Subscribe to our weekly newsletters for free

Subscribe to an email

If you want to subscribe to World & New World Newsletter, please enter
your e-mail

Energy & Economics
To achieve sustainable environmental conservation, we must prioritize clean energy solutions to reduce our dependence on fossil fuels and promote a sustainable future for future generations.

Harnessing nuclear power for sustainable electricity generation and achieving zero emissions

by Mohamed Khaleel , Ziyodulla Yusupov , Sassi Rekik , Heybet Kılıç , Yasser F. Nassar , Hala J. El-Khozondar , Abdussalam Ali Ahmed

Note: some parts of the article have been excluded, if you want to go deep in the article please check  https://doi.org/10.1177/01445987251314504 for the complete version. Abstract Nuclear power plays a pivotal role in sustainable electricity generation and global net zero emissions, contributing significantly to this secure pathway. Nuclear power capacity is expected to double, escalating from 413 gigawatts (GW) in early 2022 to 812 GW by 2050 within the net zero emissions (NZE) paradigm. The global energy landscape is undergoing significant transformation as nations strive to transition to more sustainable energy systems. Amidst this shift, nuclear power has emerged as a crucial component in the pursuit of a sustainable energy transition. This study examines nuclear power's multifaceted role in shaping sustainable energy transition. It delves into nuclear energy's contributions toward decarbonization efforts, highlighting its capacity to provide low-carbon electricity and its potential role in mitigating climate change. Furthermore, the study explores the challenges and opportunities associated with integrating nuclear power into energy transition strategies, addressing issues such as safety, waste management, and public perception. In conclusion, the global nuclear power capacity is anticipated to reach approximately 530 GW by 2050, representing a substantial shortfall of 35% compared with the trajectory outlined in the NZE pathway. Under the NZE scenario, nuclear power demonstrates exceptional expansion, nearly doubling from 413 GW in early 2022 to 812 GW by 2050. Concurrently, the trajectory highlights a transformative shift in renewable energy investments, with annual expenditures surging from an average of US$325 billion during 2016–2020 to an impressive US$1.3 trillion between 2031 and 2035. These projections underscore the critical role of nuclear and renewable energy investments in achieving global sustainability and emission reduction goals. Introduction Global warming and greenhouse gas emissions pose some of the most pressing challenges of the 21st century. The combustion of fossil fuels for electricity generation is a major contributor to these issues, releasing billions of tons of carbon dioxide (CO2) into the atmosphere annually (Abbasi et al., 2020; Nassar et al., 2024; Rekik and El Alimi, 2024a). In this context, nuclear energy emerges as a critical component of the solution. Unlike fossil fuels, nuclear power generates electricity with minimal greenhouse gas emissions, offering a reliable and scalable alternative to bridge the gap between energy demand and decarbonization goals. It operates independently of weather conditions, providing consistent energy output and complementing the intermittency of renewable sources like wind and solar (Rekik and El Alimi, 2024b, 2024c). Furthermore, advancements in nuclear technologies, including small modular reactors (SMRs) and generation IV reactors, have addressed historical concerns related to safety, waste management, and cost-effectiveness (Lau and Tsai, 2023). In 2022, global investment in low-emission fuels will maintain a robust growth trajectory, reaching a sum of US$13 billion. A significant portion of this investment was allocated toward liquid biofuels, totaling US$9.4 billion, and biogas, amounting to US$2.7 billion. It is important to emphasize that liquid biofuels constituted approximately 80% of the overall investment surge observed in 2022, with investments in biogas contributing 4% of the total. The residual portion of the investment was directed toward low-emission hydrogen production, which attained a sum of US$1.2 billion in 2022, representing an almost fourfold increase compared to the figures recorded in 2021 (Khaleel et al., 2024).Nuclear power is a pivotal component of low-carbon energy, which significantly contributes to the realization of a low-carbon economy and establishment of a green energy grid (Arvanitidis et al., 2023; El Hafdaoui et al., 2024; Fragkos et al., 2021). According to current data, 442 nuclear power reactors are operational worldwide, collectively generating 393 gigawatts (GW) of electricity, thereby furnishing a consistent and dependable source of low-carbon power (Mathew, 2022). Nuclear electricity constitutes approximately 11% of the total global electricity generation, representing a substantial portion of the global low-carbon electricity production (Alam et al., 2019). Recent advancements have enhanced the affordability and appeal of nuclear power as an alternative source of energy. These advancements encompass progress in large reactor technologies, the emergence of novel approaches such as advanced fuel utilization and SMRs, engineering breakthroughs facilitating the extension of operational lifespans for existing reactors, and innovations in materials science and improved waste management