESAR 6x6, and the RUAG M109 KAWEST. A single K9 was sent to Norway to join the competition. Operated by a sales team, the vehicle went through tests between November 2015 and January 2016. During the January winter test, the K9 was the only vehicle that managed to drive through meter-thick snow field and fire its weapon without any issue. Competing vehicles experienced engine troubles or broken parts.[110]   The K9’s engine was able to maintain heat overnight by simply covering the area with tarpaulin, a simple trick learned from operating experience, allowing the engine to ignite without failure the next day at an extremely cold temperature. The hydropneumatic suspension became a huge advantage for mobility, as its mechanism melted snow on mobility parts much quicker. The test result had also significant impact on Finland and Estonia to acquire K9, because the two nations were invited to observe performances for their artillery replacement.   In December 2017, a contract of $230 million was signed between Hanwha Land Systems and the Norwegian Ministry of Defense. According to the contract, Hanwha would supply 24 K9 Thunder and 6 K10 ARV by 2020. The K9 outperformed competitors in various weather and terrain conditions according to Norwegian military officials during trials.[111]   The Norwegian variant was named K9 VIDAR based on the K9A1 configuration. In November 2022, Norway decided to purchase 4 K9s and 8 K10s, increasing its total vehicles to 28 K9s and 14 K10s (2:1 ratio). The delivery was expected to be completed in 2 years.[112] In April 2025, it was announced that Norway plans to almost double its K9s by ordering an additional 24 K9s for about $534 million USD.[113]   d. Poland i) PK9 (AHS Krab with PK9 chassis)   In 1999, Poland joined NATO and launched a military program named Regina Project to replace its 152mm Soviet-era SPGs with the NATO standard 155 mm artillery system.   In December 2014, Samsung Techwin signed a cooperation agreement with Huta Stalowa Wola to supply modified K9 Thunder chassis for AHS Krab self-propelled howitzer. The deal is worth $310 million for 120 chassis, which includes related technology transfer and the power pack. From 2015 to 2022, 24 units were scheduled to be manufactured in South Korea, and 96 would be license produced in Poland. First chassis rolled out on 26 June 2015, and all 24 vehicles produced in South Korea were sent to Poland as of October 2016.[114]   Late in May 2022, the Polish government sent 18 AHS Krab howitzers to Ukraine to assist the Ukrainian military to defend against Russia during the Ukraine war. On 29 May, Polish minister of defense visited South Korea for high level talks about the purchase of various Korean weapons to increase AHS Krab production. On June 7, Poland and Ukraine signed a contract for the purchase of an additional 54 units plus support vehicles, in a deal worth US$700 million. The agreement was the largest defense contract that Polish defense industry had made.[115]   On 5 September 2022, Poland ordered 48 Krabs and other support vehicles for a value of PLN 3.8 billion zlotys (USD $797 million).   On 23 December 2024, the contract worth PLN 9 billion for 96 Krabs, command vehicles, command and staff vehicles, ammunition vehicles, and repair workshops was signed. The delivery for this batch was scheduled by the end of 2029.[116]   On 8 April 2025, Huta Stalowa Wola signed a ₩402.6 billion deal with Hanwha Aerospace to supply parts and power packs for 87 AHS Krabs between 2026 and 2028.   ii) K9PL   On 27 July 2022, Polish Armaments Group (PGZ) and Hanwha Defense signed a framework agreement to supply 672 K9PL. Hanwha Defense hoped to expand the deal by adding K10 ARV and K11 FDCV support vehicles. Poland was also expected to produce AHS Krab in parallel; however, due to the low production capability, the deliveries of the existing order will be completed by 2026. On 26 August 2022, an executive contract of $2.4 billion was signed to acquire 212 K9PL manufactured by Hanwha Defense as a Batch I order.  Under the contract, Hanwha is responsible for delivery of all 212 vehicles by 30 September 2026. Poland plans to build K9PL locally afterward via technology transfer for the Batch II. On 7 September, Hanwha Defense and WB Electronics signed a $139.5 million deal for installation of Polish communication systems on the Batch I order.[117]   The first 24 K9PL(GF) was rolled out on 19 October 2022. The delivery ceremony was held in Poland on 6 December. The first new K9PL began its construction in July 2023.[118]   On 1 December 2023, Poland and Hanwha Aerospace signed a $2.6 billion agreement for 6 Batch I K9PLs by 2025, 146 Batch II K9PLs between 2026 and 2027, and integrated logistics support for the howitzers and 155 mm ammunitions.[119]   On 4 April 2024, Hanwha Aerospace opened a European office in Warsaw and announced the integration of the K9 and Krab howitzer systems with cooperation from Huta Stalowa Wola to improve the operational and maintenance efficiency of the Polish military.   e. Finland   On 1 June 2016 at KDEC (Korea Defense Equipment & Component) industry fair, South Korea and Finland signed a MOU for defense cooperation including export of used K9. In July 2016, the Finnish Ministry of Defense announced that an undisclosed number of used K9s have been acquired from South Korea. In September 2016, K9 was field tested in Finland, and Seppo Toivonen, the commander of the Finnish Army, visited South Korea to inspect operating units during 2016 DX Korea. On 25 November 2016, two countries signed MOU to supply 48 used K9 for $200 million and match equal amount of free technology transfer related to vehicle maintenance.[120]   On 17 February 2017, the South Korean Ministry of Defense announced that Finland will acquire 48 used K9s over a period of seven years starting in 2018, with conscript training on the equipment begining in 2019. On 2 March 2017, final contract of value of €145 million ($160 million) was signed by two governments in Seoul, South Korea.[121]   On 21 October 2021, Finnish Ministry of Defense authorized exercising option to purchase 10 new vehicles including spare parts and supplies—5 in 2021 and another 5 in 2022—for €30 million, increasing the fleet size to 58 vehicles.[122]   On 18 November 2022 Finnish Minister of Defense Antti Kaikkonen authorized purchase of another 38 used vehicles for €134 million.   The official Finnish designation of the K9 howitzer is 155 PSH K9 FIN, colloquially called Moukari (meaning Sledgehammer).   On 4 March 2024, Millog, a Finnish company, signed a contract with the Finish Defense Force to upgrade 48 vehicles purchased in 2021 and 2022 at €8.1 million. The work is expected to be completed by 2030.[123]   f. Estonia   To reduce the cost for both nations, Finland invited Estonia to jointly procure the K9. In February 2017, Estonian military officials visited South Korea for price negotiations.   In June 2018, Rauno Sirk, the director of the Estonian military procurement agency, announced that Estonia would buy K9 Thunder howitzers. Hanwha Land Systems was to supply 12 used K9s for €46 million, which would cover maintenance, parts and training, as in the contract with Finland. In October 2019, the Estonian Ministry of Defense announced that it would exercise the option to purchase 6 additional K9s under the terms of this contract, at an estimated cost of €20 million.[124]   In August 2021, the Estonian Centre for Defense Investment (RKIK) signed a €4.6 million contract with Hanwha Defense and Go Craft to modernize 24 K9EST Kõu, hinting at purchasing 6 more for its inventory. The upgrade involves communication systems, a FCS, painting, fire suppression system, and electronics.[125]   In September 2022, it was reported that Estonia had purchased 24 vehicles in total. In October, the Estonian defense minister stated that Estonia would procure 12 additional K9s, bringing the total number up to 36 units. In November 2022, Go Craft opened Estonia's first private military workshop, and will start upgrading K9s. In January 2023, Estonia ordered 12 vehicles for €36 million, which will be delivered before 2026. The first Estonian edition by Go Craft was rolled out in February 2023.[126]   g. Australia   In August 2009, it was reported that the consortium of Samsung Techwin and Raytheon Australia had the upper hand for Australia’s Land 17 artillery replacement program by becoming a sole bidder, as KMW, the manufacturer of the competing Panzerhaubitze 2000, had not provided the detailed offering proposal that Australia requested.[127]   The K9 was sent to Australia and was evaluated by the Australian military starting in April 2010. The test included firing M982 Excalibur, a requirement which the K9 satisfied.   In June 2010, the K9 became the preferred bidder for the LAND 17 program, but the program was delayed. In May 2019, in the lead-up to the 2019 Federal Election, the Prime Minister of Australia, Scott Morrison, announced that 30 K9 howitzers and associated support equipment, including ten K10 ammunition resupply vehicles, would be acquired for the Australian Defense Forces. No time frame was given for the purchase.[128]   In September 2020, the Minister for Defense, Linda Reynolds, announced a request for tender to locally build 30 K9s under the Land 8116 Phase 1 Protected Mobility Fires requirement. The sole-source request for tender was released to the preferred supplier, Hanwha Defense Australia, to build and maintain 30 K9s and 15 K10s, as well as their supporting systems. These would be built at Hanwha Defense Australia's Geelong facility. Australian variant AS9 Huntsman was based on Norwegian K9 VIDAR.[129]   In December 2021, the Capability Acquisition and Sustainment Group (CASG) of Australia and Hanwha Defense Australia signed a formal contract of producing 30 AS9s and 15 AS10 AARVs under license at Hanwha Defense Australia facility in Geelong. The estimated value of the deal is $788 million, and manufacturing was expected to start in Q4 2024.[130]   Production of AS9 and AS10 began in June 2023. In July, Australian army conducted tests on ammunition compatibility at the Agency for Defense Development test center in South Korea. In August, another Israeli company Epsilor was selected to supply NATO standard 6T Li-ion batteries for the howitzer.[131]   On 28 March 2024, Hanwha Aerospace announced the beginning of assembly of two AS9s and one AS10 in Changwon. The remaining 28 AS9s and 14 AS10s will be built at H-ACE in Australia.   On 23 August 2024, Hanwha Aerospace invited Korean and Australian government officials for an opening ceremony of H-ACE. The factory will start mass production of AS9 and AS10 in 2024 and deliver all vehicles to the Australian Army by 2027.[132]   In December 2024, Hanwha Aerospace delivered two AS9 and one AS10 to Hanwha Defense Australia, and the Australian military received them in January 2025.   h. Egypt   In 2010, the K9 was evaluated by the Egyptian military to replace its aging artillery fleet. The regional instability resulting from the Arab Spring revolution caused the Egyptian government to postpone the replacing project indefinitely.   In April 2017, it was reported that Hanwha Techwin was again in negotiations with Egypt to export the K9 Thunder. Hanwha Techwin sent a K9 howitzer to Egypt in July and K9 test-fired at a range located west of Cairo in August, competing with the French CAESAR, Russian 2S35 Koalitsiya-SV, and Chinese PLZ-45. During the test, the K9 hit a target ship approaching to the shore, successfully performing an anti-access/area denial simulation against enemy ships for the Egyptian Navy.[133]   In October 2021, South Korea and Egypt discussed the sale of the K9 Thunder. The estimated value of the deal was $2 billion, including training of technicians.[134] In February 2022, South Korea's Defense Acquisition Program Administration (DAPA) announced that Hanwha Defense had signed a $1.6 billion K9 Thunder export contract at Egypt's Artillery House, attended by Egypt's Ministry of National Defense and key officials from both countries. According to the DAPA, the deal provided for the production of 200 K9A1EGY and 100 K10EGY in Egypt, including technology transfer. An unknown number of the earliest vehicles in the series were to be produced in South Korea and delivered to the Egyptian Army and the Egyptian Navy.[135]   The production of the first K9A1EGY was expected in Q4 2022. At a military parade on 25 October 2023, the Egyptian Army unveiled the K9A1EGY in service with the 4th Armored Division. On 1 July 2024, Egyptian media reported that the exact number of South Korean exports was 216 K9A1EGY, 39 K10, and 51 K11. Previously, Egypt received K9A1 and K10 vehicles with 1,000 horsepower Korean-made SMV1000 engines for testing purposes.[136]   On 5 October 2024, Arab Defense reported that the Ministry of Military Production in Egypt announced local manufacturing of the SMV1000 engine by the state-owned Helwan Casting Company, also known as Military Factory 9. In addition, Egypt worked with Hanwha Aerospace in transferring manufacturing technology and installing production lines. The Military 200 became the main manufacturer, and the Military 100 would produce the CN98 cannon and armored steel. Moreover, Egypt plans to become the regional center to export the K9 Thunder system to African and Arab countries, and the Minister of Military Production confirmed negotiations with a number of countries.[137]   i. Romania   On 26 September, 2022, Romanian media reported that the Romanian military was interested in purchasing K9 Thunder and K2 Black Panther. Romania also expressed interest in the K239 Chunmoo multiple rocket launcher and the K21 infantry fighting vehicle. In July 2023, it was reported that Romania planned to acquire 54 (3 systems of 18) K9 Thunders.[138]   On 19 June 2024, Romanian Defense Minister Angel Tîlvăr finally decided to buy 54 K9s worth ₩1.3 trillion ($920 million) during an official meeting with South Korean Defense Minister Shin Won-sik. The Romanian version is called K9 Tunet. The first 18 vehicles are expected to completely built at the Changwon factory in South Korea, while the rest will be assembled in Romania.   On 9 July 2024, Hanwha Aerospace signed the ₩1.3 trillion contract with the Romanian Ministry to supply 54 K9s and 36 K10s, including ammunition and support equipment packages. Hanwha will deliver the vehicle from 2027 in cooperation with a local defense company in Romania. Meanwhile, Hanwha will deliver 18 K9s and 12 K10s from South Korea.[139]   j. Vietnam   The negotiation for K9 Thunder began when Nguyễn Xuân Phúc, the president of Vietnam, visited South Korea for the 30th anniversary of diplomatic ties in 2022.   In March 2023, Vietnam’s highest military figure Phan Văn Giang and other officials showed interests in the K9 by visiting South Korean Army’s K9 operator unit and discussion with Hanwha Aerospace on the potential K9 procurement for the Vietnam military.[140]   In April 2024, it was reported that the Vietnam Ministry of National Defense has officially outlined the K9 procurement plan to its South Korean counterpart, with Korean officials  supporting the deal. 108 units was mentioned as the potential purchase number.   Vietnam confirmed the purchase on 11 August 2024 during Vietnam Prime Minister Tô Lâm's visit to South Korea.   7. The K239 Chunmoo (천무)   Service history In service 2015–present Production history Designer Agency for Defense Development (launcher)  Doosan DST (vehicle)  Hanwha (rocket)  Samyang Comtech (armor) Designed 2009–2013 Manufacturer ●     Hanwha Aerospace (2015–present) ●     Korea Defense Industry (2020–present) ●     Huta Stalowa Wola (2023–present) Unit cost ₩3.6 billion (US $2.94 million) per one launcher+K239L vehicle (2020) Produced 2014–present No. built 356/705 Variants Homar-K Specifications Mass 31 metric tons (31 long tons; 34 short tons) Length 9 meters (29 ft 6 in) Width 2.9 meters (9 ft 6 in) Height 3.3 meters (10 ft 10 in) Crew 3 (K239L launcher vehicle) 2 (K239T ammunition support vehicle) Caliber 131 mm (K33) 230 mm (KM26A2) 239 mm (CGR-080) 280 mm (CTM-MR/ASBM) 600 mm (CTM-290) Rate of fire 6 rds/in 30 sec (CGR-080) Effective firing range 36 km (K33) 45 km (KM26A2) 80 km (CGR-080) 160 km (CTM-MR/ASBM) 290 km (CTM-290) Armor Samyang Comtech Steel / Ceramic + Polymer Matrix Composites (STANAG 4569 Level 2) Main armament 20×2 K33 6×2 KM26A2 6×2 CGR-080 4×2 CTM-MR/ASBM 1×2 CTM-290 Engine HD Hyundai Infracore DV11K 6-cylinder water-cooled diesel engine  450 hp (340 kW) Power/weight 14.5 hp/t (10.81 kW/t) Transmission Allison Transmission 4500SP Fuel capacity 250 liters (66 U.S. gal) Operational range 450 km (280 mi) Maximum speed 80 km/h (50 mph) Guidance system GPS-aided INS Accuracy 9 m CEP (CTM-290) 15 m CEP (CGR-080)   Figure 11: K239 Chunmoo (source: Wikipedia)   The K239 Chunmoo(천무) is a rocket artillery system developed in 2013 to replace the aging K136 Kooryong(구룡) of the South Korean military. The K239 Chunmoo is a self-propelled multiple launch rocket system (MLRS) capable of firing several different guided or unguided artillery rockets. The Cheonmu has a maximum range of 80km, capable of striking North Korean coastal artillery positions near the Military Demarcation Line and even the Wonsan area. It can fire 12 rounds continuously per minute, striking 12 different targets.