practices (Kröger et al., 2020; Zhan et al., 2021). Fast breeder reactor technology has transitioned into a commercial realm, offering benefits beyond electricity generation by enabling the production of surplus fuel and enhancing the efficiency of nuclear waste incineration, surpassing the capabilities of existing commercial reactor technologies (Lau and Tsai, 2023). Nuclear power plays a substantial role within a secure global trajectory toward achieving net zero emissions (NZE) (Addo et al., 2023; Dafnomilis et al., 2023). Nuclear power capacity experiences a twofold increase, progressing from 413 GW at the outset of 2022 to 812 GW by 2050 within the NZE paradigm. It is apparent that the annual additions to nuclear capacity peaked at 27 GW per year during the 2030s, surpassing the levels observed in the preceding decade. Despite these advancements, the global proportion of nuclear power within the overall electricity generation portfolio has experienced a marginal decline, settling at 8% (Murphy et al., 2023; Ruhnau et al., 2023). Emerging and developing economies (EMDEs) substantially dominate global growth, constituting over 90% of the aggregate, with China poised to ascend as a preeminent nuclear power producer prior to 2030. Concurrently, advanced economies collectively witness a 10% augmentation in nuclear power capacity as retirements are counterbalanced by the commissioning of new facilities, predominantly observed in nations such as the United States, France, the United Kingdom, and Canada (Bórawski et al., 2024). Furthermore, annual global investment in nuclear power has experienced a notable escalation, soaring from US$30 billion throughout the 2010s to surpass US$100 billion by 2030, maintaining a robust trajectory above US$80 billion by 2050 (IEA, 2022). In 2022, global nuclear power capacity experienced a modest increase of approximately 1.5 GW, reflecting a marginal year-on-year growth of 0.3%. This expansion was primarily driven by new capacity additions that surpassed the retirement of an over 6 GW of existing capacity (Fernández-Arias et al., 2023; Mendelevitch et al., 2018). EMDEs accounted for approximately 60% of the new capacity additions, underscoring their increasing significance in the global nuclear energy landscape. Conversely, more than half of the retirements were observed in advanced economies, including Belgium, the United Kingdom, and the United States. Table 1 shows the nuclear power capacity by region in the NZE from 2018 to 2030.   In alignment with the Net Zero Scenario, it is imperative for the global nuclear capacity to undergo an expansion averaging approximately 15 GW per annum, constituting a growth rate slightly exceeding 3% annually, until 2030. This strategic augmentation is crucial for sustaining the contribution of the nuclear sector to electricity generation, maintaining its share at approximately 10% (Liu et al., 2023). Such an expansion necessitates concerted efforts in both advanced economies and EMDEs. Furthermore, prioritizing the extension of operational lifetimes of existing nuclear facilities within G7 member states would not only fortify the existing low-emission infrastructure, but also facilitate the integration of new nuclear capacity, thereby augmenting the overall nuclear energy portfolio. [...] The significant contribution of nuclear power to sustainable energy transitions is underscored by its multifaceted role in addressing the pressing challenges of climate change and energy security (Asif et al., 2024). As nations worldwide endeavor to shift toward greener energy systems, nuclear power has emerged as a critical pillar of the decarbonization journey. Its ability to provide low-carbon electricity, mitigate climate change impacts by 2050, and enhance energy security highlights its pivotal importance in the broader context of sustainable energy transitions (Bhattacharyya et al., 2023; NEA, 2015). Thus, to fully realize its potential, challenges such as safety, waste management, and public perception must be addressed effectively. By leveraging robust policy frameworks, technological advancements, and international collaboration, nuclear power is poised to play a vital role in shaping the future of sustainable energy transitions on a global scale. Furthermore, the dynamic landscape of nuclear power development is evident in the significant influence exerted by EMDEs, particularly China, which is expected to emerge as a leading nuclear power producer by 2030 (Fälth et al., 2021; Nkosi and Dikgang, 2021). Concurrently, advanced economies are witnessing notable expansions in nuclear power capacity driven by the commissioning of new facilities to offset retirements (Budnitz et al., 2018). This trend is further reinforced by a notable surge in annual global investment in nuclear power, underscoring the sustained commitment to nuclear energy's pivotal role in sustainable energy transitions in the foreseeable future (IEA, 2019). The primary objective of this article is to explore the strategic role of nuclear power in advancing global sustainability goals and achieving zero emissions. The objective is structured around the following key agendas: •Nuclear power: prominence and green electricity source•Nuclear's role in achieving net zero by 2050•Nuclear power's significance in power system adequacySpecific technologies for sustainability in nuclear energy production•Investment in nuclear power•Addressing policy implications This comprehensive analysis aims to provide actionable insights into harnessing nuclear power for sustainable electricity generation and its pivotal role in achieving global zero-emission targets. Data and methodology This article conducts an in-depth analysis of the role of nuclear power in achieving sustainable electricity generation and supporting NZE targets. The article also addresses the potential of nuclear energy as a prominent and environmentally favorable electricity source, examining nuclear power's contribution toward the net zero by 2050 goal, its critical importance in ensuring power system adequacy, investment imperatives, and the broader policy implications.  [...] Nuclear power: prominence and green electricity source In 2020, nuclear power will constitute approximately 10% of the global electricity generation portfolio. This proportion, which had previously stood at 18% during the late 1990s, has experienced a decline; nonetheless, nuclear energy retains its status as the second-largest provider of low-emission electricity, trailing only hydroelectricity, and serves as the primary source within advanced economies. Despite the substantial proliferation of wind and solar PV technologies, nuclear electricity production in 2020 surpassed the aggregate output of these renewable sources. As of 2021, the global cumulative installed nuclear capacity has reached 413 GW, with 270 GW of this total being installed in advanced economies (Guidi et al., 2023; Halkos and Zisiadou, 2023; Pan et al., 2023; Zhang et al., 2022). Nuclear power generation during this period amounted to 2653 TWh, positioning it as the second largest source of electricity generation after hydropower, which generated 4275 TWh, as depicted in Figure 1.   In addition to its significant role in power generation, nuclear energy plays a crucial role in mitigating carbon dioxide (CO2) emissions. Since the 1970s, nuclear power has helped avoid the global release of approximately 66 gigatons (Gt) of CO2 globally, as shown in Figure 2.   Without the contribution of nuclear power, cumulative emissions from electricity generation would have increased by approximately 20%, whereas total energy-related emissions would have increased by 6% over this period (Wagner, 2021). Advanced economies accounted for more than 85% of these avoided emissions, with the European Union accounting for 20 Gt and the United States for 24 Gt, representing over 40% and 25% of total electricity generation emissions, respectively. In the absence of nuclear power, Japan would have experienced an estimated 25% increase in emissions from electricity generation, whereas Korea and Canada would have seen an increase of approximately 50%. Nuclear's role in achieving net zero by 2050 Nuclear energy has emerged as a pivotal low-emission technology within the trajectory toward achieving NZE (Pioro et al., 2019). In addition, it serves as a complementary force, bolstering the accelerated expansion of renewables, thereby facilitating the reduction of emissions from the global electricity sector to net zero by 2040 (Krūmiņš and Kļaviņš, 2023; Islam et al., 2024). Beyond its intrinsic contribution to fostering a low-emission electricity supply, nuclear power is significant as a dispatchable generating asset, fortifying supply security through its provision of system adequacy and flexibility. Furthermore, it is instrumental in furnishing heat for district heating networks and in selecting industrial facilities. Despite this, the prospective role of nuclear energy hinges significantly on the deliberations and determinations of policymakers and industry stakeholders concerning the pace of new reactor construction initiatives and the continued operational lifespan of existing nuclear facilities (Li et al., 2016; Li et al., 2015).In terms of the NZE trajectory, the global nuclear power capacity exhibits a remarkable surge, nearly doubling from 413 GW at the onset of 2022 to 812 GW by 2050 (Price et al., 2023; Utami et al., 2022). This augmentation primarily stems from the vigorous initiation of new construction endeavors, which effectively counterbalance the gradual decommissioning of numerous extant plants. Such an escalation constitutes a pronounced acceleration in comparison to the preceding three decades, characterized by a mere 15% increment in capacity, equivalent to approximately 60 GW (Haneklaus et al., 2023; Obekpa and Alola, 2023; Sadiq et al., 2023). Figure 3 demonstrates the nuclear power capacity within each country/region under the NZE by 2050 scenario.   The expected growth in nuclear power capacity far exceeds the path outlined by the current policies and legal frameworks. According to the Stated Policies Scenario (STEPS), the nuclear capacity is projected to reach approximately 530 GW by 2050, which is 35% lower than that of the NZE pathway (Espín et al., 2023; Nicolau et al., 2023; Nnabuife et al., 2023; Wang et al., 2023). Without a significant shift from recent nuclear power development trends, achieving NZE would require a limited reliance on a smaller range of low-emission technologies. This could compromise energy security and lead to higher total investment costs, resulting in increased electricity prices for consumers. Table 2 shows the average annual capacity addition for global nuclear power in NZE from 1981 to 2030.   