[141]   The Chunmoo is much better than US military’s HIMARS (High Mobility Artillery Rocket System) multiple rocket launcher in the ammunition capacity. The Chunmoo can fire up to 12 230mm guided missiles in single or burst bursts. Moreover, using 130mm pod-type ammunition (POD) of the same caliber as the Kooryong(구룡), the Chunmoo can fire 20 rounds per pod, for a total of 40 rounds simultaneously. It can also fire the US military’s 227mm MLRS ammunition. The wheeled Chunmoo launcher vehicle boasts excellent mobility, reaching a top speed of 80 km/h. It also has rapid response capabilities, capable of firing its first round within seven minutes of arriving at the firing point, and protection to ensure crew survivability. The Chunmoo boasts an excellent capability of carrying a wide variety of rocket types. The US Hymas, whose effectiveness was recently proven in the Ukraine war, can carry six rockets, while the ATACMS tactical ballistic missile can only carry a single rocket. However, the Chunmoo can fire 130mm rockets (36 rockets per pod), 227mm rockets (6 rockets per pod, two pods), and 230mm rockets (6 rockets per pod, two pods). Unguided 227mm rockets can travel up to 80km, while guided rockets can travel up to 160km, allowing them to strike all major North Korean military targets.[142]   The K239 Chunmoo(천무) were exported to United Arab Emirates, Saudi Arabia, and Poland.   a. United Arab Emirates (UAE)   In 2017, Hanwha Defense announced at ADEX (Aerospace & Defense Exhibition) in Seoul that it had signed a nondisclosure contract worth 700 billion won to export K239 Chunmoo to a certain country in the Middle East. Later it was revealed that the United Arab Emirates signed a supply contract with Hanwha Defense, including 12 K239 Chunmoos, 12 K239T Ammunition Support Vehicles, GPS-guided rockets, and munitions. In February 2021, 12 K239 Chunmoo systems and 12 K239T Ammunition Support Vehicles were delivered to the United Arab Emirates.[143]   b. Saudi Arabia   At the World Defense Show in Riyadh, Saudi Arabia, on March 9, 2022, Hanwha signed a defense export contract worth 1 trillion won ($800 million) with the Saudi Arabian Ministry of Defense, but details of the contract were not known. It was later confirmed on 31 March 2023 that an unknown number of Chunmoo was in service by the Royal Saudi Land Forces. As in the case of UAE, it is presumed that Saudi Arabia has signed a non-disclosure contract.[144]   c. Poland   On 27 August 2022, Polish defense minister, Mariusz Błaszczak, said that there were ongoing negotiations to acquire South Korea’s rocket artillery system. On 13 October 2022, Polish Armament Agency announced that the negotiations with South Korea to acquire nearly 300 K239 Chunmoo systems had been completed and the framework agreement was signed on October 17. Poland had originally intended to procure 500 American M142 HIMARS launchers, but such an order could not be fulfilled in a satisfactory timeline, so decision was made to split the HIMARS order into two stages, buying less of them and adding Chunmoo procurement. A supply contract for 288 Chunmoo MLRS mounted on Jelcz 8x8 chassis and equipped with Polish TOPAZ Integrated Combat Management System along with 23 thousand missiles with the range of 80 and 290 kilometers was signed in Poland on October 19, 2022.[145] On 20 August 2023, first Homar-K (Polish version of Chunmoo), which completed system integration and testing in South Korea, was deployed to the 18th Mechanized Division of the Polish Land Forces in Poland.[146]   8. FA- 50     General information Type T-50: Advanced trainer jet  TA-50: Lead-in fighter-trainer  FA-50: Light Strike-fighter  FA-50 Block 20: Multirole light fighter National origin South Korea Manufacturer Korea Aerospace Industries  Lockheed Martin Status In service Primary users Republic of Korea Air Force Iraqi Air Force  Royal Thai Air Force  Indonesian Air Force Number built 200 (all models) History Manufactured 2001–present Introduction date February 22, 2005 First flight August 20, 2002 Figure 12: FA-50 (source: Wikipedia)   The FA-50 is a light combat aircraft manufactured by Korea Aerospace Industries (KAI) for South Korean Air Force (ROKAF). It is a light combat version of the T-50 Golden Eagle supersonic advanced jet trainer and light attack aircraft.   FA-50 aircraft can carry a weapons load of up to 4.5t. The aircraft can be armed with AIM-9 Sidewinder short-range air-to-air missiles, AGM-65 Maverick air-to-ground tactical missiles (AGM), GBU-38/B Joint Direct Attack Munitions (JDAM), CBU-105 Sensor Fused Weapon (SFW), Mk-82 Low Drag General Purpose (LDGP) bombs and Cluster Bomb Units (CBUs).[147]   The aircraft is also mounted with an internal, three-barrel 20mm Gatling gun and LAU-3/A 19-tube 2.75″ rocket launcher for firing Folding-Fin Aerial Rockets (FFAR). The wide range of weapon systems aboard the FA-50 jet allows it to counter multiple threats in today’s complex battlefield scenario.[148]   The FA-50 platform will be integrated with Lockheed Martin’s Sniper advanced targeting pod (ATP), which is an electro-optical targeting system encased in a single, lightweight pod. It will expand the capabilities of FA-50 with two-color laser spot tracking (LST), high-definition, forward-looking infrared (FLIR), and the Global Scope™ sensor software suite for non-traditional intelligence, surveillance and reconnaissance (NTISR) missions.[149]   The FA-50 can be externally fitted with Rafael’s Sky Shield or LIG Nex1’s ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve its electronic warfare, reconnaissance, and targeting capabilities. Other armaments include SPICE multifunctional guidance kits, Textron CBU-97/105 Sensor Fuzed Weapon with WCMD tail kits, JDAM, JDAM-ER for more comprehensive air-to-ground operations, and AIM-120 missiles for BVR air-to-air operations. FA-50 has provisions for, but does not yet integrate, Python and Derby missiles, also produced by Rafael, and other anti-ship missiles, stand-off weapons, and sensors to be domestically developed by Korea. The South Korean military is reviewing whether to arm the FA-50 with a smaller version of the Taurus KEPD 350 missile to give it a stand-off engagement capability of 400 km (250 mi). European missile maker MBDA’s Meteor and ASRAAM medium and short-range air-to-air missiles are also reportedly available for integration on the FA-50.[150]     Currently FA-50 is operational in South Korea, Indonesia, Iraq, Philippines, Thailand, Poland, and Malaysia. a. South Korea In 2011, the first squadron with the TA-50, the T-50’s light attack variant, became operational with the South Korean Air Forces. In 2014, the FA-50 was officially deployed by the South Korean Air Forces with President Park Geun-hye officially leading a ceremony during which a flight demonstration was held showing its capabilities. 20 FA-50s was assigned its own Air Force wing. 60 FA-50s were ordered by South Korean Air Forces. On October 9, 2014, an FA-50 successfully test fired an AGM-65 Maverick at a stationary target, a retired ship.[151] b. Indonesia Indonesia had been considering the T-50, along with four other aircraft, to replace its BAE Systems Hawk Mk 53 trainer and OV-10 Bronco attack aircraft. In August 2010, Indonesia announced that T-50, Yak-130 and L-159 were the remaining candidates for its requirement for 16 advanced jet trainers. In May 2011, Indonesia signed a US$400 million contract for 16 South Korean T-50s, designated T-50i. They feature weapons pylons and gun modules, enabling light attack capabilities. Deliveries began in September 2013 and the last aircraft were delivered in January 2014.[152]   In July 2021, KAI confirmed that it has been awarded a US$240 million contract to supply another batch of six T-50s along with a support and logistics package. c. Iraq   Iraq first publicly expressed interest in the T-50 trainers during the Korea–Iraq summit in Seoul on February 24, 2009. In December 2013, Iraq signed a contract for 24 T-50IQ aircraft, a FA-50 variant, plus additional equipment and pilot training over the next 20 years. The first batch of aircraft was delivered in March 2017, while the second batch arrived in May 2018. However, none were flown until June 2022, following the negotiation of a maintenance, logistics and training contract with KAI in November 2021.[153]   d. Philippines   The Philippine Air Force (PAF) chose 12 TA-50s to fulfill its requirement for a light attack and lead-in fighter trainer aircraft. In January 2013, state media reported that the FA-50 variant, not the TA-50 as previously reported, was selected for procurement. On March 28, 2014, the  Department of National Defense in the Philippines signed a contract for 12 FA-50 fighters worth P18.9 billion (US$421.12 million).[154] Deliveries began in November 2015, all 12 aircraft were delivered by May 31, 2017. On January 26, 2017, two PAF FA-50PHs conducted a nighttime attack on terrorist hideouts in Butig, Lanao del Sur in Mindanao, the first combat sorties flown by these aircraft.[155]   e. Thailand   In September 2015, the Thai government chose Korean T-50TH for its air force over the Chinese Hongdu L-15 to replace its aging L-39 Albatros trainers. In July 2017, the Thai government approved the procurement of eight more aircrafts. Deliveries began in January 2018. The Royal Thai Air Force’s 2024 White Paper outlined a plan to acquire two more T-50TH aircraft in the fiscal year 2025. This acquisition will bring the total number of aircraft in squadron 401 to 16.[156]   f. Poland   On July 22, 2022, Polish Defense Minister Mariusz Blaszczak announced in a press interview that Poland would purchase 48 FA-50 fighter jets. KAI officially signed a contract with the Polish government on July 28 for 12 FA-50GF (Gap Filler) Block 10 aircraft and 36 FA-50PL (Polish version) Block 20 aircraft.[157] Blaszczak stated that KAI’s ability to quickly deliver aircraft was a decisive factor in the selection. The Russian invasion of Ukraine in 2022 required the Polish Air Force to urgently replace its remaining MiG-29 fighters and Su-22 attack aircraft. However, the United States was unable to supply additional F-16s in such a short timeframe. The FA-50PL contract was awarded for an aircraft version still under development. The FA-50PL is an improved version of the basic FA-50 designed to meet Poland’s specific requirements. Many of these requirements, including the sniper targeting pod, GBU-12 bombs, KGGB guided bombs, and aerial refueling probes, had already been tested and integrated onto the FA-50 platform prior to the Polish order. Other integration plans for the FA-50PL, such as the Phantom Strike AESA radar and Link-16 datalink, were considered challenging, primarily in terms of timing, but not technically impossible.[158] The FA-50PL will be integrated with modern air-to-air missiles such as the AIM-9X Sidewinder and AIM-120 AMRAAM. The FA-50 is a light fighter aircraft similar in size to the F-16. While the FA-50 has limited combat capabilities, it is not without the capabilities and can carry and use certain weapons.[159] The FA-50’s training role has been compared to the Italian M-346 AJT. While the M-346 can simulate a wider range of virtual weapons, it is more expensive to operate than the FA-50. Unlike the M-346, the FA-50 can also be used for training against live targets and has unique combat capabilities. g. Malaysia   On February 24, 2023, KAI announced the signing of a $920 million deal with the Malaysian Ministry of Defense for the purchase of 18 FA-50 Block 20 for the Royal Malaysian Air Force’s light combat aircraft (LCA) and fighter in-lead trainer (FLIT) tender, which is intended to replace the Aermacchi MB-339 and Hawk Mk 108/208 currently in service.[160] The FA-50 was in competition with the Indian HAL Tejas, Italian Alenia Aermacchi M-346 Master, Turkish TAI Hürjet, Chinese Hongdu L-15, Russian Mikoyan MiG-35, and Sino-Pakistani JF-17 Thunder. On May 23, 2023, Malaysia signed a $920 million final contract with KAI to purchase 18 FA-50 Block 20s. KAI officials said Malaysia is willing to order 18 more FA-50s later.[161] 9. The KP-SAM Chiron (신궁)   Service history In service 2005–present Production history Designer Agency for Defense Development  LIG Nex1 Designed 1995–2004 Manufacturer LIG Nex1 Unit cost €2.6 million (2023) Produced 2004–present Specifications Mass Total: 19.5 kg (43 lb) Missile: 15 kg (33 lb) Length 1.68 m (5.5 ft) Diameter 80 mm (3.1 in) Crew 2 (If based from a tripod), 1 (If held) Maximum firing range 7 km (4.3 mi) Warhead 720 Tungsten balls] Warhead weight 2.5 kg (5.5 lb) Engine Solid fuel rocket Flight ceiling 4 km (13,000 ft)] Maximum speed Mach 2.5 (851 m/s; 3,060 km/h) Guidance system Infrared homing Figure 13: KP-SAM Chiron (source: Wikipedia)     The KP-SAM Chiron (신궁) is a South Korean shoulder-launched surface-to-air missile manufactured by LIG Nex1. The KP-SAM Chiron was created to protect South Korean troops in the forward area, which started in 1995 under the direction of LIG Nex1.  The KP-SAM began production in 2004 with extended trials in early 2005.[162]   In late 2005, the KP-SAM entered service with the South Korean Army, after development for nearly 8 years.   The KP-SAM was marketed in 2012 for India’s modernization of their VSHORAD system, competing with the RBS 70, the Starstreak, the Mistral-2 and the SA-24.[163]   In 2014, Indonesia bought the KP-SAM for integration with the Skyshield 35 mm anti-aircraft system.[164]   While the KP-SAM missile system externally resembles a French Mistral system, the entire missile systems including the seeker, control section, warhead and motor were developed and manufactured in South Korea. The missile features integrated IFF systems, night and adverse weather capabilities, a two-color (IR/UV) infrared seeker to aid in negating infrared countermeasures (IRCM) and a proximity-fuse warhead. During development tests, the missile scored a 90% hit ratio.   According to Agency for Defense Development officials, the KP-SAM is superior to the American FIM-92 Stinger or the French Mistral in hit probability, price and portability. the KP-SAM had been involved in a missile test where its missile made impact on a low-flying target as high as 3.5 kilometers with a speed of 697.5 m/s (more than Mach 2.36) and a distance range of 7 km.[165]   The KP-SAM Chirons are operational in South Korea, Indonesia, Romania. Indonesian Air Force acquired and operated Chirons since 2014 which was integrated with Oerlikon Skyshield 35 mm anti-aircraft gun system. Additional 2 Chirons were transferred to Indonesia according to a 2019 SIPRI small arms report.[166] First systems of 54 KP-SAMs were delivered to Romania in June 2024. The KP-SAM Chirons have been operational in South Korean army since 2005.     IV. Conclusion   This paper provided an overview of South Korean defense industry and its major military weapons that have been exported to Middle Eastern countries. The paper also explained major military weapons that have the potential to be exported to Middle Eastern countries. The future for South Korean defense industry looks bright because of its advanced technology and fast delivery amid ongoing conflicts in Ukraine and Middle East.References[1] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.” Korea JoongAng Daily. 29 July 2025.[2] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”[3] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”[4] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”[5] “S. Korean defense giants set to surpass 100 trillion won in combined orders.”  Jung Han-kook, Kim Seo-young.  The Chosun Daily. May 6, 2025.[6] “S. Korea’s defense giants surpass 100 tn won in backlog defense giants set to surpass 100 trillion won in combined orders.”  Han Ye-na, Jung Han-kook, Kim Seo-young. The Chosun Daily. August 19, 2025. [7] “S. Korea’s defense giants surpass 100 tn won in backlog defense giants set to surpass 100 trillion won in combined orders.”  Han Ye-na, Jung Han-kook, Kim Seo-young.[8] “S. Korea’s defense giants surpass 100 tn won in backlog defense giants set to surpass 100 trillion won in combined orders.”  Han Ye-na, Jung Han-kook, Kim Seo-young.