In 2022, the global deployment of new nuclear power capacity witnessed a notable upsurge, with 7.9 GW added, representing a substantial 40% increase compared to the preceding year (Ho et al., 2019). It is worth bearing in mind that China spearheaded this expansion by completing the construction of two reactors, maintaining its streak for consecutive years as the leading contributor to global nuclear power capacity augmentation. It is noteworthy that the projects were successfully completed in various other nations, including Finland, Korea, Pakistan, and the United Arab Emirates. Additionally, significant strides were made in the initiation of new construction endeavors, with the commencement of construction activities on five reactors in China, two reactors in Egypt, and one reactor in Turkey (Hickey et al., 2021). Nuclear power's significance in power system adequacy Nuclear power facilities have persistently underpinned the dependability of power systems, thereby bolstering the adequacy of the system. Across diverse national contexts, nuclear power plants have historically maintained operational readiness, manifesting availability rates consistently exceeding 90%, thereby demonstrating their reliability in power generation. Given that a substantial proportion of nuclear power capacity directly contributes to system adequacy metrics, its significance in fortifying system reliability and adequacy significantly outweighs its proportional contribution to the total power capacity (Orikpete and Ewim, 2024; Frilingou et al., 2023; Raj, 2023; Ragosa et al., 2024). The contribution of nuclear power to system adequacy is demonstrated by the consistent trajectory of its share within the aggregate dispatchable power capacity, hovering at around 8% between 2021 and 2050 within the NZE framework (IEA, 2022; OIES, 2024). Dispatchable electricity sources have historically constituted the primary mechanism for ensuring system adequacy, a trend that endures within the NZE paradigm, especially as electricity systems undergo evolution marked by an escalating reliance on variable solar photovoltaic (PV) and wind energy sources (Marzouk, 2024; Moon et al., 2024; Wisnubroto et al., 2023). It is indisputable that unabated fossil fuel resources predominantly dominate dispatchable capacity; however, their prominence clearly diminishes, declining by a quarter by 2030 within the NZE framework and experiencing a precipitous decline thereafter. Unabated coal-fired power, currently the most substantial dispatchable source, anticipates a decline exceeding 40% in operational capacity by 2030 and approaches a state of negligible contribution by the early 2040s. Conversely, the unabated natural gas-fired power capacity exhibits a sustained level of stability until 2030, primarily driven by the necessity to offset the diminishing role of coal; nonetheless, it subsequently undergoes a rapid descent throughout the 2030s. Oil, constituting a comparatively minor contributor, experiences rapid phasing out across most regions, except for remote locales, within the delineated scenario (Makarov et al., 2023; Ren et al., 2024). Figure 4 highlights the global capacity of dispatchable power categorized by category in the scenario of achieving NZE by 2050.   In this context, fossil fuels equipped with Carbon Capture, Utilization, and Storage (CCUS) technology have emerged as notable contributors to bolstering system adequacy. Yet, nuclear power remains a steady contributor to the power system flexibility. In advanced economies, the proportion of hour-to-hour flexibility is projected to increase from approximately 2% to 5% by 2050. Similarly, in EMDEs, this ratio is anticipated to increase from 1% to 3% over the same temporal span (Jenkins et al., 2018). It is worth highlighting that in France, where nuclear power fulfills the lion's share of electricity generation requisites, flexibility has been ingrained within reactor designs (Ho et al., 2019). This feature enables certain plants to swiftly modulate their output to align with the fluctuating electricity supply and demand, operating in a load-following mode (Chen, 2024; Jin and Bae, 2023; Kanugrahan and Hakam, 2023). Although many nations have not habitually engaged nuclear power in such operational dynamics, a considerable number of reactors are capable of performing load-following operations with minimal or no requisite technical adaptations (Caciuffo et al., 2020). Figure 5 demonstrates the hour-to-hour power system flexibility based on the source and regional grouping in the NZE by the 2050 scenario.   Innovation holds promise in enhancing the flexibility of nuclear power. Advanced technological advancements, such as SMRs, can facilitate nuclear reactors to adjust their electricity output with greater ease, as illustrated in Figure 6 (Ho et al., 2019; Lee, 2024; Wisnubroto et al., 2023). Moreover, these technologies offer the prospect of enabling reactors to transition toward generating heat or producing hydrogen either independently or concurrently with electricity generation. Initiatives are underway to disseminate information to policymakers and planners regarding the potential cost advantages associated with enhancing nuclear power flexibility.  Figure 6 demonstrates the nuclear system augmented by wind turbines for trigeneration.   Investment in nuclear power The renaissance of nuclear power within the NZE trajectory necessitates a substantial surge in investment in the coming decades. This surge is envisaged to encompass the construction of new nuclear reactors and extension of operational lifespans for existing facilities. Within this scenario, annual global investment in nuclear power is poised to escalate to exceed US$100 billion during the initial half of the 2030s within the NZE framework, surpassing the threefold average investment level of US$30 billion recorded during the 2010s (IEA, 2022). Subsequently, investment levels are expected to gradually decline as the imperative for dispatchable low emissions generating capacity diminishes, tapering to approximately US$70 billion by the latter half of the 2040s (Kharitonov and Semenova, 2023; Zimmermann and Keles, 2023). Over the period spanning from 2021 to 2050, the allocation of investment toward nuclear power constitutes a fraction representing less than 10% of the aggregate investment dedicated to low-emission sources of electricity (IEA, 2022). By comparison, within this framework, the annual investment in renewable energy experiences a notable escalation, escalating from an average of US$325 billion during the interval from 2016 to 2020 to US$1.3 trillion during the period 2031–2035 (EEDP, 2023; Rekik and El Alimi, 2024d). It is worth noting that the latter consideration elucidates the rationale behind the disproportionate allocation of investment toward advanced economies in later decades. China, for instance, requires an annual expenditure averaging close to US$20 billion on nuclear infrastructure by 2050, representing a nearly twofold increase compared to the average observed during the 2010s (Aghahosseini et al., 2023; Vujić et al., 2012). Conversely, other EMDEs witness a tripling of investment, reaching approximately US$25 billion per year, on average. In contrast to advanced economies, the imperative for investment in these nations is more pronounced in the period leading up to 2035 (Bhattacharyya et al., 2023; Khaleel et al., 2024). Thus, nuclear energy, despite its advantages as a low-carbon energy source, faces notable challenges. High capital costs and long deployment timelines, driven by complex construction and regulatory requirements, often hinder its adoption. The management of radioactive waste remains a costly and contentious issue, while safety concerns, shaped by historical incidents, continue to influence public perception. Additionally, reliance on uranium, with its geographically concentrated supply, raises geopolitical and environmental concerns. Nuclear power also competes with the rapidly advancing and cost-effective renewable energy sector, while decommissioning aging plants poses long-term financial and logistical burdens. Addressing these limitations through advanced technologies, public engagement, and international collaboration is crucial for enhancing nuclear energy's role in sustainable energy transitions. Technologies for sustainability in nuclear energy production The pursuit of sustainability in nuclear energy production has been supported by advancements in innovative technologies that enhance efficiency, safety, and environmental compatibility (Aktekin et al., 2024; Ali et al., 2024; Zheng et al., 2024; Khan et al., 2017). These technologies are crucial for positioning nuclear power as a key contributor to clean and sustainable energy transitions. Below are some of the most impactful technologies in this domain: Advanced nuclear reactors: Small modular reactors (SMRs): SMRs are compact, scalable, and safer than traditional large-scale reactors. Their modular design allows for deployment in remote locations, making them suitable for decentralized energy systems. Generation IV reactors: These reactors incorporate advanced cooling systems and fuel cycles to improve efficiency, safety, and waste reduction. Examples include sodium-cooled fast reactors and gas-cooled fast reactors. Thorium-based reactors: Thorium fuel cycle reactors use thorium-232 as an alternative to uranium, offering a more abundant and sustainable fuel source. Thorium reactors produce less nuclear waste and have a lower risk of proliferation. Fusion energy: Although still in the experimental stage, nuclear fusion promises to be a game-changing technology. Fusion produces minimal radioactive waste and harnesses abundant fuel sources like deuterium and tritium, making it a virtually limitless and clean energy solution. Molten salt reactors (MSRs): MSRs use liquid fuels or coolants, such as molten salts, which operate at lower pressures and higher temperatures. These reactors are inherently safer and have the capability to utilize a variety of fuel types, including spent nuclear fuel and thorium. Reactor safety enhancements: Passive safety systems: These systems enhance reactor safety by using natural forces like gravity, natural convection, or condensation to cool the reactor core without human intervention. Digital twin technologies: Digital simulations and monitoring of reactor systems allow for predictive maintenance and real-time safety management. Nuclear waste management technologies Fast reactors: These reactors can recycle spent fuel, reducing the volume and radioactivity of nuclear waste. Deep geological repositories: Advances in geotechnical engineering have improved the safety of long-term waste storage in deep geological formations. Hybrid nuclear-renewable systems: Combining nuclear power with renewable energy sources like wind and solar can optimize energy production and grid stability. Hybrid systems leverage the reliability of nuclear energy with the intermittency of renewables for a balanced, low-carbon