[9] “4 major defense firms set to report robust results in Q1.” The Korea Times. April 20 2025.[10] “4 major defense firms set to report robust results in Q1.”[11] Amid global tensions, Korea’s arms exports hit all time high. Kan Hyeong-woo. The Korea Herald. April 17, 2025.[12] Amid global tensions, Korea’s arms exports hit all time high.   [13] SIPRI Fact Sheet March 2025, p. 11[14] SIPRI Fact Sheet March 2025, p. 12[15] Amid global tensions, Korea’s arms exports hit all time high. Kan Hyeong-woo. April 17, 2025 [16] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”  [17] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”[18] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.” [19] “Hanwha Aerospace inks US$250 mln K9 howitzer supply deal with Vietnam: sources.” Kim Seung-yeon. Yonhap News Agency. August 14, 2025.[20] “Hanwha Aerospace inks US$250 mln K9 howitzer supply deal with Vietnam: sources.”[21] “Hanwha Aerospace inks US$250 mln K9 howitzer supply deal with Vietnam: sources.”[22] “Hanwha Aerospace inks US$250 mln K9 howitzer supply deal with Vietnam: sources.” Kim Seung-yeon. Yonhap News Agency. August 14, 2025.[23] “Middle East may turn to Korean defense industry as conflict rages.” Korea JoongAng Daily. June 16, 2025.[24] Amid global tensions, Korea’s arms exports hit all time high. Kan Hyeong-woo. The Korea Herald. April 17, 2025.[25] For more information, see https://armyrecognition.com/news/defense-web-tv/vision-2030-and-saudi-arabias-military-industry-insights-from-world-defense-show[26] “Saudi Government announces 19.35% localization of military spending,” Akhbma News. 21 Nov 2024.[27] Nora Albekeiri, “From Importer to Innovator: Saudi Arabia’s 5 Major Shifts in the Defense Industry.” Aug 27, 2025. For more information, see https://tascoutsourcing.sa/en/insights/from-importer-to-innovator-saudi-arabia-s-5-major-shifts-in-the-defense-industry.[28] “Saudi Arabian Military Industries (SAMI): Fueling the Growth of Saudi Defense Industry,” Albert Vidal. https://gulfif.org/saudi-arabian-military-industries-sami-fueling-the-growth-of-saudi-defense-industry/[29] “Riyadh, Seoul strengthen defense ties with quality assurance deal.” Arab News. February 18, 2025.[30] “Sharpening the EDGE: How the UAE Plans to Out-Innovate its Rivals,” John Calabrese. https://gulfif.org/sharpening-the-edge-how-the-uae-plans-to-out-innovate-its-rivals/[31] “UAE Transitions from Arms Importer to Competitor with the West.” Robert Czulda. Stimson Center. February 26, 2025.[32] “UAE Transitions from Arms Importer to Competitor with the West.”  [33]“Strategic defence industry partnership with the United Arab Emirates.” 19 September 2025. https://www.4ig.hu/strategic-defence-industry-partnership-with-the-united-arab-emirates[34] “UAE Transitions from Arms Importer to Competitor with the West,” Robert Czulda. Stimson Center. February 26, 2025.[35] The “Middle East may turn to Korean defense industry as conflict rages,” Korea JoongAng Daily. 16 Jun. 2025.[36] “LIG Nex1 wins $2.78 bil. deal to export missile defense system Cheongung-II to Iraq.”  The Korea Times. Sep 20, 2024.[37] “South Korea to Upgrade Indigenous KF-21 Into Stealth Fighter,” Inder Singh Bisht. The Defense Post. 15 September 2025.[38] The “Middle East may turn to Korean defense industry as conflict rages,” Korea JoongAng Daily. 16 Jun. 2025.[39] Pike, John. "Cheolmae II / Cheongung (Iron Hawk) M-SAM Medium Surface to Air Missile". www.globalsecurity.org.[40] Cheongung – a New MR-SAM for the South Korean Multi-Tier Defense System - Defense-Update.com, 17 December 2011.[41] "South Korean air force retires last MIM-23 HAWK SAM systems". Jan’s Information Group. 16 July 2021.[42] Kim, Byung-wook (21 February 2021). "LIG Nex1 heads to IDEX 2021, knocks on Middle East market". The Korea Herald. [43] Lee, Michael (17 January 2022). "UAE to buy Korean air defense system for $3.5 billion". Korea JoongAng. Daily[44] Arthur, Gordon (7 February 2024). "Saudi Arabia signs $3.2B deal for South Korean air defense systems". Defense News.[45] Osborne, Tony (20 September 2024). "Iraq Acquiring KM-SAM II Systems". Aviation Week.[46] Kim, Brian (18 January 2022). "South Korea inks largest arms export deal with UAE for missile interceptor". Defense News.[47] “South Korea enhances air defense shield with M-SAM improvements.” Stephen W. Miller. August 2025 https://www.asianmilitaryreview.com/2025/08/south-korea-enhances-air-defence-shield-with-m-sam-improvements-foc/[48] “Cheongung air defense system upgraded to intercept ballistic missiles.” Yonhap News Agency. July 28, 2025.[49] “South Korea enhances air defense shield with M-SAM improvements.”[50] For more information, see https://www.asianmilitaryreview.com/2025/08/south-korea-enhances-air-defence-shield-with-m-sam-improvements-foc/[51] 천궁Ⅱ 막강전력 배치·천궁Ⅲ 개발 개시…한국 방공망 ‘게임 체인저’ 박정한, 글로벌이코노믹. 2025-08-09[52] “S. Korea kicks off development of advanced M-SAM defense system.” Kim Hyun-soo. Yonhap News Agency. September 19, 2025.[53] "KAI and Eurocopter reveal the Surion". Shepard. 2009-07-31.[54] Govindasamy, Siva. "PARIS AIR SHOW: Korea Aerospace to roll out utility helicopter prototype in July." Flight International, 14 June 2009.[55] Francis, Leithan. "PICTURES: Korea Utility Helicopter makes first flight." Flight International, 16 March 2010.[56] "Korea Utility Helicopter demonstrates capabilities." Korea Times, 22 May 2010.[57] "History." KAI, Retrieved: 23 June 2016.[58] "KAI and Eurocopter reveal the Surion". Shepard. 2009-07-31.[59] Waldron, Greg. "KAI eyes export market for Surion." Flightglobal.com, 30 October 2013.[60] KAI readies to boost Surion production in 2016 - Flightglobal.com, 23 October 2015[61] For more information, visit the website of KAI. https://www.koreaaero.com/EN/Business/KUH1.aspx [62] For more information, see https://www.koreaaero.com/EN/Business/KUH1.aspx[63] South Korean defense industry and energy companies have had great outcomes from President Yoon's state visit to Vietnam...Signing many agreements with Vietnamese corporations]. Aju News Vietnam (in Vietnamese). Retrieved 2023-06-27.[64] "KAI signs 130 billion won deal to export Surion helicopters to Iraq". Chosun. 23 December 2024. [65] Roblin, Sebastien (13 April 2021). "Korea's New KF-21 Jet Isn't A Stealth Fighter—But Could Evolve Into One". The National Interest.[66] "KF-X Fighter: Korea's Future Homegrown Jet". Defense Industry Daily. 17 November 2017.[67] "South Korea unveils prototype of homegrown KF-X fighter jet". Defense News. 9 April 2021.[68] "[20분 핵심 정리]FA-50이 밀고 KF-21이 당기는K-방산 수출액은? 밀당백25회 | 국방홍보원". KFN Plus. 14 July 2025.[69] “2 new stealth fighter jets will expand who's in the world's top air forces.” Benjamin Brimelow. May 3, 2025, Business Insider[70] “Hanwha Systems rolls out AESA radar for South Korea’s KF-21 jet.” August 7, 2025. Airforce Technology.[71] “2 new stealth fighter jets will expand who's in the world's top air forces.” Benjamin Brimelow. May 3, 2025, Business Insider[72] “Military signs contract with KAI and Hanwha to deliver 40 KF-21s by 2028.” Kim Ji-hwan. Chosun Biz. June 26, 2005.[73] For more information, see https://www.aerosociety.com/news/south-korea-bets-big-with-kf-21/[74] “South Korea’s F-35? KF-21 Boramae To Become 5th-Generation Stealth Fighter.” Stephen Silver. September 12, 2025. National Security Journal.[75] “Hanwha Systems delivers first AESA radar for KF-21 fighter jet in Korea,” Park Sung-woo. 2025.08.06. Chosun Biz.[76] For more information, see https://namu.wiki/w/KF-21%20%EB%B3%B4%EB%9D%BC%EB%A7%A4)[77] "Egypt emerges as new market for Korean arms exports". The Korea Times. 9 August 2022.[78] Park, Hyunmin (31 January 2024). "South Korea offers Saudi Arabia joint work on a new generation combat aircraftThis text comes from MILMAG Military Magazine."[79] [Yang Nakgyu’s Defence Club] Will South Korea Join Hands with Saudi Arabia to Develop a Sixth-Generation Fighter Jet? Yang Nakgyu. 29 July 2025. Asia Business Daily[80] Lee, Minji (16 April 2025). "S. Korea, UAE ink deal on cooperation on KF-21 jets."[81] "이영수 공군총장, UAE국방차관과 우정 비행 실시". Financial News (in Korean). 7 August 2025. [82] Gady, Franz-Stefan (18 June 2019). "South Korea's First-of-Class KSS-III Attack Sub Begins Sea Trials."[83] "KSS-III (Jangbogo–III-class) diesel-electric attack submarine". Thediplomat.com.[84] “Hanwha Ocean cuts steel of third KSS-III Batch-II Submarine.” Naval News. October 30, 2024.[85] “Hanwha Ocean cuts steel of third KSS-III Batch-II Submarine.” Naval News.[86] “Hanwha Ocean cuts steel of third KSS-III Batch-II Submarine.” Naval News. October 30, 2024.[87] “Hanwha Ocean cuts steel of third KSS-III Batch-II Submarine.” Naval News. October 30, 2024.[88] Freebairn, Tom (2025-05-21). "South Korea Pitches $18 Billion Submarine & Arms Deal to Canada Amid US Tensions". Defense Security Monitor. [89] Naval News Staff (2025-08-26). "Canada down selects two shipbuilders for future Canadian Patrol Submarine Project."  [90] For more information, see "Abrams i Czarna Pantera kontra rosyjskie T-14 i T-90M". Default (in Polish). 2023-01-23.[91] Kim Moon-kyung (27 September 2014). “K2 전차 실전배치 후 첫 공개 -- 백발백중.” YTN.[92] For more detailed information, see Wikipedia https://en.wikipedia.org/wiki/K2_Black_Panther[93] “Altay National Main Battle Tank of Turkey”. Globalsecurity.org. 5 February 2022.[94] Jung Seong-taek (6 February 2015). 파워팩 논란 K2전차 "전력화 이상무"... 1.2km 떨어진 표적지에 '쾅쾅'. The Dong-A Ilbo.[95] Kim Yeon-suk (27 July 2022). 폴란드 "한국에 K2 1천대·FA-50 3개편대·K-9 600문 주문"(종합2보).[96] Shin Jun-myeong (27 August 2022). 폴란드와 K2 전차·K9 자주포 7조6천억 규모 계약 체결. YTN.  [97] Kim Minseok (6 March 2022). 8년전 우크라 때리자 꽂혔다...세계최강 K9자주포 진화 이유 [김민석 배틀그라운드]. JoongAng Ilbo. [98] 한화그룹, 대우조선해양 인수로 국내 유일 육·해·공 전문 방산기업으로 '우뚝'. 뉴스투데이, Retrieved 28 September 2022.[99] For information, see https://english.defensearabia.com/dominating-the-battlefield-the-worlds-most-advanced-self-propelled-artillery-systems-2025/[100] 한-터키 국방장관 방산협력 협의. Yonhap News Agency. 18 November 1999. [101] 국산 K9자주포 첫 수출...터키에 1조3000억 규모. The Dong-A Ilbo. 20 July 2001.[102] "[K9 34회·끝] 터키형 자주포 화력시범 대성공". Kookbang Ilbo. Archived from the original on 8 December 2022.[103] "L&T, Samsung join hands for India's Howitzer artillery". The Economic Times. 29 March 2012.[104] "K9 자주포 & 해외수출 Q&A". Defense Today. 7 May 2020.[105] "K-9 자주포 100문 인도 수출 확정...3500억 규모". Newsis. 21 April 2017.[106] Philip, Snehesh Alex (14 June 2021). "India sets eyes on Russian Sprut light tanks to counter China, gets rare access to trials". The Print. [107] Unnithan, Sandeep (23 January 2022). "What's behind a massive order for Made-in-India howitzers". India Today.[108] "CCS clears Rs 20,000 crore Make in India projects for Su-30 fighter jets, 100 K-9 howitzers - The Economic Times". m.economictimes.com. Retrieved 12 December 2024.[109]  "Indian Army accelerates artillery modernisation with indigenous systems". India Today. 13 January 2025.[110] Com, Segye (20 February 2018). 손재일 한화지상방산 대표 "K-9, 해외마케팅 강화. Segye Ilbo.[111] 김귀근 (21 December 2017). 한화, K-9 자주포 24문 노르웨이에 수출 계약...2천452억원 규모(종합). Yonhap News Agency.[112] 박희준 (9 November 2022). 노르웨이, K9 4문·K10 8대 추가 수입...K9 수입량 총 28문. 더팩트 (in Korean).[113] Ruitenberg, Rudy (4 April 2025). "Norway to nearly double its K9 howitzer fleet for around $534 million". Defense News.[114] 한화테크윈, 폴란드에 K9 자주포 96대 수출(종합). Yonhap News Agency. 15 December 2016.[115] "Poland to sell 60 AHS Krab self-propelled howitzers to Ukraine". Ukrinform. 2 June 2022.[116] "한화에어로스페이스, 폴란드에 4000억원대 자주포 부품 공급". Hanwha Aerospace. 8 April 2025.[117] [단독] 한화디펜스, 폴란드 방산업체와 '1920억원 규모' 통신 시스템 공급계약 체결. www.theguru.co.kr (in Korean). 8 September 2022. [118] 한화 김동관 폴란드行...한국선 K9 자주포 조립 개시. Money Today (in Korean). 14 July 2023.[119] MBC경남 NEWS (31 October 2024). [K-방산] K9자주포, K2전차 동시 폴란드 수출 선적 현장 포착..전차 180대 자주포 1차 212문, 2차 152문도 이렇게 납품됩니다.[120] "K-9 자주포, 핀란드 수출 양해각서 체결". Daily NTN. 23 November 2016.[121] "K-9 자주포 핀란드 수출계약 체결, 48문 1.45억 유로 규모". Republic of Korea. 2 March 2017.[122] 박원석 (9 September 2024). 서울대 '2024 한-핀란드 이노베이션 포럼: 떠오르는 민/군 겸용 기술' 개최. Veritas Alpha (in Korean).[123] "Millog sai lisätilauksen Puolustusvoimilta K9-panssarihaupitsien käyttökuntoon saattamisesta". Millog (in Finnish). 4 March 2024. [124]  한화디펜스, 에스토니아에 K9 자주포 6대 추가 수출. Global Economics (in Korean). 25 October 2019.[125] 한화디펜스, 에스토니아 'K9 자주포' 현대화 사업 수주. www.theguru.co.kr (in Korean). 5 August 2021.[126] [단독] 한화에어로, 에스토니아와 'K9 자주포' 12문 추가 계약 ... 3600만 유로. Global Economics [Newdaily] (in Korean). 17 January 2023[127] "K-9 자주포 호주 수출 유력". Seoul Shinmun. 4 August 2009.[128] Bergmann, Kym (June 2019). "Australian Army to receive massive boost in firepower with 155mm SPH purchase". Asia-Pacific Defence Reporter. 45 (5): 12–16.[129] Kuper, Stephen (2 September 2020). "Government announces request for tender for Army Protected Mobile Fires". Defence Connect. [130] "S. Korea to export 30 units of K-9 howitzer to Australia under W930b deal". The Korea Herald. 13 December 2021.[131] 호주, K9 자주포에 이스라엘산 전력 시스템 장착. 한스경제 (in Korean). 22 August 2023. [132] 강지용 (23 August 2024). 한화에어로스페이스, 호주 방산 생산기지 완공…국내 첫 해외 생산. 파이낸셜포스트 (in Korean).[133] Helou, Agnes (1 February 2022). "Why did Egypt choose to buy South Korea's K9 howitzer?" Defense News. [134] 남수현 (12 October 2021). 박병석, 이집트 대통령 만나 세일즈 외교.  JoongAng Ilbo (in Korean). [135] 한화디펜스, 이집트와 K9 자주포 2조원 규모 수출 계약...'역대 최대 규모'. 파이낸셜투데이 (in Korean). 3 February 2022.[136]  MBC경남 NEWS (1 July 2024). 국산 파워팩 자주포 탑재 첫 수출.[137] "Egypt produces the advanced Korean K9 Thunder engine locally". Arab Defense. 5 October 2024.[138] “루마니아, 한국의 K9자주포와 K2흑표전차 구매 희망”. Global Economics (in Korean). 27 September 2022.[139] Seo Ji-eun; Lee Hay-june (10 July 2024). "Korea to export K9 howitzers to Romania in nearly $1 billion deal". Korea JoongAng Daily. [140] "Vietnam outlines intent to procure K9 howitzer". Janes.com. Janes Information Services. 24 April 2024.[141]  Park Soo-chan (30 May 2021). "사거리 최대 80km ... 축구장 3개 면적 '초토화' [한국의 무기 이야기]". Segye Ilbo.[142] For more information, see Park Soo-chan (22 October 2022) “하이마스보다 낫다” 전면전 공포에 각국, 천무 다연장로켓 '주목' [박수찬의 軍] | 세계일보 https://www.segye.com/newsView/20221021509773[143] "South-Korean Chunmoo K239 MLRS rockets/missile launcher to enter in service with UAE". Army Recognition. 8 April 2021[144] "Saudi military unveils Chun-Moo MRLs". Janes Information Services. 4 April 2023 [145] "K239 Chunmoo launchers will increase the deterrence potential of the Polish Army". Defence Industry News. 19 October 2022.[146] Gil So-yeon (20 August 2023). "'K-239 천무' 폴란드 상륙…예정보다 12일 지연". The guru. [147] South Korea plans to arm its FA-50 light combat fighters with new variant of the Taurus missiles, December 8, 2015, at the Wayback Machine – Airrecognition.com,[148] FA-50 Expanded Weapons and Avionics Archived January 12, 2016, at the Wayback Machine.[149] For more information, see https://www.airforce-technology.com/projects/fa-50-light-combat-aircraft-south-korea/[150] "MBDA To Show New Munitions in Singapore". Archived from the original on February 7, 2018. [151] "The Chosun Ilbo (English Edition): Daily News from Korea – Korea Deploys Home-Grown FA-50 Fighter Jets". Archived from the original on February 8, 2015[152] Waldron. "Indonesia receives first pair of T-50i advanced jet trainers." Archived December 3, 2013, at the Wayback Machine.[153]   Iddon, Paul (June 27, 2022). "Korean T-50 Jets Could Enhance Iraq's Air Campaign Against ISIS". Forbes.[154]  "KAI won a contract to export 12 FA-50s to the Phil" (Press release). Korea Aerospace Industries, LTD. (KAI). March 28, 2014.  [155]  "TV Patrol: DND, kinumpirma ang ugnayan ng ISIS at teroristang grupo sa Pilipinas". ABS-CBN News. January 26, 2017.   [156] "Delivery of T-50TH trainer jets to Thailand begins". Seoul. Yonhap News Agency. January 8, 2018. [157] KAI signs US$3 bln deal with Poland to export 48 FA-50s". Yonhap News Agency. July 28, 2022.[158] "Świadoma tego wszystkiego polska strona wciąż parła do stworzenia lepszej wersji FA-50 PL, wpisując na listę życzeń trudne do zrealizowania wymogi.".  The Furious Fafik. August 10, 2025.[159] "Korzystając z tego, że już utopiłem 9,90 zł w subskrypcję Onet Premium". The Furious Fafik. August 10, 2025.[160]  Waldron, Greg (February 24, 2023). "FA-50 wins Malaysia's light combat aircraft competition". Flight Global.[161] Akhil Kadidal (May 23, 2023). "LIMA 2023: KAI says Malaysia keen to order 18 additional FA-50s". Janes Information Services. [162] Shin In-ho (5 November 2018). "[신궁 1회] 승리의 믿음 K-PSAM 신궁". Defense Media Agency.[163] "VSHORAD – India's Next Big Air Defense Program". April 2012.[164] "Indonesia might buy more Chiron MANPADS systems from South Korea | November 2018 Global Defense Security army news industry | Defense Security global news industry army 2018 | Archive News year". 13 November 2018.[165] "Chiron". www.deagel.com. Retrieved 2015-04-08.[166] For more information, see www.smallarmssurvey.org. 