energy mix. Artificial intelligence (AI) and machine learning: AI and machine learning technologies are being deployed to enhance reactor performance, optimize fuel usage, and improve operational safety. Predictive analytics also play a critical role in maintenance and risk assessment. Fuel advancements: High-assay low-enriched uranium (HALEU): HALEU fuels enable reactors to operate more efficiently and reduce waste. Accident-tolerant fuels (ATFs): These are designed to withstand extreme conditions, reducing the likelihood of core damage during accidents. Integrated energy systems: Nuclear reactors are increasingly being used for purposes beyond electricity generation, such as hydrogen production, district heating, and desalination. The integration of digital technologies, including AI and machine learning, coupled with fuel advancements like HALEU and accident-tolerant fuels, highlights the continuous evolution of the nuclear sector. These innovations not only enhance efficiency and safety but also expand the applications of nuclear energy beyond electricity generation to include hydrogen production, desalination, and district heating. Despite these technological advancements, the sustainable deployment of nuclear energy requires robust policy frameworks, increased investments, and public acceptance. Addressing these challenges is critical to unlocking the full potential of nuclear power in achieving global energy security and NZE by 2050. [...] Discussion and policy implications Nuclear power presents a compelling case as a sustainable energy source owing to its several key advantages. Its high-energy density allows for substantial electricity generation from minimal fuel, enabling continuous operation, unlike intermittent renewables, such as solar and wind (Rekik and El Alimi, 2023a, 2023b), thus contributing significantly to grid stability (Cramer et al., 2023). Furthermore, nuclear power is a crucial tool for emissions reduction, boasting virtually no greenhouse gas emissions during operation. Although lifecycle emissions associated with fuel processing and plant construction exist, they remain comparable to or lower than those of renewables. Several studies have reported on the energy production capabilities of nuclear power and its contribution to reducing greenhouse gas emissions compared to other energy sources. A key aspect of these analyses is quantifying the potential contribution of nuclear power to reducing greenhouse gas emissions and achieving net zero targets. However, direct comparison of reported data can be challenging due to variations in model assumptions, geographic scope, and time horizons.  [...] From another perspective, radioactive waste generation poses a significant challenge to nuclear power because of its long-term hazardous nature. This necessitates meticulous management and disposal strategies to mitigate potential social impacts. These impacts arise from perceived or actual risks to human health and the environment, fueling public anxiety and opposition to nuclear power, which is often expressed through protests and legal action (Kyne and Bolin, 2016; Nilsuwankosit, 2017; Ram Mohan and Namboodhiry, 2020). Additionally, communities near waste sites can experience stigmatization, resulting in decreased property values and social isolation. The persistent nature of radioactive waste also raises intergenerational equity issues, burdening future generations with its management (Deng et al., 2020; Mason-Renton and Luginaah, 2019). Thus, transparent communication and stakeholder engagement are crucial for building public trust and ensuring responsible radioactive waste management (Dungan et al., 2021; Sančanin and Penjišević, 2023). There are various radioactive waste disposal pathways, each with unique social and technical considerations. Deep geological disposal, an internationally favored method for high-level waste disposal, involves burying waste deep underground for long-term isolation. Interim storage provides a secure temporary holding until a permanent solution is obtained (Chapman, 1992; Grambow, 2022). Reprocessing spent nuclear fuel recovers reusable materials, reducing high-level waste but creating lower-level waste. Advanced reactor technologies aim to minimize waste and improve safety, potentially converting long-lived isotopes into shorter-lived isotopes (Dixon et al., 2020; Englert and Pistner, 2023). Choosing a disposal pathway requires careful evaluation of factors, such as waste type and volume, geology, feasibility, cost, and public acceptance, often leading to a combined approach. Ongoing community engagement and addressing concerns are essential to safe and responsible waste management. Effective management and disposal of this waste require advanced technological solutions, robust regulatory frameworks, and long-term planning to ensure safety and sustainability (Abdelsalam et al., 2024; Rekik and El Alimi, 2024a), Moreover, its relatively small land footprint compared to other energy sources, especially solar and wind farms, minimizes the ecosystem impact and makes it a sustainable option in densely populated areas (Poinssot et al., 2016; Sadiq et al., 2022). Nuclear power also enhances energy security by reducing reliance on fossil fuels, which is particularly valuable in countries with limited domestic resources (Cramer et al., 2023; Ichord Jr., 2022). Additionally, nuclear power exhibits synergy with other clean technologies, providing a stable baseload complementing variable renewables and facilitating hydrogen production for diverse energy applications (Abdelsalam et al., 2024; El-Emam and Subki, 2021; Salam and Khan, 2018; Rekik, 2024; Rekik and El Alimi, 2024e). Finally, ongoing advancements in reactor design, such as SMRs, promise enhanced safety, reduced costs, and greater deployment flexibility, further solidifying the role of nuclear power in decarbonizing the electricity sector (Aunedi et al., 2023). Supportive policies and international cooperation are essential for fully realizing the potential of nuclear energy. Streamlined licensing and regulatory frameworks are crucial for reducing deployment time and costs and ensuring that safety standards are met efficiently (Gungor and Sari, 2022; Jewell et al., 2019). Furthermore, incentivizing investments through financial tools such as tax credits and loan guarantees can attract private capital and create a level-playing field for nuclear power (Decker and Rauhut, 2021; Nian and Hari, 2017; Zimmermann and Keles, 2023). Addressing public perception through education and engagement is equally important for building trust and acceptance. Moreover, international cooperation is vital in several respects. The disposal of radioactive waste remains a complex issue, requiring careful long-term management and securing geological repositories to prevent environmental contamination owing to the long half-life of some isotopes. Furthermore, while modern reactors incorporate advanced safety features, the potential for accidents such as Chernobyl and Fukushima remains a concern because of the potential for widespread radiation release and long-term health consequences (Denning and Mubayi, 2016; Högberg, 2013; Wheatley et al., 2016). Moreover, the high initial costs associated with design, construction, and licensing present significant barriers to new nuclear projects, particularly in developing countries. In addition, the risk of nuclear proliferation, in which technology intended for peaceful energy production is diverted for weapons development, necessitates stringent international safeguards, as highlighted by following reference. Public perception also plays a crucial role because negative opinions and concerns about safety and waste disposal can create opposition to new projects. Finally, the decommissioning of nuclear plants at the end of their operational life is a complex and costly process that requires substantial resources and expertise to dismantle reactors and manage radioactive materials. [...] Conclusion The role of nuclear power in sustainable energy transition is multifaceted and significant. As nations worldwide strive to transition toward more environmentally friendly energy systems, nuclear power has emerged as a crucial component of the decarbonization journey. Its capacity to provide low-carbon electricity, mitigate climate change, and contribute to energy security underscores its importance in the broader context of sustainable energy transitions. Despite this, challenges such as safety, waste management, and public perception must be addressed to fully harness the potential of nuclear power to achieve sustainability goals. By leveraging policy frameworks, technological innovations, and international cooperation, nuclear power can play a vital role in shaping the future of sustainable energy transition on a global scale. In this context, EMDEs exert a substantial influence on global growth, collectively accounting for over 90% of the aggregate, with China positioned to emerge as the foremost nuclear power producer before 2030. Concurrently, advanced economies have witnessed a notable 10% increase in their nuclear power capacity. This augmentation is attributed to the commissioning of new facilities, which offset retirements, manifestly observed in nations such as the United States, France, the United Kingdom, and Canada. Furthermore, there is a marked escalation in annual global investment in nuclear power, surging from US$30 billion throughout the 2010s to surpass US$100 billion by 2030. This upward trajectory is robustly sustained, remaining above US$80 billion by 2050. In conclusion, the remarkable decline in the levelized cost of electricity (LCOE) for solar PV and wind power over the past decade has positioned renewable energy as a cost-competitive and viable alternative to fossil fuels in many regions. The over 80% reduction in LCOE for utility-scale solar PV from 2010 to 2022 exemplifies the economic feasibility of renewables. Concurrently, the steady growth in renewable energy capacity, spearheaded by solar and wind energy, underscores their critical role in the global energy transition. With renewable electricity capacity surpassing 3300 GW in 2023 and accounting for over one-third of the global power mix, renewable energy is undeniably at the forefront of efforts to achieve a sustainable, low-carbon energy future. Declaration of conflicting interestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.FundingThe authors received no financial support for the research, authorship, and/or publication of this article.ORCID iDSassi Rekik https://orcid.org/0000-0001-5224-4152Supplemental materialSupplemental material for this article is available online.ReferencesAbbasi K, Jiao Z, Shahbaz M, et al. (2020) Asymmetric impact of renewable and non-renewable energy on economic growth in Pakistan: New evidence from a nonlinear analysis. Energy