Defense & Security
K2 Black Panther during the 75th Republic of Korea Armed Forces parade, in Seoul, South Korea, on September 26, 2023

Major military weapons of South Korea defense industry

by World & New World Journal Policy Team

I. Introduction South Korea’s defense industry has rapidly emerged as a significant global arms exporter, driven by technological advancements, strategic government support, and increased geopolitical tensions such as the Ukraine war. South Korean arms exports have surged from $1.2 billion (2011–2015) to $38 billion (2021–2023), positioning South Korea as a key player in global arms market, challenging traditional arms exporters. This paper aims to introduce South Korean weapons to government officials and businessmen in European and Middle Eastern countries. This is the first paper in a series on South Korean defense industry. Focus is on South Korean weapons exported to Europe. The second paper will deal with South Korean weapons exported to Middle Eastern countries. This paper first provides an overview of South Korean defense industry and then introduces major Korean weapons exported to European countries. II. Overview of Korean Defense Industry It was 72 years ago that the bloody 1950-53 Korean War ended with an armistice. Today, South Korea, the once-war-ravaged nation, stands among global leading arms exporters, and its factories turn out advanced tanks, artillery systems and fighter jets destined for battlefields far beyond the Korean Peninsula. As Figure 1 shows, South Korea’s arms industry has been riding a wave of global demand. South Korea’ arms exports increased from 2.5 billion dollars in 2019 to 23 billion dollars (estimate)in 2025. South Korean weapons are in high demand for their advanced technology and fast delivery. As a result, in recent years, South Korea has often been listed among the world’s top 10 arms exporters, competing with the US, Russia and China. As Figure 2, South Korea ranked No. 10 in global arms exports, with a 2.2 % share of the world arms market in the 2020-2024 period, according to the Stockholm International Peace Research Institute. The South Korean government is now setting its sights on breaking into the ranks of global top 4 arms exporters. Figure 1: South Korea arms export Figure 2: world’s biggest arms exporters 1. Major South Korean defense companies According to the Defense News Top 100 list for 2020, four of South Korea’s defense companies were ranked in the top 100 defense companies in the world. These four companies are Hanwha (32nd), Korea Aerospace Industries (KAI 55th), LIG Nex1 (68th), and Hyundai Rotem (95th). These South Korea’s top four defense companies are expected to surpass 100 trillion won ($72 billion) in total order backlog in 2025, driven by strong export growth. More European and other countries adopt self-reliant defense strategies as US President Donald Trump warn that the US will no longer protect them for free and as he calls for increasing military spending. Moreover, the Ukraine war and the Gaza conflict continue. Thus, there are higher expectations that South Korea’s leading defense firms will secure more orders. According to data compiled by the Chosun Ilbo, a top Korean newspaper, on May 6, 2025, the combined backlog of South Korea’s top four defense companies stands at around 94.5 trillion won. The figures for Hanwha Aerospace and KAI are based on the results of the first quarter in 2025, while those for LIG Nex1 and Hyundai Rotem reflect data from the end of 2024 (The Chosun Ilbo, May 6, 2025). All four companies secure more export deals, thereby enhancing both the scale and quality of their order books. Hanwha Aerospace, for example, holds 31.4 trillion won in ground defense orders, led by exports of K9 howitzers and Chunmoo multiple rocket systems. Exports account for 65% of that backlog. KAI’s backlog at the end of the first quarter in 2025 reached 24.3 trillion won, up 32% from 18.4 trillion won in 2020. The KAI aims to exceed 29 trillion won by year-end. Its export share has also risen from 50% in 2020 to 63% by the end of 2024. LIG Nex1 holds a backlog of around 20 trillion won as of the end of 2024, while Hyundai Rotem’s stands at 18.8 trillion won. More than half of the orders for both companies come from overseas. Hyundai Rotem is also expected to finalize a second contract with Poland to export around 820 K2 tanks, valued at over 8 trillion won. If finalized, the deal would significantly boost its backlog this year. According to updated data from the Chosun Ilbo, South Korea’s four major defense companies saw their combined order backlog surpass 100 trillion won ($72 billion) for the first time, driven by strong overseas demand. Data in second quarter of 2025 show that Hanwha Aerospace, LIG Nex1, Hyundai Rotem, and Korea Aerospace Industries held backlogs totaling 103.48 trillion won, more than double the 42.23 trillion won recorded at the end of 2021. Industry officials say these companies now have enough work secured for the next four to five years. (The Chosun Ilbo, August 19, 2025)  Figure 3: South Korea top 4 defense companies’ order backlog (source: the Chosun Ilbo, August 19, 2025)  This jump in exports of Korean-made conventional weapons has led to the Korean defense industry boom. Orders for Korean artillery weapons and armored vehicles from Eastern Europe and the Middle East have significantly increased since the outbreak of the Ukraine war. Sales of Hyundai Rotem Co., the supplier of the K-2 Black Panther tank, and Hanwha Aerospace Co., the supplier of the K-9 Thunder howitzer, have skyrocketed over the same period. Their parts suppliers have also seen their sales double over a year. The South Korean defense industry’s current heyday is expected to continue for a while as global demand for Korean-made weapons and combat systems has surged amid growing geopolitical conflicts around the world. According to defense industry sources, Hanwha Aerospace is expected to soon close a deal with Vietnam to export the K9 self-propelled howitzers, a contract expected to be worth 1 trillion won. Indeed, Hanwha Aerospace signed an agreement to export its K9 self-propelled howitzers worth US$250 million to Vietnam. Hyundai Rotem is also reportedly nearing the final stage of inking a second agreement with Poland for K2 battle tanks that could be worth over 7 trillion won. LIG Nex1 has supposedly been in talks with Malaysia to export its surface-to-air missile system Cheongung. KAI is looking to export its KF-21 fighter jet to the Middle East. As the Korean defense companies continue to rack up orders and look to expand their list of clients worldwide, JP Morgan released a report on the four major defense firms -- Hanwha Aerospace, Hyundai Rotem, LIG Nex1 and KAI – in March 2025, increasing their stock price targets by an average of 28 percent while pointing out that there is “plenty of room to go” for their values to rise (The Korea Herald, April 17, 2025). The report surprised investors, industry officials and analysts as it set the target prices of the four defense companies higher than the domestic market consensus. J.P. Morgan adjusted the target stock prices of Hanwha Aerospace, Hyundai Rotem, LIG Nex1 and KAI to 950,000 won, 90,000 won, 370,000 won and 120,000 won, respectively. JP Morgan noted that it estimates an annual new order market of 19 trillion won -- 14 trillion won from Europe and 5 trillion won from the Middle East -- for Korean land weapons systems companies. “Korean-made weapons remain one of the top choices for Eastern European countries facing national security issues,” said Lee Tae-hwan, an analyst at Daishin Securities. “Discussions about ordering conventional weapons will gain momentum. The K9 self-propelled howitzers and K2 tanks are excellent candidates with strong potential for scoring additional export deals in Eastern Europe.” (The Korea Herald, April 17, 2025). Yu Ji-hoon, a research fellow at the Korea Institute for Defense Analyses, told The Korea Herald that “South Korea has rapidly matured into one of the world’s leading arms exporters, backed by a highly capable manufacturing base, a track record of delivering on time and at scale, and proven platforms.” (The Korea Herald, April 17, 2025). 2. Importers of South Korean weapons According to data from the Korea International Trade Association and the Korea Herald, last year’s biggest importer of Korean defense systems was Poland, which purchased Korea-made weapons worth about $2.51 billion, more than four times what it bought in 2023. The most-exported items were from Hanwha Aerospace, which shipped 212 units of its K9 self-propelled howitzers, and Hyundai Rotem, selling 134 units of the K2 battle tank. (The Korea Herald, April 17, 2025). Middle Eastern countries occupied most of the top five spots among importers of Korean weapons as regional tensions escalated due to the conflicts involving Israel, Hamas, and the Houthis in Yemen. Saudi Arabia ranked second in the purchase of Korean weapons with $530 million in 2024, while the United Arab Emirates and Turkey placed fourth and fifth with $145 million and $113 million, respectively. The United States was the third-biggest importer of Korean weapons at $219 million. III. Major military weapons of South Korean Defense Industry 1. Overview In South Korea’s expanding arms export portfolio, the K2 tank, called “Black Panther” and built by Hyundai Rotem, has been a flagship item. The K2 is South Korea’s most advanced main battle tank, designed for speed, precision and adaptability on the mountainous Korean Peninsula. In recent years, the K2 has drawn major international orders, most notably from Poland, as Polish and other nations’ militaries seek modern armor to replace aging Cold War units. It is central to South Korea’s largest-ever defense export deals, including the one with Poland, signed in 2022, in which Poland ordered 180 K2 Black Panther tanks from Hyundai Rotem in a $3.37 billion agreement. Deliveries began within months, far faster than European or American suppliers could offer. (The Korea Herald, August 14, 2025) In 2025, Poland signed with a $6.5 billion contract for 180 upgraded K2PL tanks, to be produced in part in Poland. The two phases, part of a broader plan involving the manufacturing of up to 1,000 K2s, have made South Korea one of the North Atlantic Treaty Organization’s most important new arms partners and cemented South Korea’s status as a major player in the global defense market. Other key weapons in the South Korean export portfolio are the K239 Chunmoo Multiple Rocket Launcher System, K9 self-propelled howitzer, FA-50 fighter jets and KP-SAM chirons. (The Korea Herald, August 14, 2025) Prominent deals made with global clients include K239 Chunmoo MLRS systems purchased by the United Arab Emirates and Saudi Arabia in 2017 and 2022, respectively. South Korea also signed a $250 million agreement to supply Vietnam with 20 K9 self-propelled howitzers on August 14, 2025, marking the weapon’s first deployment to a member of the Association of Southeast Asian Nations bloc. The K9 howitzers are already in service in countries such as Turkey and Egypt. (The Korea Herald, August 14, 2025) In December 2013, Iraq signed a contract for 24 T-50IQ aircraft, a FA-50 variant, plus additional equipment and pilot training over the next 20 years. The first batch of aircraft was delivered in March 2017. On March 28, 2014, Department of Defense in the Philippines signed a contract for 12 FA-50 fighters worth P18.9 billion (US$421.12 million). Deliveries began in November 2015, all 12 aircraft were delivered by May 31, 2017. (The Korea Herald, August 14, 2025) Indonesian Air Force acquired and operated KP-Sam Chirons since 2014 which was integrated with Oerlikon Skyshield 35 mm anti-aircraft gun system. Additional 2 Chirons transferred according to a 2019 SIPRI small arms report. 54 KP-SAM chirons were delivered to Romania in June 2024. 2. Major South Korean weapons exported to Europe This is the first paper in a series on South Korean defense industry. Focus is on South Korean weapons exported to Europe. As Table 1 shows, South Korea exported the following weapons to European countries such as Poland, Romania, and Turkey in the period of 2022-2024: K 2 tanks, K 9 howitzer, Chunmoo multiple rocket systems, FA-50, and the KP-SAM Chiron. Table 1: Major defense export contracts, 2022-2024 (source: Issues & Insights on Economy, Technology, and Security, no. 011 (25-06) 4 June, 2025, p. 2) 1. K 2 Black Panther (K 2 tanks) Figure 4: K2 Black Panther (source: Wikipedia) K2 Black Panther (K-2 흑표 tank) is a South Korean fourth-generation main tank, manufactured by Hyundai Rotem. The K2 Black Panther has an advanced fire-control system, in-arm suspension, laser rangefinder, a radar, and crosswind sensor for lock-on targeting. The K2’s thermographic camera tracks target up to 9.8 km, and its millimeter-band radar acts as a Missile Approach Warning System, enhancing situational awareness. And its soft-kill active protection system deploys smoke grenades to counter incoming projectiles. The K2’s autoloader reduces crew size from 4 to 3, thereby providing a faster rate of fire, better fuel efficiency, and lower maintenance costs compared to other western main tanks requiring human loaders. In addition, the K2 can operate in indirect fire mode, offering key advantages over Western designs.[1] The K2’s production started in 2008 and its mass production began in 2013. The first K2 tanks were deployed to South Korean army in July 2014.[2] The K2 Black Panthers were exported to Turkey and Poland. The potential operators of K2 Black Panthers are Armenia, Egypt, Morocco, Peru, Romania, and Slovakia. a. Turkey In June 2007, South Korea and Turkey negotiated a deal worth $540 million that included South Korea’s support for the development of Turkey’s Altay battle tank. On July 29, 2008, Hyundai Rotem and Turkey’s Otokar (Turkish defense firm) signed a contract to provide design assistance and technology transfer for the Altay tank project. This collaboration included systems integration, critical design elements, and manufacturing expertise from South Korea, specifically tailored to develop Turkey’s domestic manufacturing capabilities. South Korea’s contributions to the Altay’s development included the transfer of manufacturing technologies for critical components. Hyundai Rotem played a central role in the system design and integration process, and Hyundai WIA provided the 120 mm 55-caliber smoothbore gun technology. Poongsan Corporation supported the development of ballistic protection systems, while Samyang Comtech shared expertise in advanced armor materials. These collective efforts laid the foundation for Turkey’s capabilities in producing the Altay tank.[3] This cooperation extended beyond technical support, encompassing assistance in establishing production lines for key subsystems. Hyundai Rotem guided Otokar in tank systems development, while MKEK (Turkish mechanical and chemical corporation) received tank gun production technologies. Roketsan (Turkish defense firm) was supported in the design and manufacturing of advanced armor packages. These collaborative efforts were instrumental in the development of prototypes PV1 and PV2, finalized in 2015, and the Altay project's official completion in 2016.[4] On 10 March 2021, BMC, the Turkish contractor responsible for the production of Altay tanks, made a decision to import engines and transmissions from South Korea to address production delays. Seven months later, on 22 October 2021, South Korea’s DAPA approved the export of Hyundai Doosan Infracore (now HD Hyundai Infracore) DV27K engines and SNT Dynamics EST15K transmissions to Turkey. In August 2022, durability testing of the powerpack, combining the DV27K engine and EST15K transmission from South Korea, was successfully completed. Following this success, the first batch of Altay tanks will be produced using this Korean powerpack including engines from HD Hyundai Infracore and transmissions by SNT Dynamics. The tank is in production according to the Turkish media.[5] In 2025, mass production of the Altay tank officially started on 5 September, 2025. b. Poland In January 2020, Poland announced negotiations with Hyundai Rotem for license production of the K2 Black Panther for the Polish Army. On 13 June 2022, the Polish Ministry of Defense announced that it had signed a memorandum of understanding (MOU) to buy at least 180 K2 tanks for the Polish military. On 27 July 2022, the Polish Armaments Group (PGZ) and Hyundai Rotem signed a framework agreement to provide 180 K2s and 820 K2PLs. The contract included rapid arms supply and extensive technology transfer from South Korea. According to the contract, 180 K2s will be produced in South Korea and delivered to Poland starting in 2022, and 820 K2PLs will be produced in Poland under license beginning in 2026.[6] On 26 August 2022, the first executive agreement worth $3.37 billion was signed to procure 180 K2s in Morąg in northern Poland. The contract included logistics packages, training programs, explosive reactive armor packages, 50,000 120 mm, 4.3 million 7.62 mm and 12.7 mm machine gun ammunition for the K2. Soldiers of the 16th Mechanized Division of the Polish Army were sent to South Korea in October 2022 to participate in the training program. The 180 K2 tanks will be delivered during the period of 2022-2025 and then be deployed to the 20th Mechanized Brigade, 15th Mechanized Brigade, and 9th Armored Cavalry Brigade in Poland.[7] On 7 September 2022, PGZ and Hyundai Rotem signed a partnership agreement to develop and produce tanks, armored vehicles and ground unmanned systems. The contract included joint cooperation in building manufacturing facilities in Poland for the production and maintenance of 1000 K2 tanks and the production of K3 next-generation battle tanks. The facilities to be built in Poland will be used as a hub in Europe for the sale and maintenance of Hyundai Rotem’s armed vehicles and tanks. On 5 December 2022, the first 10 K2 tanks arrived in Poland, just “six months” after the signing of the agreement. The tanks were delivered to the 20th Mechanized Brigade of the 16th Mechanized Division on 9 December 2022. On 31 March 2023, the Polish Ministry of Defense signed a foundational agreement with Hyundai Rotem for a consortium to produce K2PL in Poznań. 2. The K9 Thunder (K 9 howitzer) Figure 5: K9 Thunder (source: Wikipedia) The K9 Thunder is a South Korean 155 mm self-propelled howitzer designed and developed by the Agency for Defense Development and South Korean corporations including Samsung Aerospace Industries, Dongmyeong Heavy Industries, Kia Heavy Industry, and Poongsan Corporation for South Korean Armed Forces. It is now manufactured by Hanwha Aerospace. K9 howitzers operate in groups with the K10 ammunition resupply vehicle variant.[8] The entire K9 fleet operated by South Korean Armed Forces has undergone upgrades to K9A1, and a further upgrade variant K9A2 is now tested for production. As of 2022, the K9 series had a 52% share of global self-propelled howitzer market.[9] The K-9 Thunder is superior to the US self-propelled howitzer M109A6 Paladin or the British self-propelled howitzer AS90. The Chinese PLZ-05 has poor recoil and suspension functions as revealed in the released operating video. And the performance of the Russian 2S35 Kalitsa-SV has not been verified. Compared to the German PzH2000 (currently the world’s best self-propelled howitzer), the K-9 Thunder is a cost-effective alternative, offering a similar balance of performance, range, and mobility but at a lower price, making the K-9 a highly successful export system. The main differences between K-9 and PzH2000 lie in cost and performance. The PzH 2000 has been known for its superior automation and slightly higher firing rate, while the K9 Thunder boasts excellent mobility, a better cost-performance ratio, and seamless integration with its K10 ammunition resupply vehicle.[10] For these reasons, as Table 2 shows, the K9 Thunders were exported to a number of countries such as Turkey, India, Norway, Poland, Finland, Estonia, Australia, Egypt, and Romania.  Table 2: Countries to which K9 howitzers have been exported and the number of units under contract, 2001-2024 a. Turkey In May 1999, the Ministry of Defense in South Korea ordered its military attaché in Turkey to arrange a presentation for K9 Thunder. Although Turkey showed interest in K9 Thunder, there was no business deals made as Turkey was planning to produce German Panzerhaubitze 2000 at that time. As Turkey’s plan to build PzH2000 eventually became halted by Germany, South Korea and Turkey signed MOU to strengthen their military and defense cooperation on 18 November 1999.[11] On 12 December, Turkey sent a team of military general and engineers to Korea to inspect K9 Thunder. Satisfied with the K9’s performance, Turkey cancelled its plan to find replacement from Israel and decided to manufacture K9 Thunder. On 19 February 2000, a technology evaluation team from members of the Agency of Defense Development and Samsung was sent to Turkey and inspected various Turkish companies and facilities including Turkish 1010th Army Factory, MKEK, and Aselsan to optimize manufacturing process of K9 in Turkey. On 4 May 2000, the Ministry of Defense in South Korea and Turkish Land Forces Command signed a memorandum of understanding (MOU) to supply 350 K9 systems untill 2011.[12] The prototype was finally assembled on 30 December 2000, and earned the nickname Firtina (Fırtına; Storm). Winter test was held in January and February 2001 at Sarıkamış, and Firtina was able to operate in snowy mountain terrain without issue. A formal contract was signed by Samsung Techwin (formerly Samsung Aerospace Industries) and the Embassy of the Republic of Turkey in Seoul on 20 July 2001. South Korean government promised to transfer the technologies of the Agency for Defense Development to Turkey for free in exchange for Turkey’ purchase of 350 vehicles—280 for Turkish Land Forces and 70 for its future customer—by 2011, which the total is expected to be $1 billion. The first 24 T-155 Firtina consisted of Korean subsystems worth $65 million. The Turkish model was named T-155 Firtina.[13] Hanwha Defense has generated more than $600 million from Turkey since then, much lower than expected. This is because Turkey produced fewer units than planned and because Turkey increased its localization efforts gradually by indigenous research and from technology transfer. b. India On 25 March 2012, South Korean President Lee Myung-bak and the Indian Prime Minister, Manmohan Singh signed Memorandum of Understanding (MOU) to strengthen their economic and military ties. On 29 March 2012 at DEFEXPO, Samsung Techwin and Larsen & Toubro announced their partnership to produce the K9 Thunder in India. According to the agreement, Samsung Techwin will transfer key technologies, and the vehicle will be manufactured under license in India using 50 per cent of the domestic content such as FCS and communication system.[14] Two units of K9 were sent to Thar Desert, Rajasthan for firing and mobility test, and competed against Russian 2S19. Operated by Indian military personnel, the K9 fired 587 Indian ammunitions including Nub round and drove a total distance of 1,000 km. Maintenance test was conducted at Pune, EMI (electromagnetic interference) test at Chennai, and technical environment test was held in Bengaluru until March 2014. K9 Thunder achieved all ROC set by Indian military while the Russian counterpart failed to do so. Hanwha Techwin (previously Samsung Techwin) later told in an interview that the Russian engine performance dropped when the air density is low and in high temperature, the placement of the engine also resulted in the center of the mass located at the rear, making the vehicle difficult to climb high angles. On the other hand, K9 benefitted from automatic control system of the engine, providing the optimum performance based on given condition automatically—this was one of the decisive reason why India selected K9 over 2S19.[15] In September 2015, the Indian Ministry of Defense selected Hanwha Techwin and Larsen & Toubro as preferred bidder to supply 100 K9 Vajra-T to the Indian Army after K9 outperformed 2S19 Msta-S and passed two-year trial. On 6 July 2016, India agreed in purchasing 100 K9 Vajra-T for $750 million. On 29 March 2017, the Government of India approved budget of $646 million for purchasing 100 K9 Vajra-T. A formal contract of $310 million was signed between Hanwha Techwin and Larsen & Toubro in New Delhi on 21 April. According to the contract, Hanwha Techwin will supply first 10 K9 Vajra-T, and 90 K9 will be license produced in India by Larsen & Toubro.[16] In May 2021, it was reported that India’s Defense Research and Development Organisation was working with Larsen & Toubro on a light tank using the K9 chassis with 105 mm or 120 mm gun system to counter China’s Type 15 tank.[17] The Indian Army planned to order an additional 40 K-9 Vajra-T from Larsen & Toubro as of 2021 after completion of high altitude trials at Ladakh under cold climatic conditions. At that time, India was also looking to export the K9 Vajra-T variant to third countries in collaboration with South Korea and its industry partners. As per a report in 2022, the Indian MoD could place a repeat order of 200 K9 Vajra-T worth ₹9,600 crore (equivalent to ₹100 billion or US$1.2 billion in 2023) after satisfactory performance of the guns at high altitude terrain.[18] According to a report in May 2024, the clearance for next 100 units would be approved after the formation of a new government after Indian general election in 2024. The Cabinet Committee on Security cleared the purchase of 100 units on 12 December 2024.[19] The contract, worth ₹7,628.70 crore (US$900 million), was signed with Larsen & Toubro on 20 December 2024 in the South Block, New Delhi. The entire order is to be processed and delivered by the end of 2025. On 3 April 2025, Larsen &Toubro signed another contract with Hanwha Aerospace at $253 million to execute the order.[20] c. Norway In May 2015, Samsung Techwin joined the Norwegian artillery upgrade program to replace Norway’s M109Gs with 24 new systems, competing against the KMW Panzerhaubitze 2000, the Nexter CAESAR 6x6, and the RUAG M109 KAWEST. A single K9 was sent to Norway to join the competition. Operated by a sales team, the vehicle went through tests between November 2015 and January 2016. During the January winter test, the K9 was the only vehicle that managed to drive through meter-thick snow field and fire its weapon without any issue. Competing vehicles experienced engine troubles or broken parts.[21] The K9’s engine was able to maintain heat overnight by simply covering the area with tarpaulin, a simple trick learned from operating experience, allowing the engine to ignite without failure the next day at an extremely cold temperature. The hydropneumatic suspension became a huge advantage for mobility, as its mechanism melted snow on mobility parts much quicker. The test result had also significant impact on Finland and Estonia to acquire K9, because the two nations were invited to observe performances for their artillery replacement. In December 2017, a contract of $230 million was signed between Hanwha Land Systems and the Norwegian Ministry of Defense. According to the contract, Hanwha would supply 24 K9 Thunder and 6 K10 ARV by 2020. The K9 outperformed competitors in various weather and terrain conditions according to Norwegian military officials during trials.[22] The Norwegian variant was named K9 VIDAR based on the K9A1 configuration. In November 2022, Norway decided to purchase 4 K9s and 8 K10s, increasing its total vehicles to 28 K9s and 14 K10s (2:1 ratio). The delivery was expected to be completed in 2 years.[23] In April 2025, it was announced that Norway plans to almost double its K9s by ordering an additional 24 K9s for about $534 million USD.[24] d. Poland i) PK9 (AHS Krab with PK9 chassis) In 1999, Poland joined NATO and launched a military program named Regina Project to replace its 152mm Soviet-era SPGs with the NATO standard 155 mm artillery system. In December 2014, Samsung Techwin signed a cooperation agreement with Huta Stalowa Wola to supply modified K9 Thunder chassis for AHS Krab self-propelled howitzer. The deal is worth $310 million for 120 chassis, which includes related technology transfer and the power pack. From 2015 to 2022, 24 units were scheduled to be manufactured in South Korea, and 96 would be license produced in Poland. First chassis rolled out on 26 June 2015, and all 24 vehicles produced in South Korea were sent to Poland as of October 2016.[25] Late in May 2022, the Polish government sent 18 AHS Krab howitzers to Ukraine to assist the Ukrainian military to defend against Russia during the Ukraine war. On 29 May, Polish minister of defense visited South Korea for high level talks about the purchase of various Korean weapons to increase AHS Krab production. On June 7, Poland and Ukraine signed a contract for the purchase of an additional 54 units plus support vehicles, in a deal worth US$700 million. The agreement was the largest defense contract that Polish defense industry had made.[26] On 5 September 2022, Poland ordered 48 Krabs and other support vehicles for a value of PLN 3.8 billion zlotys (USD $797 million). On 23 December 2024, the contract worth PLN 9 billion for 96 Krabs, command vehicles, command and staff vehicles, ammunition vehicles, and repair workshops was signed. The delivery for this batch was scheduled by the end of 2029.[27] On 8 April 2025, Huta Stalowa Wola signed a ₩402.6 billion deal with Hanwha Aerospace to supply parts and power packs for 87 AHS Krabs between 2026 and 2028. ii) K9PL On 27 July 2022, Polish Armaments Group (PGZ) and Hanwha Defense signed a framework agreement to supply 672 K9PL. Hanwha Defense hoped to expand the deal by adding K10 ARV and K11 FDCV support vehicles. Poland was also expected to produce AHS Krab in parallel; however, due to the low production capability, the deliveries of the existing order will be completed by 2026. On 26 August 2022, an executive contract of $2.4 billion was signed to acquire 212 K9PL manufactured by Hanwha Defense as a Batch I order. Under the contract, Hanwha is responsible for delivery of all 212 vehicles by 30 September 2026. Poland plans to build K9PL locally afterward via technology transfer for the Batch II. On 7 September, Hanwha Defense and WB Electronics signed a $139.5 million deal for installation of Polish communication systems on the Batch I order.[28] The first 24 K9PL(GF) was rolled out on 19 October 2022. The delivery ceremony was held in Poland on 6 December. The first new K9PL began its construction in July 2023.[29] On 1 December 2023, Poland and Hanwha Aerospace signed a $2.6 billion agreement for 6 Batch I K9PLs by 2025, 146 Batch II K9PLs between 2026 and 2027, and integrated logistics support for the howitzers and 155 mm ammunitions.[30] On 4 April 2024, Hanwha Aerospace opened a European office in Warsaw and announced the integration of the K9 and Krab howitzer systems with cooperation from Huta Stalowa Wola to improve the operational and maintenance efficiency of the Polish military. e. Finland On 1 June 2016 at KDEC (Korea Defense Equipment & Component) industry fair, South Korea and Finland signed a MOU for defense cooperation including export of used K9. In July 2016, the Finnish Ministry of Defense announced that an undisclosed number of used K9s have been acquired from South Korea. In September 2016, K9 was field tested in Finland, and Seppo Toivonen, the commander of the Finnish Army, visited South Korea to inspect operating units during 2016 DX Korea. On 25 November 2016, two countries signed MOU to supply 48 used K9 for $200 million and match equal amount of free technology transfer related to vehicle maintenance.[31] On 17 February 2017, the South Korean Ministry of Defense announced that Finland will acquire 48 used K9s over a period of seven years starting in 2018, with conscript training on the equipment begining in 2019. On 2 March 2017, final contract of value of €145 million ($160 million) was signed by two governments in Seoul, South Korea.[32] On 21 October 2021, Finnish Ministry of Defense authorized exercising option to purchase 10 new vehicles including spare parts and supplies—5 in 2021 and another 5 in 2022—for €30 million, increasing the fleet size to 58 vehicles.[33] On 18 November 2022 Finnish Minister of Defense Antti Kaikkonen authorized purchase of another 38 used vehicles for €134 million. The official Finnish designation of the K9 howitzer is 155 PSH K9 FIN, colloquially called Moukari (meaning Sledgehammer). On 4 March 2024, Millog, a Finnish company, signed a contract with the Finish Defense Force to upgrade 48 vehicles purchased in 2021 and 2022 at €8.1 million. The work is expected to be completed by 2030.[34] f. Estonia To reduce the cost for both nations, Finland invited Estonia to jointly procure the K9. In February 2017, Estonian military officials visited South Korea for price negotiations. In June 2018, Rauno Sirk, the director of the Estonian military procurement agency, announced that Estonia would buy K9 Thunder howitzers. Hanwha Land Systems was to supply 12 used K9s for €46 million, which would cover maintenance, parts and training, as in the contract with Finland. In October 2019, the Estonian Ministry of Defense announced that it would exercise the option to purchase 6 additional K9s under the terms of this contract, at an estimated cost of €20 million.[35] In August 2021, the Estonian Centre for Defense Investment (RKIK) signed a €4.6 million contract with Hanwha Defense and Go Craft to modernize 24 K9EST Kõu, hinting at purchasing 6 more for its inventory. The upgrade involves communication systems, a FCS, painting, fire suppression system, and electronics.[36] In September 2022, it was reported that Estonia had purchased 24 vehicles in total. In October, the Estonian defense minister stated that Estonia would procure 12 additional K9s, bringing the total number up to 36 units. In November 2022, Go Craft opened Estonia's first private military workshop, and will start upgrading K9s. In January 2023, Estonia ordered 12 vehicles for €36 million, which will be delivered before 2026. The first Estonian edition by Go Craft was rolled out in February 2023.[37] g. Australia In August 2009, it was reported that the consortium of Samsung Techwin and Raytheon Australia had the upper hand for Australia’s Land 17 artillery replacement program by becoming a sole bidder, as KMW, the manufacturer of the competing Panzerhaubitze 2000, had not provided the detailed offering proposal that Australia requested.[38] The K9 was sent to Australia and was evaluated by the Australian military starting in April 2010. The test included firing M982 Excalibur, a requirement which the K9 satisfied. In June 2010, the K9 became the preferred bidder for the LAND 17 program, but the program was delayed. In May 2019, in the lead-up to the 2019 Federal Election, the Prime Minister of Australia, Scott Morrison, announced that 30 K9 howitzers and associated support equipment, including ten K10 ammunition resupply vehicles, would be acquired for the Australian Defense Forces. No time frame was given for the purchase.[39] In September 2020, the Minister for Defense, Linda Reynolds, announced a request for tender to locally build 30 K9s under the Land 8116 Phase 1 Protected Mobility Fires requirement. The sole-source request for tender was released to the preferred supplier, Hanwha Defense Australia, to build and maintain 30 K9s and 15 K10s, as well as their supporting systems. These would be built at Hanwha Defense Australia's Geelong facility. Australian variant AS9 Huntsman was based on Norwegian K9 VIDAR.[40] In December 2021, the Capability Acquisition and Sustainment Group (CASG) of Australia and Hanwha Defense Australia signed a formal contract of producing 30 AS9s and 15 AS10 AARVs under license at Hanwha Defense Australia facility in Geelong. The estimated value of the deal is $788 million, and manufacturing was expected to start in Q4 2024.[41] Production of AS9 and AS10 began in June 2023. In July, Australian army conducted tests on ammunition compatibility at the Agency for Defense Development test center in South Korea. In August, another Israeli company Epsilor was selected to supply NATO standard 6T Li-ion batteries for the howitzer.[42] On 28 March 2024, Hanwha Aerospace announced the beginning of assembly of two AS9s and one AS10 in Changwon. The remaining 28 AS9s and 14 AS10s will be built at H-ACE in Australia. On 23 August 2024, Hanwha Aerospace invited Korean and Australian government officials for an opening ceremony of H-ACE. The factory will start mass production of AS9 and AS10 in 2024 and deliver all vehicles to the Australian Army by 2027.[43] In December 2024, Hanwha Aerospace delivered two AS9 and one AS10 to Hanwha Defense Australia, and the Australian military received them in January 2025. h. Egypt In 2010, the K9 was evaluated by the Egyptian military to replace its aging artillery fleet. The regional instability resulting from the Arab Spring revolution caused the Egyptian government to postpone the replacing project indefinitely. In April 2017, it was reported that Hanwha Techwin was again in negotiations with Egypt to export the K9 Thunder. Hanwha Techwin sent a K9 howitzer to Egypt in July and K9 test-fired at a range located west of Cairo in August, competing with the French CAESAR, Russian 2S35 Koalitsiya-SV, and Chinese PLZ-45. During the test, the K9 hit a target ship approaching to the shore, successfully performing an anti-access/area denial simulation against enemy ships for the Egyptian Navy.[44] In October 2021, South Korea and Egypt discussed the sale of the K9 Thunder. The estimated value of the deal was $2 billion, including training of technicians.[45] In February 2022, South Korea's Defense Acquisition Program Administration (DAPA) announced that Hanwha Defense had signed a $1.6 billion K9 Thunder export contract at Egypt's Artillery House, attended by Egypt's Ministry of National Defense and key officials from both countries. According to the DAPA, the deal provided for the production of 200 K9A1EGY and 100 K10EGY in Egypt, including technology transfer. An unknown number of the earliest vehicles in the series were to be produced in South Korea and delivered to the Egyptian Army and the Egyptian Navy.[46] The production of the first K9A1EGY was expected in Q4 2022. At a military parade on 25 October 2023, the Egyptian Army unveiled the K9A1EGY in service with the 4th Armored Division. On 1 July 2024, Egyptian media reported that the exact number of South Korean exports was 216 K9A1EGY, 39 K10, and 51 K11. Previously, Egypt received K9A1 and K10 vehicles with 1,000 horsepower Korean-made SMV1000 engines for testing purposes.[47] On 5 October 2024, Arab Defense reported that the Ministry of Military Production in Egypt announced local manufacturing of the SMV1000 engine by the state-owned Helwan Casting Company, also known as Military Factory 9. In addition, Egypt worked with Hanwha Aerospace in transferring manufacturing technology and installing production lines. The Military 200 became the main manufacturer, and the Military 100 would produce the CN98 cannon and armored steel. Moreover, Egypt plans to become the regional center to export the K9 Thunder system to African and Arab countries, and the Minister of Military Production confirmed negotiations with a number of countries.[48] i. Romania On 26 September, 2022, Romanian media reported that the Romanian military was interested in purchasing K9 Thunder and K2 Black Panther. Romania also expressed interest in the K239 Chunmoo multiple rocket launcher and the K21 infantry fighting vehicle. In July 2023, it was reported that Romania planned to acquire 54 (3 systems of 18) K9 Thunders.[49] On 19 June 2024, Romanian Defense Minister Angel Tîlvăr finally decided to buy 54 K9s worth ₩1.3 trillion ($920 million) during an official meeting with South Korean Defense Minister Shin Won-sik. The Romanian version is called K9 Tunet. The first 18 vehicles are expected to completely built at the Changwon factory in South Korea, while the rest will be assembled in Romania. On 9 July 2024, Hanwha Aerospace signed the ₩1.3 trillion contract with the Romanian Ministry to supply 54 K9s and 36 K10s, including ammunition and support equipment packages. Hanwha will deliver the vehicle from 2027 in cooperation with a local defense company in Romania. Meanwhile, Hanwha will deliver 18 K9s and 12 K10s from South Korea.[50] j. Vietnam The negotiation for K9 Thunder began when Nguyễn Xuân Phúc, the president of Vietnam, visited South Korea for the 30th anniversary of diplomatic ties in 2022. In March 2023, Vietnam’s highest military figure Phan Văn Giang and other officials showed interests in the K9 by visiting South Korean Army’s K9 operator unit and discussion with Hanwha Aerospace on the potential K9 procurement for the Vietnam military.[51] In April 2024, it was reported that the Vietnam Ministry of National Defense has officially outlined the K9 procurement plan to its South Korean counterpart, with Korean officials supporting the deal. 108 units was mentioned as the potential purchase number. Vietnam confirmed the purchase on 11 August 2024 during Vietnam Prime Minister Tô Lâm's visit to South Korea. 3. The K239 Chunmoo (천무) Figure 6: K239 Chunmoo (source: Wikipedia) The K239 Chunmoo(천무) is a rocket artillery system developed in 2013 to replace the aging K136 Kooryong(구룡) of the South Korean military. The K239 Chunmoo is a self-propelled multiple launch rocket system (MLRS) capable of firing several different guided or unguided artillery rockets. The Cheonmu has a maximum range of 80km, capable of striking North Korean coastal artillery positions near the Military Demarcation Line and even the Wonsan area. It can fire 12 rounds continuously per minute, striking 12 different targets.[52] The Chunmoo is much better than US military’s HIMARS (High Mobility Artillery Rocket System) multiple rocket launcher in the ammunition capacity. The Chunmoo can fire up to 12 230mm guided missiles in single or burst bursts. Moreover, using 130mm pod-type ammunition (POD) of the same caliber as the Kooryong(구룡), the Chunmoo can fire 20 rounds per pod, for a total of 40 rounds simultaneously. It can also fire the US military’s 227mm MLRS ammunition. The wheeled Chunmoo launcher vehicle boasts excellent mobility, reaching a top speed of 80 km/h. It also has rapid response capabilities, capable of firing its first round within seven minutes of arriving at the firing point, and protection to ensure crew survivability. The Chunmoo boasts an excellent capability of carrying a wide variety of rocket types. The US Hymas, whose effectiveness was recently proven in the Ukraine war, can carry six rockets, while the ATACMS tactical ballistic missile can only carry a single rocket. However, the Chunmoo can fire 130mm rockets (36 rockets per pod), 227mm rockets (6 rockets per pod, two pods), and 230mm rockets (6 rockets per pod, two pods). Unguided 227mm rockets can travel up to 80km, while guided rockets can travel up to 160km, allowing them to strike all major North Korean military targets.[53] The K239 Chunmoo(천무) were exported to United Arab Emirates, Saudi Arabia, and Poland. a. United Arab Emirates (UAE) In 2017, Hanwha Defense announced at ADEX (Aerospace & Defense Exhibition) in Seoul that it had signed a nondisclosure contract worth 700 billion won to export K239 Chunmoo to a certain country in the Middle East. Later it was revealed that the United Arab Emirates signed a supply contract with Hanwha Defense, including 12 K239 Chunmoos, 12 K239T Ammunition Support Vehicles, GPS-guided rockets, and munitions. In February 2021, 12 K239 Chunmoo systems and 12 K239T Ammunition Support Vehicles were delivered to the United Arab Emirates.[54] b. Saudi Arabia At the World Defense Show in Riyadh, Saudi Arabia, on March 9, 2022, Hanwha signed a defense export contract worth 1 trillion won ($800 million) with the Saudi Arabian Ministry of Defense, but details of the contract were not known. It was later confirmed on 31 March 2023 that an unknown number of Chunmoo was in service by the Royal Saudi Land Forces. As in the case of UAE, it is presumed that Saudi Arabia has signed a non-disclosure contract.[55] c. Poland On 27 August 2022, Polish defense minister, Mariusz Błaszczak, said that there were ongoing negotiations to acquire South Korea’s rocket artillery system. On 13 October 2022, Polish Armament Agency announced that the negotiations with South Korea to acquire nearly 300 K239 Chunmoo systems had been completed and the framework agreement was signed on October 17. Poland had originally intended to procure 500 American M142 HIMARS launchers, but such an order could not be fulfilled in a satisfactory timeline, so decision was made to split the HIMARS order into two stages, buying less of them and adding Chunmoo procurement. A supply contract for 288 Chunmoo MLRS mounted on Jelcz 8x8 chassis and equipped with Polish TOPAZ Integrated Combat Management System along with 23 thousand missiles with the range of 80 and 290 kilometers was signed in Poland on October 19, 2022.[56] On 20 August 2023, first Homar-K (Polish version of Chunmoo), which completed system integration and testing in South Korea, was deployed to the 18th Mechanized Division of the Polish Land Forces in Poland.[57] 4. FA- 50 Figure 7: FA-50 (source: Wikipedia) The FA-50 is a light combat aircraft manufactured by Korea Aerospace Industries (KAI) for South Korean Air Force (ROKAF). It is a light combat version of the T-50 Golden Eagle supersonic advanced jet trainer and light attack aircraft. FA-50 aircraft can carry a weapons load of up to 4.5t. The aircraft can be armed with AIM-9 Sidewinder short-range air-to-air missiles, AGM-65 Maverick air-to-ground tactical missiles (AGM), GBU-38/B Joint Direct Attack Munitions (JDAM), CBU-105 Sensor Fused Weapon (SFW), Mk-82 Low Drag General Purpose (LDGP) bombs and Cluster Bomb Units (CBUs).[58] The aircraft is also mounted with an internal, three-barrel 20mm Gatling gun and LAU-3/A 19-tube 2.75″ rocket launcher for firing Folding-Fin Aerial Rockets (FFAR). The wide range of weapon systems aboard the FA-50 jet allows it to counter multiple threats in today’s complex battlefield scenario.[59] The FA-50 platform will be integrated with Lockheed Martin’s Sniper advanced targeting pod (ATP), which is an electro-optical targeting system encased in a single, lightweight pod. It will expand the capabilities of FA-50 with two-color laser spot tracking (LST), high-definition, forward-looking infrared (FLIR), and the Global Scope™ sensor software suite for non-traditional intelligence, surveillance and reconnaissance (NTISR) missions.[60] The FA-50 can be externally fitted with Rafael’s Sky Shield or LIG Nex1’s ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve its electronic warfare, reconnaissance, and targeting capabilities. Other armaments include SPICE multifunctional guidance kits, Textron CBU-97/105 Sensor Fuzed Weapon with WCMD tail kits, JDAM, JDAM-ER for more comprehensive air-to-ground operations, and AIM-120 missiles for BVR air-to-air operations. FA-50 has provisions for, but does not yet integrate, Python and Derby missiles, also produced by Rafael, and other anti-ship missiles, stand-off weapons, and sensors to be domestically developed by Korea. The South Korean military is reviewing whether to arm the FA-50 with a smaller version of the Taurus KEPD 350 missile to give it a stand-off engagement capability of 400 km (250 mi). European missile maker MBDA’s Meteor and ASRAAM medium and short-range air-to-air missiles are also reportedly available for integration on the FA-50.[61] Currently FA-50 is operational in South Korea, Indonesia, Iraq, Philippines, Thailand, Poland, and Malaysia. a. South Korea In 2011, the first squadron with the TA-50, the T-50’s light attack variant, became operational with the South Korean Air Forces. In 2014, the FA-50 was officially deployed by the South Korean Air Forces with President Park Geun-hye officially leading a ceremony during which a flight demonstration was held showing its capabilities. 20 FA-50s was assigned its own Air Force wing. 60 FA-50s were ordered by South Korean Air Forces. On October 9, 2014, an FA-50 successfully test fired an AGM-65 Maverick at a stationary target, a retired ship.[62] b. Indonesia Indonesia had been considering the T-50, along with four other aircraft, to replace its BAE Systems Hawk Mk 53 trainer and OV-10 Bronco attack aircraft. In August 2010, Indonesia announced that T-50, Yak-130 and L-159 were the remaining candidates for its requirement for 16 advanced jet trainers. In May 2011, Indonesia signed a US$400 million contract for 16 South Korean T-50s, designated T-50i. They feature weapons pylons and gun modules, enabling light attack capabilities. Deliveries began in September 2013 and the last aircraft were delivered in January 2014.[63] In July 2021, KAI confirmed that it has been awarded a US$240 million contract to supply another batch of six T-50s along with a support and logistics package. c. Iraq Iraq first publicly expressed interest in the T-50 trainers during the Korea–Iraq summit in Seoul on February 24, 2009. In December 2013, Iraq signed a contract for 24 T-50IQ aircraft, a FA-50 variant, plus additional equipment and pilot training over the next 20 years. The first batch of aircraft was delivered in March 2017, while the second batch arrived in May 2018. However, none were flown until June 2022, following the negotiation of a maintenance, logistics and training contract with KAI in November 2021.[64] d. Philippines The Philippine Air Force (PAF) chose 12 TA-50s to fulfill its requirement for a light attack and lead-in fighter trainer aircraft. In January 2013, state media reported that the FA-50 variant, not the TA-50 as previously reported, was selected for procurement. On March 28, 2014, the Department of National Defense in the Philippines signed a contract for 12 FA-50 fighters worth P18.9 billion (US$421.12 million).[65] Deliveries began in November 2015, all 12 aircraft were delivered by May 31, 2017. On January 26, 2017, two PAF FA-50PHs conducted a nighttime attack on terrorist hideouts in Butig, Lanao del Sur in Mindanao, the first combat sorties flown by these aircraft.[66] e. Thailand In September 2015, the Thai government chose Korean T-50TH for its air force over the Chinese Hongdu L-15 to replace its aging L-39 Albatros trainers. In July 2017, the Thai government approved the procurement of eight more aircrafts. Deliveries began in January 2018. The Royal Thai Air Force’s 2024 White Paper outlined a plan to acquire two more T-50TH aircraft in the fiscal year 2025. This acquisition will bring the total number of aircraft in squadron 401 to 16.[67] f. Poland On July 22, 2022, Polish Defense Minister Mariusz Blaszczak announced in a press interview that Poland would purchase 48 FA-50 fighter jets. KAI officially signed a contract with the Polish government on July 28 for 12 FA-50GF (Gap Filler) Block 10 aircraft and 36 FA-50PL (Polish version) Block 20 aircraft.[68] Blaszczak stated that KAI’s ability to quickly deliver aircraft was a decisive factor in the selection. The Russian invasion of Ukraine in 2022 required the Polish Air Force to urgently replace its remaining MiG-29 fighters and Su-22 attack aircraft. However, the United States was unable to supply additional F-16s in such a short timeframe. The FA-50PL contract was awarded for an aircraft version still under development. The FA-50PL is an improved version of the basic FA-50 designed to meet Poland’s specific requirements. Many of these requirements, including the sniper targeting pod, GBU-12 bombs, KGGB guided bombs, and aerial refueling probes, had already been tested and integrated onto the FA-50 platform prior to the Polish order. Other integration plans for the FA-50PL, such as the Phantom Strike AESA radar and Link-16 datalink, were considered challenging, primarily in terms of timing, but not technically impossible.[69] The FA-50PL will be integrated with modern air-to-air missiles such as the AIM-9X Sidewinder and AIM-120 AMRAAM. The FA-50 is a light fighter aircraft similar in size to the F-16. While the FA-50 has limited combat capabilities, it is not without the capabilities and can carry and use certain weapons.[70] The FA-50’s training role has been compared to the Italian M-346 AJT. While the M-346 can simulate a wider range of virtual weapons, it is more expensive to operate than the FA-50. Unlike the M-346, the FA-50 can also be used for training against live targets and has unique combat capabilities. g. Malaysia On February 24, 2023, KAI announced the signing of a $920 million deal with the Malaysian Ministry of Defense for the purchase of 18 FA-50 Block 20 for the Royal Malaysian Air Force’s light combat aircraft (LCA) and fighter in-lead trainer (FLIT) tender, which is intended to replace the Aermacchi MB-339 and Hawk Mk 108/208 currently in service.[71] The FA-50 was in competition with the Indian HAL Tejas, Italian Alenia Aermacchi M-346 Master, Turkish TAI Hürjet, Chinese Hongdu L-15, Russian Mikoyan MiG-35, and Sino-Pakistani JF-17 Thunder. On May 23, 2023, Malaysia signed a $920 million final contract with KAI to purchase 18 FA-50 Block 20s. KAI officials said Malaysia is willing to order 18 more FA-50s later.[72] 5. The KP-SAM Chiron (신궁) Figure 8: KP-SAM Chiron (source: Wikipedia) The KP-SAM Chiron (신궁) is a South Korean shoulder-launched surface-to-air missile manufactured by LIG Nex1. The KP-SAM Chiron was created to protect South Korean troops in the forward area, which started in 1995 under the direction of LIG Nex1. The KP-SAM began production in 2004 with extended trials in early 2005.[73] In late 2005, the KP-SAM entered service with the South Korean Army, after development for nearly 8 years. The KP-SAM was marketed in 2012 for India’s modernization of their VSHORAD system, competing with the RBS 70, the Starstreak, the Mistral-2 and the SA-24.[74] In 2014, Indonesia bought the KP-SAM for integration with the Skyshield 35 mm anti-aircraft system.[75] While the KP-SAM missile system externally resembles a French Mistral system, the entire missile systems including the seeker, control section, warhead and motor were developed and manufactured in South Korea. The missile features integrated IFF systems, night and adverse weather capabilities, a two-color (IR/UV) infrared seeker to aid in negating infrared countermeasures (IRCM) and a proximity-fuse warhead. During development tests, the missile scored a 90% hit ratio. According to Agency for Defense Development officials, the KP-SAM is superior to the American FIM-92 Stinger or the French Mistral in hit probability, price and portability. the KP-SAM had been involved in a missile test where its missile made impact on a low-flying target as high as 3.5 kilometers with a speed of 697.5 m/s (more than Mach 2.36) and a distance range of 7 km.[76] The KP-SAM Chirons are operational in South Korea, Indonesia, Romania. Indonesian Air Force acquired and operated Chirons since 2014 which was integrated with Oerlikon Skyshield 35 mm anti-aircraft gun system. Additional 2 Chirons were transferred to Indonesia according to a 2019 SIPRI small arms report.[77] First systems of 54 KP-SAMs were delivered to Romania in June 2024. The KP-SAM Chirons have been operational in South Korean army since 2005. IV. Conclusion This paper provided an overview of South Korean defense industry and its major military weapons that have been exported to European countries. The future for South Korean defense industry looks bright because of its advanced technology and fast delivery amid ongoing conflicts in Ukraine and Middle East. References [1] For more information, see "Abrams i Czarna Pantera kontra rosyjskie T-14 i T-90M". Default (in Polish). 2023-01-23. [2] Kim Moon-kyung (27 September 2014). “K2 전차 실전배치 후 첫 공개 -- 백발백중.” YTN. [3] For more detailed information, see Wikipedia https://en.wikipedia.org/wiki/K2_Black_Panther [4] “Altay National Main Battle Tank of Turkey”. Globalsecurity.org. 5 February 2022. [5] Jung Seong-taek (6 February 2015). 파워팩 논란 K2전차 "전력화 이상무"... 1.2km 떨어진 표적지에 '쾅쾅'. The Dong-A Ilbo. [6] Kim Yeon-suk (27 July 2022). 폴란드 "한국에 K2 1천대·FA-50 3개편대·K-9 600문 주문"(종합2보). [7] Shin Jun-myeong (27 August 2022). 폴란드와 K2 전차·K9 자주포 7조6천억 규모 계약 체결. YTN. [8] Kim Minseok (6 March 2022). 8년전 우크라 때리자 꽂혔다...세계최강 K9자주포 진화 이유 [김민석 배틀그라운드]. JoongAng Ilbo. [9] 한화그룹, 대우조선해양 인수로 국내 유일 육·해·공 전문 방산기업으로 '우뚝'. 뉴스투데이, Retrieved 28 September 2022. [10] For information, see https://english.defensearabia.com/dominating-the-battlefield-the-worlds-most-advanced-self-propelled-artillery-systems-2025/ [11] 한-터키 국방장관 방산협력 협의. Yonhap News Agency. 18 November 1999. [12] 국산 K9자주포 첫 수출...터키에 1조3000억 규모. The Dong-A Ilbo. 20 July 2001. [13] "[K9 34회·끝] 터키형 자주포 화력시범 대성공". Kookbang Ilbo. Archived from the original on 8 December 2022. [14] "L&T, Samsung join hands for India's Howitzer artillery". The Economic Times. 29 March 2012. [15] "K9 자주포 & 해외수출 Q&A". Defense Today. 7 May 2020. [16] "K-9 자주포 100문 인도 수출 확정...3500억 규모". Newsis. 21 April 2017. [17] Philip, Snehesh Alex (14 June 2021). "India sets eyes on Russian Sprut light tanks to counter China, gets rare access to trials". The Print. [18] Unnithan, Sandeep (23 January 2022). "What's behind a massive order for Made-in-India howitzers". India Today. [19] "CCS clears Rs 20,000 crore Make in India projects for Su-30 fighter jets, 100 K-9 howitzers - The Economic Times". m.economictimes.com. Retrieved 12 December 2024. [20] "Indian Army accelerates artillery modernisation with indigenous systems". India Today. 13 January 2025. [21] Com, Segye (20 February 2018). 손재일 한화지상방산 대표 "K-9, 해외마케팅 강화. Segye Ilbo. [22] 김귀근 (21 December 2017). 한화, K-9 자주포 24문 노르웨이에 수출 계약...2천452억원 규모(종합). Yonhap News Agency. [23] 박희준 (9 November 2022). 노르웨이, K9 4문·K10 8대 추가 수입...K9 수입량 총 28문. 더팩트 (in Korean). [24] Ruitenberg, Rudy (4 April 2025). "Norway to nearly double its K9 howitzer fleet for around $534 million". Defense News. [25] 한화테크윈, 폴란드에 K9 자주포 96대 수출(종합). Yonhap News Agency. 15 December 2016. [26] "Poland to sell 60 AHS Krab self-propelled howitzers to Ukraine". Ukrinform. 2 June 2022. [27] "한화에어로스페이스, 폴란드에 4000억원대 자주포 부품 공급". Hanwha Aerospace. 8 April 2025. [28] [단독] 한화디펜스, 폴란드 방산업체와 '1920억원 규모' 통신 시스템 공급계약 체결. www.theguru.co.kr (in Korean). 8 September 2022. [29] 한화 김동관 폴란드行...한국선 K9 자주포 조립 개시. Money Today (in Korean). 14 July 2023. [30] MBC경남 NEWS (31 October 2024). [K-방산] K9자주포, K2전차 동시 폴란드 수출 선적 현장 포착..전차 180대 자주포 1차 212문, 2차 152문도 이렇게 납품됩니다. [31] "K-9 자주포, 핀란드 수출 양해각서 체결". Daily NTN. 23 November 2016. [32] "K-9 자주포 핀란드 수출계약 체결, 48문 1.45억 유로 규모". Republic of Korea. 2 March 2017. [33] 박원석 (9 September 2024). 서울대 '2024 한-핀란드 이노베이션 포럼: 떠오르는 민/군 겸용 기술' 개최. Veritas Alpha (in Korean). [34] "Millog sai lisätilauksen Puolustusvoimilta K9-panssarihaupitsien käyttökuntoon saattamisesta". Millog (in Finnish). 4 March 2024. [35] 한화디펜스, 에스토니아에 K9 자주포 6대 추가 수출. Global Economics (in Korean). 25 October 2019. [36] 한화디펜스, 에스토니아 'K9 자주포' 현대화 사업 수주. www.theguru.co.kr (in Korean). 5 August 2021. [37] [단독] 한화에어로, 에스토니아와 'K9 자주포' 12문 추가 계약 ... 3600만 유로. Global Economics [Newdaily] (in Korean). 17 January 2023 [38] "K-9 자주포 호주 수출 유력". Seoul Shinmun. 4 August 2009. [39] Bergmann, Kym (June 2019). "Australian Army to receive massive boost in firepower with 155mm SPH purchase". Asia-Pacific Defence Reporter. 45 (5): 12–16. [40] Kuper, Stephen (2 September 2020). "Government announces request for tender for Army Protected Mobile Fires". Defence Connect. [41] "S. Korea to export 30 units of K-9 howitzer to Australia under W930b deal". The Korea Herald. 13 December 2021. [42] 호주, K9 자주포에 이스라엘산 전력 시스템 장착. 한스경제 (in Korean). 22 August 2023. [43] 강지용 (23 August 2024). 한화에어로스페이스, 호주 방산 생산기지 완공…국내 첫 해외 생산. 파이낸셜포스트 (in Korean). [44] Helou, Agnes (1 February 2022). "Why did Egypt choose to buy South Korea's K9 howitzer?" Defense News. [45] 남수현 (12 October 2021). 박병석, 이집트 대통령 만나 세일즈 외교. JoongAng Ilbo (in Korean). [46] 한화디펜스, 이집트와 K9 자주포 2조원 규모 수출 계약...'역대 최대 규모'. 파이낸셜투데이 (in Korean). 3 February 2022. [47] MBC경남 NEWS (1 July 2024). 국산 파워팩 자주포 탑재 첫 수출. [48] "Egypt produces the advanced Korean K9 Thunder engine locally". Arab Defense. 5 October 2024. [49] “루마니아, 한국의 K9자주포와 K2흑표전차 구매 희망”. Global Economics (in Korean). 27 September 2022. [50] Seo Ji-eun; Lee Hay-june (10 July 2024). "Korea to export K9 howitzers to Romania in nearly $1 billion deal". Korea JoongAng Daily. [51] "Vietnam outlines intent to procure K9 howitzer". Janes.com. Janes Information Services. 24 April 2024. [52] Park Soo-chan (30 May 2021). "사거리 최대 80km ... 축구장 3개 면적 '초토화' [한국의 무기 이야기]". Segye Ilbo. [53] For more information, see Park Soo-chan (22 October 2022) “하이마스보다 낫다” 전면전 공포에 각국, 천무 다연장로켓 '주목' [박수찬의 軍] | 세계일보 https://www.segye.com/newsView/20221021509773 [54] "South-Korean Chunmoo K239 MLRS rockets/missile launcher to enter in service with UAE". Army Recognition. 8 April 2021 [55] "Saudi military unveils Chun-Moo MRLs". Janes Information Services. 4 April 2023 [56] "K239 Chunmoo launchers will increase the deterrence potential of the Polish Army". Defence Industry News. 19 October 2022. [57] Gil So-yeon (20 August 2023). "'K-239 천무' 폴란드 상륙…예정보다 12일 지연". The guru. [58] South Korea plans to arm its FA-50 light combat fighters with new variant of the Taurus missiles, December 8, 2015, at the Wayback Machine – Airrecognition.com, [59] FA-50 Expanded Weapons and Avionics Archived January 12, 2016, at the Wayback Machine. [60] For more information, see https://www.airforce-technology.com/projects/fa-50-light-combat-aircraft-south-korea/ [61] "MBDA To Show New Munitions in Singapore". Archived from the original on February 7, 2018. [62] "The Chosun Ilbo (English Edition): Daily News from Korea – Korea Deploys Home-Grown FA-50 Fighter Jets". Archived from the original on February 8, 2015 [63] Waldron. "Indonesia receives first pair of T-50i advanced jet trainers." Archived December 3, 2013, at the Wayback Machine. [64] Iddon, Paul (June 27, 2022). "Korean T-50 Jets Could Enhance Iraq's Air Campaign Against ISIS". Forbes. [65] "KAI won a contract to export 12 FA-50s to the Phil" (Press release). Korea Aerospace Industries, LTD. (KAI). March 28, 2014. [66] "TV Patrol: DND, kinumpirma ang ugnayan ng ISIS at teroristang grupo sa Pilipinas". ABS-CBN News. January 26, 2017. [67] "Delivery of T-50TH trainer jets to Thailand begins". Seoul. Yonhap News Agency. January 8, 2018. [68] KAI signs US$3 bln deal with Poland to export 48 FA-50s". Yonhap News Agency. July 28, 2022. [69] "Świadoma tego wszystkiego polska strona wciąż parła do stworzenia lepszej wersji FA-50 PL, wpisując na listę życzeń trudne do zrealizowania wymogi.". The Furious Fafik. August 10, 2025. [70] "Korzystając z tego, że już utopiłem 9,90 zł w subskrypcję Onet Premium". The Furious Fafik. August 10, 2025. [71] Waldron, Greg (February 24, 2023). "FA-50 wins Malaysia's light combat aircraft competition". Flight Global. [72] Akhil Kadidal (May 23, 2023). "LIMA 2023: KAI says Malaysia keen to order 18 additional FA-50s". Janes Information Services. [73] Shin In-ho (5 November 2018). "[신궁 1회] 승리의 믿음 K-PSAM 신궁". Defense Media Agency. [74] "VSHORAD – India's Next Big Air Defense Program". April 2012. [75] "Indonesia might buy more Chiron MANPADS systems from South Korea | November 2018 Global Defense Security army news industry | Defense Security global news industry army 2018 | Archive News year". 13 November 2018. [76] "Chiron". www.deagel.com. Retrieved 2015-04-08. [77] For more information, see www.smallarmssurvey.org.

Diplomacy
President of Russia Vladimir Putin meeting with North Korean leader Kim Jong-un (2025)

Why Xi, Putin and Kim on One Stage Matters

by Roie Yellinek

Beijing’s Victory Day parade in Tiananmen Square was designed to dazzle: ranks of uniformed troops, formations of aircraft, and an arsenal of new systems meant to underscore China’s rapid military modernization. But the most consequential image was not a missile or a stealth jet. It was a tableau of three leaders—Xi Jinping at the center, flanked by Vladimir Putin and Kim Jong Un—watching the spectacle together. The scene, widely broadcast and photographed, turned a commemorative event into a geopolitical marker. It was less a snapshot than a signal: the public normalization of a deepening alignment among China, Russia, and North Korea, at a moment when Western democracies are struggling to sustain cohesion on core strategic questions. The parade itself offered the familiar mixture of hardware and narrative. Coverage highlighted the unveiling or public confirmation of advanced systems across domains: upgraded intercontinental missiles, new submarine-launched ballistic missiles, hypersonic and anti-ship capabilities, long-range bombers, early warning aircraft, and a broad stable of unmanned platforms, including undersea vehicles and “loyal wingman” drones. Chinese media presented these developments as evidence of a “world-class” People’s Liberation Army (PLA) moving beyond legacy constraints and into truly multi-domain operations, with information, space, and cyber now integrated alongside land, sea, and air. Independent reporting catalogued the breadth of systems and emphasized a narrative of credible deterrence and strategic depth rather than mere choreography. Yet the more instructive message was political. The presence of Putin and Kim, alongside other leaders, was not a mere ceremonial occurrence. Each leader arrived with clear incentives to be seen at Xi’s side, and each gained by lending visual weight to Beijing’s story. For Moscow, the image reinforced the claim that Russia is not isolated, that it retains powerful partners and is embedded in a wider non-Western coalition. For Pyongyang, the moment was even more significant: an opportunity to step out of diplomatic isolation and be recognized publicly as a member of a consequential strategic grouping. For Beijing, hosting both leaders signaled that China can convene and coordinate—projecting status, reassuring sympathetic governments, and unsettling adversaries by hinting at a tighter web of cooperation among U.S. rivals. The convergence behind the optics has been building for years, and could have happened only on Chinese soil. China and Russia have expanded their coordination across energy, defense, and diplomatic, even as they preserve maneuvering room on sensitive issues. North Korea’s accelerating exchanges with Russia, alongside growing political warmth with Beijing, provide a third leg to this emerging tripod. None of this amounts to a formal alliance with mutual defense obligations. But it does resemble a strategic alignment held together by shared interests: resisting a U.S.-led order, blunting sanctions pressure, reducing vulnerability to Western technology restrictions, and demonstrating that alternatives exist to dollar-centric finance and Western supply chains. The choreography on the rostrum did not create this alignment; it made it more legible and clear. Memory politics is a key component of that legibility. Beijing’s decision to anchor the parade in the commemoration of victory over Japan allows contemporary power projection to be cloaked in a unifying moral narrative. China increasingly leverages World War II memory in diplomacy—shaping a “memory war” that reframes the post-1945 order and what is seen from China as its rightful place within it. Russia’s long-standing use of the “Great Patriotic War” plays a parallel role, justifying current policies through selective historical continuity. North Korea’s revolutionary mythology fits easily into this narrative architecture. By standing together at an anniversary of anti-fascist victory, the three leaders signaled an ideational convergence that complements their material cooperation: a claim to moral legitimacy as guardians of an alternative international vision. The military dimension of the parade, while not the core of this argument, still matters. Displays of a maturing triad—land-based ICBMs, submarine-launched systems, and an air-launched nuclear component—aim to convey survivable second-strike capacity. The public presentation of hypersonic and anti-ship systems is meant to complicate adversary planning in the Western Pacific. The range of unmanned platforms suggests an intent to saturate domains with relatively low-cost, attritable assets, improving persistence and compressing the sensor-to-shooter loop. It is prudent to treat parades cautiously: not all showcased systems are fully operational or fielded at scale, and performance claims are difficult to validate. But as an indicator, the breadth and integration of platforms reflect a planning culture committed to joint operations and “intelligentized” warfare, where AI-enabled targeting and decision support are not theoretical ambitions but programmatic priorities What, then, does the image of Xi–Putin–Kim actually change? First, it clarifies expectations. Observers no longer need to infer the trajectory of this triangular relationship from scattered bilateral overtures. The three leaders have chosen to make their alignment visible. Visibility creates deterrent value, raising the perceived costs of coercing any one member, and it can also facilitate practical cooperation: intelligence sharing, diplomatic coordination at the UN and other fora, synchronized signaling during regional crises, and mutually reinforcing sanctions-evasion practices. Second, it complicates Western planning. Even if Beijing keeps caution around direct military assistance in Europe or the Korean Peninsula, diplomatic top-cover, economic buffering, and technology flows short of lethal aid can still alter the correlation of forces over time. Finally, it resonates across the Global South. Many governments seek strategic autonomy and resist being forced into binary choices. The parade’s optics supplied a ready-made narrative for those who argue that the international system is already multipolar and that non-Western coalitions can deliver security and development without Western tutelage. The contrast with Western coordination was strikingly evident. In the transatlantic community, support for Ukraine remains substantial; however, debates about resource levels, war aims, and timelines have intensified. In the Indo-Pacific, there is a growing alignment on deterring coercion in the Taiwan Strait and the South China Sea; however, national economic interests and differing risk tolerances result in uneven policies toward China. Across Europe and North America, electoral politics continue to inject volatility into foreign policy, complicating efforts to sustain long-term, bipartisan strategies. None of these frictions amounts to collapse, and there are genuine Western successes in coalition-building—from NATO enlargement to evolving minilateral formats in the Indo-Pacific. However, an analytically honest reading of the moment acknowledges that the authoritarian trio in Beijing has projected a unity of purpose that Western capitals currently struggle to match consistently. Three implications follow. The first is narrative competition. If Beijing, Moscow, and Pyongyang can turn a commemorative event into a global story about legitimacy and resilience, they will continue to use history as a strategic resource. The appropriate Western response is not to cede the narrative field but to invest in historically grounded, forward-looking messaging that explains the link between rules-based order and practical benefits—trade reliability, crisis management, and sovereignty protection—for diverse audiences. The second is coalition maintenance. Western policymakers will need to prioritize “coalition hygiene”: aligning export controls and investment screening where it matters most; building redundancy into critical supply chains; closing divergences in sanctions enforcement; and coordinating messaging so that tactical differences do not obscure strategic alignment. This requires political discipline more than new institutions. The third is theater integration. As the Beijing image suggested a cross-regional understanding among three adversarial capitals, allied planning must better account for cross-theater linkages—how actions in Europe affect deterrence in Asia, and vice versa—and ensure that resource allocations and industrial policies reflect genuinely global prioritization. It is important not to overstate. The emerging alignment among China, Russia, and North Korea is asymmetric and interest-based, not a tightly binding alliance. Beijing’s global economic integration imposes constraints that Moscow and Pyongyang do not share. Russia and North Korea each bring liabilities that China will manage carefully. Frictions—over technology, pricing, and regional equities—will persist. But the threshold crossed in Beijing is nonetheless meaningful. These governments judged that the benefits of public proximity now outweigh the costs. That judgment, once made, is difficult to reverse quickly; it tends to generate its own momentum through bureaucratic follow-through and sunk reputational costs. One image cannot rewrite the balance of power. It can, however, crystallize a trend and concentrate minds. The sight of Xi, Putin, and Kim standing together did exactly that. It captured an authoritarian convergence rooted in shared grievances and converging strategies, and it highlighted the challenge facing democracies that wish to preserve an open and stable order: maintaining the patience, unity, and policy discipline to act together. The test for the West is less whether it recognizes the signal—most capitals do—than whether it can convert recognition into sustained, collective action. If Beijing’s parade was a demonstration of choreography and intent, the appropriate answer is not a counter-parade, but the quieter work of alignment: aligning narratives with interests, interests with instruments, and instruments with partners. That work is not glamorous. It is, however, what turns a photo into policy.

Diplomacy
Kim and Trump shaking hands at the red carpet during the DPRK–USA Singapore Summit 2018

Democratic People's Republic of Korea and Trump 2.0: Another cycle with new attributes?

by Jesús de los Ángeles Aise Sotolongo

Abstract Never before had a sitting U.S. president managed relations with the DPRK as Donald Trump did, nor had any leader from Pyongyang sat face-to-face with a sitting U.S. president during their term as Kim Jong Un did. With Trump’s potential return, could there be another cycle of rapprochement? This paper seeks to address this question. The failure of the previous negotiating cycle, the DPRK’s advances in deterrence, and shifts in peninsular, regional, and global circumstances suggest that both leaders might bring new attributes to their interactions, potentially yielding surprising outcomes Introduction Except for a few moments of rapprochement, since the founding of the Democratic People’s Republic of Korea (DPRK), U.S. administrations have maneuvered with various forms and methods to destabilize its political and economic system. And since Pyongyang decided to develop nuclear weapons, Washington has labeled them illegal, demanding that they be abandoned, sponsoring United Nations Security Council (UNSC) sanctions, and implementing strict unilateral penalties. Meanwhile, successive DPRK leaders have persevered in a military doctrine based on the development of nuclear deterrence to guarantee national defense and security. Nevertheless, an unprecedented moment that broke with that persistent circumstance took place during Donald Trump’s previous term, when the relationship shifted from “fire and fury” to successive summits with Kim Jong Un in 2018 and 2019, in Singapore, Hanoi, and Panmunjom. The exchange of insults — Trump calling Kim “little rocket man” and Kim referring to Trump as a “dotard” — mutated into their approaching one another as “pen pals.” This surprising shift in U.S. policy toward the DPRK temporarily, though without the expected results, loosened the “Korean Gordian knot.” No U.S. president has managed relations with the DPRK as Donald Trump did, and in history, no North Korean leader had ever stood face-to-face, on equal footing, with a sitting U.S. president as Kim Jong Un did. Former President Barack Obama delivered several appealing speeches, but he seemed weak to many countries in East Asia, including U.S. allies and partners. For eight years, he did nothing about North Korea, calling it “strategic patience.” This eroded deterrence and allowed Pyongyang to advance its weapons and nuclear programs (Kausikan, 2025). For his part, at the beginning of his term, Joe Biden announced a “new strategy” toward the DPRK that never materialized; he pleaded for dialogue with Kim Jong Un while simultaneously increasing war threats; he grouped China, Russia, Iran, and North Korea into an ideological category that resurrected the Bush-era notion of the “axis of evil.” Biden’s simplistic binary categorization was not a policy. It ignored the differences in how these four countries define their interests, the degree of integration into the global economy, and the scope of their ambitions. These differences should be the starting point for U.S. diplomacy toward North Korea (Kausikan, 2025). The purpose of this article is to examine the circumstances, obstacles, and expectations for a new cycle of negotiations between Washington and Pyongyang with Donald Trump’s return to the U.S. presidency. Development This second term of President Donald Trump, more transactional and less predictable, seems to be raising expectations of reducing confrontational stress on the Korean Peninsula, and everything indicates that it brings with it a modification of Washington’s policy toward the DPRK. This is conditioned by the following radical changes in strategic circumstances compared to his previous term: DPRK’s nuclear and missile programs have undergone new and sophisticated advances. The DPRK has broken all ties and symbols of its relations with the Republic of Korea, which it classifies as its “principal and unchanging enemy.” Declaring that it has no intention of avoiding war, it has instructed the Korean People’s Army to accelerate preparations to “occupy, subdue, and completely reclaim” South Korea. There has been a tightening of ties between Pyongyang and Moscow. The two Kim Jong Un–Vladimir Putin summits, and Kim’s reference to Putin as his “closest comrade,” have shown the very high level of understanding and commitment between the parties. This is reflected in the DPRK’s unrestricted support for Russia’s special military operation in Ukraine and the signing of a Comprehensive Strategic Partnership Treaty, ratified by both legislatures, which includes a “mutual military assistance” clause. Meanwhile, Russia supports the DPRK diplomatically and economically, opposing multilateral and unilateral sanctions, and expanding its exports — essentially oil, raw materials, and food — as well as providing assistance in various fields. An emerging anti-U.S. and anti-Western axis has been taking shape among China, Russia, the DPRK, and Iran, which has become so significant that Washington and its allies describe it as a “new axis.” Within this interconnection, the DPRK holds important advantages in three strategic dimensions: economic, military, and diplomatic. The removal of President Yoon Suk Yeol over his irresponsible Martial Law is reinforcing the possibility of a new government led by the Democratic Party, with Lee Jae Myung as the clear favorite and, as of today, more likely to win. [1] This would open the door to a revival of North–South détente reminiscent of the Moon Jae In era. Trump’s foreign policy objectives are based on his “Make America Great Again” (MAGA) vision — now reinforced — which prioritizes U.S. strategic and economic interests over traditional alliance commitments (e.g., South Korea and Japan). At least these six factors seem to be significantly influencing Donald Trump’s decision to return to diplomacy with Kim Jong Un. While the DPRK occupies a relatively lower position on Trump’s list of priorities (with China and the Russia–Ukraine conflict taking precedence), and dialogue does not appear imminent, he has made it clear that he would like to reconnect with Kim Jong Un, seems willing to reopen negotiations, and is evaluating and discussing possible avenues of interaction that could lay the groundwork for a potential summit. It is said that Washington has been holding discreet conversations with Pyongyang, consulting external experts, and considering options to potentially restart dialogue. Meanwhile, Kim Jong Un — clearly more assertive and militarily more powerful in Washington’s eyes — has not publicly shown any willingness to renew his earlier offers related to denuclearization. In his own words: “the DPRK’s nuclearization is non-negotiable,” and he continues to exert pressure by showcasing the country’s missile–nuclear power. This has been illustrated unequivocally and consistently when Kim Jong Un visited nuclear material production facilities and the Nuclear Weapons Institute (NWI) in September 2024 and January 2025. For the DPRK, survival is an existential matter, and Pyongyang considers its nuclear–missile programs absolutely indispensable to secure it; there is nothing we can see that would persuade or force it to renounce them, as that would imply regime change. Everything indicates that the U.S. president is aware that his counterpart has not yet overcome the discouragement caused by the failure of the previous negotiation process, and for that reason, he is sending increasingly precise messages about the possibility of renewed talks, while boasting of his personal relationship with Kim Jong Un. At the same time, however, Pyongyang continues to issue contradictory signals of distrust toward Washington, in response to the confrontational attitude and the increasingly close military and intelligence ties with the DPRK’s immediate neighbors. It is worth noting that, this past February, the U.S. sent a nuclear submarine and several B-1B bombers to South Korea; U.S. military forces carried out multiple war exercises, including live-fire drills along the Demilitarized Zone, as well as heavy bombing maneuvers and even space force operations. In March, a large-scale scheduled exercise took place—70 percent larger than the one held the previous year. Nevertheless, it appears that by the end of 2024 the DPRK leadership decided to create a certain margin of diplomatic maneuver in anticipation of the incoming Trump administration. The coverage given to Trump’s inauguration on January 22 marked a shift from Pyongyang’s initial decision to remain silent on the outcome of the U.S. presidential elections in November. Moreover, this information was published in media outlets aimed at both domestic and international audiences, suggesting that North Korea has begun preparing its people for a new approach to Trump, when appropriate. Despite the steady flow of official statements and media commentary criticizing the United States, anti-American rhetoric has become somewhat less intense. Notably, the use of the expression “U.S. imperialists” has significantly decreased since then. This is also true of Kim’s public statements, which are considered the most authoritative in North Korea. For example, Kim’s speech at the Ministry of Defence on February 8 was the harshest and most detailed on the United States since his speech at a national defence exhibition in November 2024. However, unlike in many of his previous speeches at defence-related venues or events, he did not use derogatory terms such as “U.S. imperialists.” In fact, the last reported use by Kim of the term “U.S. imperialists” was in his defence exhibition speech last November. While there has been a rise in criticism of the United States since early February, as demonstrated by a series of “KCNA commentaries,” the broader trend since December still holds. The media have refrained from mentioning Trump by name, even when criticizing U.S. statements or actions. When issuing criticism, they have only referred to “the new U.S. administration,” “the current administration,” or the “U.S. ruler.” KCNA’s commentary on February 12 regarding the Gaza Strip, for example, blamed the “current U.S. administration” for the plan to take control of Gaza, omitting Trump’s name. All these articles were published in outlets aimed at domestic audiences, likely because they addressed foreign policy issues not directly relevant to North Korea. In contrast, the North Korean Ministry of Foreign Affairs’ criticism of Rubio’s statement about the “rogue state” was only published on external websites and not disseminated to the domestic audience. This allowed Pyongyang to register its rejection of the statement to external audiences while controlling the narrative about the Trump administration at home. Pyongyang also appears to be creating diplomatic space by attempting to influence Washington’s thinking while it awaits the new Trump administration’s policy toward North Korea. Its Ministry of Defence stated that the United States was “openly ignoring the DPRK’s security concerns” in reference to a U.S. nuclear-powered submarine that entered a South Korean port — an unusually direct accusation that the United States “ignores” its security concerns. If we consider the reverse side of this message (do not ignore North Korea’s security concerns), it is in fact a call from Pyongyang to the new administration to take its “security concerns” into account in its policy toward North Korea (Minyoung Lee, 2025). We can therefore see some Trumpist signals that could prove attractive to Pyongyang’s leadership: Repeated references by the U.S. president, describing the DPRK as a “nuclear power,” a concept recently reinforced when he qualified it as a “great nuclear power.” It is noteworthy that very recently U.S. Secretary of State Marco Rubio used the expression “nuclear-armed state” to refer to the DPRK, implicitly admitting Pyongyang’s possession of nuclear weapons. This comment suggests that the U.S. is unofficially considering the DPRK as a nuclear-armed nation, just as it does with India, Pakistan, and Israel. There are signs of a strategic shift aimed at overcoming deadlock and building trust by moving from denuclearization as the priority toward nuclear security. In other words, instead of demanding denuclearization, the focus would be on improving the safety of nuclear facilities — such as preventing accidents, leaks, or proliferation risks to third countries — through active bilateral technical cooperation that aligns reciprocal interests. The decisions that have shaken the peninsular geopolitical context and the Washington–Seoul alliance, when the U.S. classified South Korea as a “sensitive country,” as well as the so-called “strategic flexibility” that “modifies the mission of U.S. Forces Korea (USFK).” It is true that many officials in the Trump administration continue to officially reiterate their commitment to the DPRK’s denuclearization. However, statements by the U.S. president and his Secretary of State suggest that they recognize North Korea as a nuclear-armed state, generating a dual reaction: on one hand, surprise at an abrupt shift in policy toward the DPRK’s nuclearization, and on the other, uncertainty about what would happen to the security concerns of its allies — South Korea and Japan — as well as those of the U.S. itself. It should be noted that Trump stated — no less than in front of NATO Secretary General Mark Rutte — that he intended to re-establish relations with Kim Jong Un, that “he would do it,” that he has “…an excellent relationship with Kim Jong Un and we’ll see what happens.” And he declared: “But without a doubt, it is a nuclear power.” In that same setting, Trump also mentioned that India and Pakistan possessed nuclear weapons, effectively recognizing them as de facto nuclear-armed states, adding that Kim Jong Un “possesses numerous nuclear weapons” and that “others possess them as well.” Therefore, the statements by Trump and Rubio that tacitly recognize the DPRK as a “nuclear power” indicate a shift in Washington’s policy toward Pyongyang. It seems that interactions between the DPRK and the U.S. are moving toward a turning point: from denuclearization as the priority to nuclear security — a strategic change in U.S. policy aimed at overcoming deadlock and establishing trust, as a preliminary step toward a possible peace treaty. The repeated reference by U.S. President Donald Trump to the DPRK as a nuclear power could be an effort to draw Pyongyang back to the negotiating table, since North Korea seeks de facto recognition by the U.S. as a nuclear-armed state. Trump seems to be maintaining the perspective that the next negotiation should focus on reducing threats rather than denuclearization, despite his stated pursuit of “complete denuclearization.” Everything suggests that Trump is emphasizing the evident reality of Pyongyang’s progress in its nuclear program. It can also be considered that Trump’s remarks may imply that, as a result of the failure of his summit efforts to reach an agreement with Kim Jong Un to halt North Korea’s nuclear program, he may now be encouraging the consideration of an alternative strategy. However, Pyongyang is publicly and incessantly rejecting Trump’s attempts to restart dialogue; this stance has much to do with the recent history of U.S. negotiations and the president’s insufficient reciprocity to the concrete measures proposed by Kim Jong Un. In addition to the above, it is worth highlighting the latest developments that have shaken the peninsular geopolitical context and the Washington–Seoul alliance, which could, to some extent, influence a shift in Pyongyang’s perception and lead it to accept talks with Washington. We refer to the classification of South Korea as a “sensitive country” and the idea of “modifying the mission of U.S. Forces Korea (USFK).” The U.S. Department of Energy (DOE) designated South Korea as a “sensitive country,” a classification that significantly restricts collaboration in areas of advanced technology, including nuclear energy, artificial intelligence, quantum science, and advanced computing. This measure, which took effect on April 15, subjects South Korean researchers to stricter controls for collaborating or participating in research at DOE facilities or research centers and marks the first time South Korea has received such a designation from the U.S. government. In this regard, the “sensitive country” classification is based on unilateral criteria such as national security, nuclear non-proliferation, regional instability, threats to economic security, and alleged support for terrorism. This list, maintained by the DOE’s Office of Intelligence and Counterintelligence (OICI) along with the National Nuclear Security Administration (NNSA), already included countries such as India, Israel, Pakistan, Saudi Arabia, and Taiwan. Additionally, North Korea and Iran are designated as “state sponsors of terrorism,” while China and Russia are considered “countries of concern.” Such a designation suggests that the U.S. has growing concerns about the increasing voices among South Korean academics, politicians, and citizens who support the development of domestic nuclear weapons. Recent surveys reveal that popular support for nuclear armament has reached between 60% and 70%, apparently stemming from the belief that South Korea must take a bold defensive measure against North Korea’s growing nuclear threats. Although some who favor this idea believe that President Donald Trump’s skeptical view of alliances — focused on reducing the financial burden of protecting U.S. allies — might allow Seoul to develop nuclear weapons and thus reduce Washington’s responsibilities on the Korean Peninsula, the likelihood of this happening remains slim. However, the debate will not disappear in the short term due to growing skepticism about the so-called U.S. “extended deterrence,” which relies only on the deployment of strategic assets in the South of the peninsula. In the meantime, the DPRK is very likely to feel satisfied, as it sees its long-standing desire fulfilled: to witness cracks in the Washington–Seoul alliance. Another decision that would benefit the DPRK under the so-called “strategic flexibility” is the projection that the Trump administration may deploy U.S. troops stationed in South Korea in the event of a conflict in the Taiwan Strait, following the circulation of a purported Pentagon memorandum detailing its objective of deterring China from occupying Taiwan. As is well known, the primary mission of the 28,500 U.S. troops in South Korea is to deter threats from the DPRK. Should this decision materialize, their mission would then shift to countering China, considered a key component of the current administration’s foreign policy. This would create a security vacuum for Seoul and further strain its relations with Beijing. In such a circumstance, the Trump administration could pressure South Korea to handle conventional military actions from the DPRK independently, with the U.S. intervening only in the case of nuclear threats. Therefore, the best option for Seoul is to significantly strengthen its defensive capabilities, preparing for a scenario in which U.S. troops are not involved in a conventional war with the DPRK. The notion of “strategic flexibility” for the USFK reflects a shift in the main mission of U.S. forces abroad, moving from the defense of nations through their permanent presence to rapid deployment in other parts of the world where conflicts arise. As expected, unease is growing in Seoul in the face of Pyongyang’s increasing assertiveness, while the latter shows greater defiance. First, due to the possibility that Trump’s second administration may divert part of the USFK’s resources to a conflict in the Taiwan Strait, which would leave South Korea more vulnerable. Second, because South Korea is currently in open political turmoil over the impeachment of President Yoon Suk Yeol, and everything seems to indicate that the so-called South Korean democracy has failed to demonstrate itself as reliable in the eyes of Trump and his team. It is worth mentioning what Moon Chung In, emeritus professor at Yonsei University, stated in his most recent book, titled “Why American Diplomacy Fails”. The expert describes North Korea’s nuclear problem as an illustrative failure of U.S. diplomacy. His remarks are eloquent when he says: “In my conversations with members of the Trump administration during my trip to America, I had the impression that they firmly feel that Korea [South Korea] has been getting a free ride [on U.S. security] for far too long. South Korea’s excessive dependence on the United States could have serious consequences. The Korean government needs to develop autonomous strategic thinking. It needs to explore creative contingency plans for the worst-case scenario of a U.S. absence from the Korean peninsula.” We can see that Trump’s return is testing diplomatic limits and fueling a key question: Will Trump’s return to the White House open another cycle of engagement with Kim Jong Un, but with new attributes? The U.S. president always highlights his good personal relationship with the DPRK leader, something that, undoubtedly, could have a positive effect. But, as of today, Pyongyang seems to lack incentives to negotiate with Washington for four essential reasons: Military, it has achieved significant advances in its conventional weapons programs, strategic missiles, and nuclear arms, which provide it with a high deterrent capability. Economically, even under heavy sanctions, it is experiencing moments of economic expansion, it has made progress in import substitution, its local industry is reviving, and infrastructure construction is in full development. This makes negotiating the lifting of sanctions, in general and with Washington in particular, less urgent for Pyongyang. Its willingness to take political risks in exchange for economic benefits has clearly diminished. Geostrategically, its military alliance with Russia may generate new revenues, transfers of military technology, practical experience in modern warfare, and weaken the international sanctions regime. Geopolitically, the world is entering a period of dynamic geopolitical realignment that could eventually result in a multipolar order. The DPRK seems well positioned due to its ties with two key actors in the multipolarization process: Russia and China. At the same time, it observes the disruption of the traditional alliance structure with the United States and sees Washington distancing itself from its main allies, who are also DPRK’s adversaries in East Asia. Therefore, it appears willing to watch the evolution of events and their outcome. Donald Trump has stated that his administration has opened a line of communication with the DPRK and considered that, at some point, “something will probably happen,” emphasizing: “There is communication. I have a very good relationship with Kim Jong Un… I get along wonderfully with him… I think it is very important. It is a ‘great nuclear nation,’ and he is a ‘very smart guy.’ I got to know him very well… We will probably do something at some point.” It cannot be ruled out in this analysis that the DPRK is doubly leveraged. On one hand, with stable trade with China; on the other, with Russia’s reciprocity for its declared and materially sustained support for Russia’s special military operation in Ukraine. Therefore, additional incentives directly linked to DPRK’s comprehensive security must emerge. If the U.S. were to formally recognize the DPRK as a “de facto nuclear power,” which would represent a radical change in U.S. strategy, the prospect of future negotiations focused on threat reduction rather than denuclearization would open up. Despite Trump’s flattering words and the expectations they raise, it is not clear whether the U.S. president would be able to secure internal consensus within his administration to make such a decision without major obstacles, and, at the same time, manage to mitigate the suspicion and animosity of Kim Jong Un and the leadership around him. Conclusions The viability of negotiations between the U.S. and the DPRK under Trump’s new government remains uncertain, but it is possible that Trump will pursue a new “diplomatic victory” — similar to his 2018 Singapore summit with Kim Jong Un — through an alternative strategy that bilaterally satisfies Pyongyang’s aspiration to be recognized as a de facto nuclear state. However, it is unlikely that the international community would accept the U.S. unilaterally recognizing the DPRK as a nuclear-armed state. According to the Nuclear Non-Proliferation Treaty (NPT), a vote by the UN Security Council would be required, where the United Kingdom and France would surely veto it; and if it were brought to the General Assembly as a resolution, the number of opposing votes would probably be a majority. It is worth noting that the DPRK is doubly leveraged: it has stable trade with China and reciprocity from Russia for its material support, in addition to enjoying the diplomatic backing of both powers. Given its persistent distrust of Washington, it is to be expected that Pyongyang will maintain its close coordination with Beijing and Moscow and use it to strengthen its position vis-à-vis Washington. Thus, for the time being, it is not clear whether the U.S. president will be able to mitigate the suspicion and animosity of Kim Jong Un and the leadership surrounding him. Notes[1] Lee Jae Myung was elected as president of the Republic of Korea after the June 3rd, 2025 elections. References Aise Sotolongo, J. (2025). Return of Donald Trump: Continuity or change with the DPRK? World and New World Journal. https://worldnewworld.com/page/content.php?no=4082Chan-kyong, P. (2025, 12 de marzo). Kim Jong Un seeks negotiating leverage over Trump's new nuclear demands, analysts say. South China Morning Post. https://www.scmp.com/week-asia/politics/article/3296722/kim-jong-un-seeks-negotiating-leverage-over-trump-new-nuclear-demands-analystsChung-in, M. (2025, 15 de febrero). It's time Korea prepares itself for a peninsula without the US, expert advises. The Korea Herald. https://m.koreaherald.com/article/10455463Depetris, D. R. (2025, 9 de abril). Kim Jong Un is watching Trump's Ukraine diplomacy with interest. 38 North. https://www.38north.org/2025/04/kim-jong-un-iswatching-trump-ukranie-diplomacy-with-interestEFE. (2025a, 10 de enero). Pionyang dice que sus armas nucleares no son moneda de cambio para negociar. Swissinfo. https://www.swissinfo.ch/spa/pionyangdice-que-sus-armas-nucleares-no-son-moneda-decambio-para-negociar/88844909EFE. (2025b, 22 de marzo). Washington, Seúl y Tokio reafirman su compromiso para desnuclearizar a Corea del Norte. Swissinfo. https://www.swissinfo.ch/spa/washington%2C-se%C3%BAl-y-tokio-reafirman-su-compromiso-para-desnuclearizar-a-corea-del-norte/88881832EM Redacción. (2025, 12 de marzo). Estados Unidos califica a Corea del Sur como un "país sensible", limitando la cooperación en tecnología avanzada. Escenario Mundial. https://www.escenariomundial.com/2025/03/12/estados-unidos-califica-a-corea-del-sur-como-un-pais-sensible-limitando-la-cooperacion-en-tecnologia-avanzada/KBS WORLD. (2025, 5 de febrero). Seúl y Washington acuerdan limitar el término "desnuclearización" a Corea del Norte y no a toda la península. http://world.kbs.co.kr/service/news_view.htm?lang=s&Seq_Code=92262Kipiahov, O. (2025, 9 de febrero). Rossiian vstrechaiut s ulybkami posol RF v KNDR rasskazal kak zhivet severnaia koreia. Rossiyskaya Gazeta. https://rg.ru/2025/02/09/rossiian-vstrechaiut-s-ulybkami-posol-rf-v-kndr-rasskazal-kak-zhivet-severnaia-koreia.htmlKYODO NEWS. (2025, 18 de marzo). China eyes teaming up with Japan, South Korea to denuclearize N. Korea. https://english.kyodonews.net/news/2025/03/c5e26b7d5347-htmlLankov, A. (2025, 9 de febrero). Trump’s North Korea nuclear diplomacy: Between bad and worse. Asialink Diplomacy. https://asialink.unimelb.edu.au/diplomacy/article/trump-north-korea-diplomacy-between-bab-and-worse/McCartney, M. (2025, 17 de abril). Trump plans to disarm North Korea, but Kim wants more nuclear weapons. Newsweek. https://www.newsweek.com/us-north-korea-kim-jong-un-donald-trump-nuclear-weapons-2022678Minyoung Lee, R. (2025, 25 de abril). North Korea leaving maneuvering room with the US while preparing for long-term confrontation. 38 North. https://www.38north.org/2025/04/noth-koreas-acknowledgement-of-war-participation/Reddy, S. (2025, 9 de febrero). Russian envoy to DPRK says Moscow welcomes talks between US and North Korea. NK News. https://www.nknews.org/2025/02/russian-envoy-to-dprk-says-moscow-welcomestalks-between-us-and-north-korea/Sneider, D. (2025, 3 de abril). Is North Korea the next target of Trump’s search for a deal? Keia. https://wwwkeia.org/2025/04/north-korea-the-netx-target-oftrmps-search-for-a-deal/Sputnik. (2025, 31 de marzo). Trump valora su relación con líder norcoreano Kim Jong Un y planea un eventual contacto. El País CR. https://www.elpais.cr/2025/03/31/trump-valora-su-relacion-con-lidernorcoreano-kim-jong-un-y-planea-un-eventual-contacto/YONHAP. (2025, 8 de marzo). Trump appears to use 'nuclear power' label to lure N. Korea to dialogue: US expert. The Korea Times. https://m.koreatimes.co.kr/pages/article.asp?newsIdx=394200

Defense & Security
Kim Jong-un (2023-09-13) 01

Could North Korea be Persuaded to Renounce Chemical Weapons?

by Joel R. Keep

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском North Korea is not going to give up its nuclear weapons any time soon. Pyongyang’s other strategic deterrent—a massive arsenal of chemical weapons—may prove a more fruitful target for disarmament. The strategic fortunes of North Korea in 2025 are very different to that of 2017. When Donald J. Trump first assumed the presidential office in January of that year, Pyongyang was still in the process of building a viable nuclear weapons platform that could target the continental United States. The 2017 North Korean Nuclear Crisis prompted the Trump administration to launch a concerted attempt to coerce Pyongyang into “complete, verifiable and irreversible denuclearisation (CVID).” Washington’s efforts, involving a mixture of brinkmanship, hard bargaining—and explicit threats via the deployment of serious military assets—ultimately failed. Later that year, the North successfully tested an intercontinental ballistic missile capable of reaching the US homeland. The subsequent 2018 summit between Trump and Kim Jong-un, held in Singapore, and the 2019 summit in Hanoi, led nowhere. When Donald Trump assumed office for the second time, in January of 2025, he struck a very different tone on Pyongyang. North Korea was now, he acknowledged, an established nuclear power. Today, in addition to properly miniaturised nuclear warheads that can be fit on several delivery platforms, Kim’s regime oversees an arsenal that includes intercontinental ballistic missiles (ICBMs), intermediate range missiles (IRBMs), medium range ballistic missiles, submarine-launched ballistic missiles (SLBMs), and cruise missiles. Even if only a portion of these systems are fully functional, this still amounts to a serious military capability that cannot be forcibly removed, barring a massive conflagration. There is another, possibly more manageable class of strategic weapon that North Korea has been harbouring over several years—chemical weapons (CW). These are thought to include sulphur mustard, phosgene, Sarin and other nerve agents, some likely ranged against vulnerable South Korean population centres via artillery, missiles, and multiple rocket launchers. For several years now, South Korea’s Ministry of National Defense has estimated this stockpile comprises between 2,000 and 5,000 tonnes of CW agent. Pyongyang’s CW capability was demonstrated in grotesque miniature on 13 February 2017, when Kim Jong-un’s estranged half-brother, Kim Jong-nam, was killed with VX nerve agent at Kuala Lumpur International Airport. The public murder of Kim Jong-nam was conducted just as the 2017 North Korean Nuclear Crisis began, on the morning after Pyongyang successfully tested their Pukguksong-2 (KN-15) medium range ballistic missile over the Sea of Japan. Horrific as the VX murder was, it pales in comparison to the likely human impact of CW agents being used, in mass, against South Korean towns and cities in the event of a conflict. With North Korean nuclear weapons now an undeniable reality, those focused on arms limitation are left with few options in 2025. As such, Pyongyang’s chemical weapons portfolio might be worth putting on the negotiating table. North Korea still finds itself the target of sanctions and thus has an incentive to engage in disarmament talks of some kind. American officials, stung by the failure of 2017, might like to regain some clout with an achievable disarmament “win,” albeit of a non-nuclear kind. And of course, South Korea, home to the population that would suffer most from the North’s chemical weapons, would greatly benefit from seeing them verifiably destroyed.   There is a recent precedent for decommissioning an active chemical weapons program in the case of Syria. In (slightly) happier times, Russia and the United States pressured the embattled regime of Bashar al Assad into acceding to the 1993 Chemical Weapons Convention and forfeiting tonne-quantities of CW agent, after a series of government chemical attacks on civilians in 2013. Admittedly, the destruction of Syria’s chemical weapons stockpile was only a partial success, as evidenced by the resumption of nerve agent attacks in 2017, Assad’s uninterrupted “low level” use of improvised chlorine munitions, and recent revelations of a larger CW program than originally declared. And of course, facing as he was a determined insurgency and popular uprising, al Assad’s position in the 2010s was entirely different to that of Kim’s in 2025. However, if, as some have suggested, North Korea’s chemical weapons program was designed to fill a “deterrence gap” during the long march to acquire a viable nuclear weapons arsenal, Kim might be persuaded to engage in discussions on renouncing CW. This would be even more likely if Pyongyang has in fact already developed tactical nuclear weapons for shorter range use on the Peninsula, an objective Kim claimed to achieve in 2023. As a first step, perhaps a more fruitful model than Syria might be the 1992 India-Pakistan Agreement on Chemical Weapons, which saw the complete prohibition of CW on the subcontinent. Such an agreement could realistically be applied to the Korean Peninsula, where Seoul is no longer in possession of any chemical weapons as of 2008, and Pyongyang repeatedly claims not to have any CW themselves. Some may regard the idea of Pyongyang giving up any strategic weapon system as fanciful. Having signed a Comprehensive Strategic Partnership with Moscow in 2024 after committing thousands of troops to Russia’s war on Ukraine, North Korea’s degree of isolation within the wider geopolitical architecture has lessened, if only slightly. But while it may seem counter-intuitive, the Trump administration’s declared intention to re-establish closer ties with Vladimir Putin’s Russia might provide an opening for addressing the North Korea CW issue. This would require Moscow taking a more productive approach than it ultimately did in Syria, where an initial spirit of co-operation was later sullied by a determined Russian campaign to protect the Assad regime from accountability for the resumption of CW use, and other atrocities. Neither Washington, nor Moscow, can do much about North Korea’s nuclear arsenal today. Proposing negotiations on chemical weapons, however, might at least restart discussion on disarmament in one sphere, and could ultimately lead to progress on strategic weapons in general. Fully accounting for, and entirely destroying, the North’s chemical weapons would be a complex undertaking. Australia and the US at least have the technical capacity to assist in such an endeavour, should the political opportunity arise. Joel R. Keep is a PhD candidate at the University of New South Wales, where his doctoral work focuses on deterrence, non-proliferation and control of chemical and biological weapons. This article is published under a Creative Commons License and may be republished with attribution.