Exploration & Exploitation 38(5): 1946–1967. Crossref. Web of Science.Abdelsalam E, Almomani F, Azzam A, et al. (2024) Synergistic energy solutions: Solar chimney and nuclear power plant integration for sustainable green hydrogen, electricity, and water production. Process Safety and Environmental Protection 186: 756–772. Crossref. Web of Science.Addo EK, Kabo-bah AT, Diawuo FA, et al. (2023) The role of nuclear energy in reducing greenhouse gas (GHG) emissions and energy security: A systematic review. International Journal of Energy Research 2023(1): 8823507.Aghahosseini A, Solomon AA, Breyer C, et al. (2023) Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Applied Energy 331: 120401. Crossref. Web of Science.Ake SC, Arango FO, Ruiz RSG (2024) Possible paths for Mexico’s electricity system in the clean energy transition. Utilities Policy 87: 101716. Crossref. Web of Science.Aktekin M, Genç MS, Azgın ST, et al. (2024) Assessment of techno-economic analyzes of grid-connected nuclear and PV/wind/battery/hydrogen renewable hybrid system for sustainable and clean energy production in Mersin-Türkiye. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B 190: 340–353. Crossref. Web of Science.Alam F, Sarkar R, Chowdhury H (2019) Nuclear power plants in emerging economies and human resource development: A review. Energy Procedia 160: 3–10. Crossref.Ali M, Samour A, Soomro SA, et al. (2024) A step towards a sustainable environment in top-10 nuclear energy consumer countries: The role of financial globalization and nuclear energy. Nuclear Engineering and Technology 103142: 103142.Arvanitidis AI, Agarwal V, Alamaniotis M (2023) Nuclear-driven integrated energy systems: A state-of-the-art review. Energies 16(11): 4293. Crossref. Web of Science.Asif M, Solomon B, Adulugba C (2024) Prospects of nuclear power in a sustainable energy transition. Arabian Journal for Science and Engineering: 1–11. Crossref. Web of Science.Aunedi M, Al Kindi AA, Pantaleo AM, et al. (2023) System-driven design of flexible nuclear power plant configurations with thermal energy storage. Energy Conversion and Management 291: 117257. Crossref. Web of Science.Bhattacharya S, Banerjee R, Ramadesigan V, et al. (2024) Bending the emission curve—The role of renewables and nuclear power in achieving a net-zero power system in India. Renewable and Sustainable Energy Reviews 189: 113954. Crossref. Web of Science.Bhattacharyya R, El-Emam RS, Khalid F (2023) Climate action for the shipping industry: Some perspectives on the role of nuclear power in maritime decarbonization. E-Prime-Advances in Electrical Engineering, Electronics and Energy 4(2023): 100132. Crossref.Bórawski P, Bełdycka-Bórawska A, Klepacki B, et al. (2024) Changes in gross nuclear electricity production in the European union. Energies 17(14): 3554. Crossref. Web of Science.Budnitz RJ, Rogner HH, Shihab-Eldin A (2018) Expansion of nuclear power technology to new countries–SMRs, safety culture issues, and the need for an improved international safety regime. Energy Policy 119: 535–544. Crossref. Web of Science.Caciuffo R, Fazio C, Guet C (2020) Generation-IV nuclear reactor systems. EPJ Web of Conferences 246: 00011. Crossref.Cai ZB, Li ZY, Yin MG, et al. (2020) A review of fretting study on nuclear power equipment. Tribology International 144: 106095. Crossref. Web of Science.Chapman NA (1992) Natural radioactivity and radioactive waste disposal. Journal of Volcanology and Geothermal Research 50(1–2): 197–206. Crossref. Web of Science.Chen CC (2024) Comparative impacts of energy sources on environmental quality: A five-decade analysis of Germany’s Energiewende. Energy Reports 11: 3550–3561. Crossref. Web of Science.Cramer C, Lacivita B, Laws J, et al. (2023) What will it take for nuclear power to meet the climate challenge? Columbus, Atlanta, Boston, Houston, Toronto: McKinsey & Company. https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/what-will-it-take-for-nuclear-power-to-meet-the-climate-challenge.Dafnomilis I, den Elzen M, Van Vuuren DP (2023) Achieving net-zero emissions targets: An analysis of long- term scenarios using an integrated assessment model. Annals of the New York Academy of Sciences 1522(1): 98–108. Crossref. PubMed. Web of Science.Decker D, Rauhut K (2021) Incentivizing good governance beyond regulatory minimums: The civil nuclear sector. Journal of Critical Infrastructure Policy 2(2): 19–43. Crossref.Deng D, Zhang L, Dong M, et al. (2020) Radioactive waste: A review. Water Environment Research: A Research Publication of the Water Environment Federation 92(10): 1818–1825. Crossref. PubMed. Web of Science.Denning R, Mubayi V (2016) Insights into the societal risk of nuclear power plant accidents. Risk Analysis 37(1): 160–172. Crossref. PubMed. Web of Science.Dixon B, Hoffman E, Feng B, et al. (2020) Reassessing methods to close the nuclear fuel cycle. Annals of Nuclear Energy 147: 107652. Crossref. Web of Science.Dungan K, Gregg RWH, Morris K, et al. (2021) Assessment of the disposability of radioactive waste inventories for a range of nuclear fuel cycles: Inventory and evolution over time. Energy 221: 119826. Crossref. Web of Science.El-Emam RS, Subki MH (2021) Small modular reactors for nuclear-renewable synergies: Prospects and impediments. International Journal of Energy Research 45(11): 16995–17004. Crossref. Web of Science.El Hafdaoui H, Khallaayoun A, Ouazzani K. (2024) Long-term low carbon strategy of Morocco: A review of future scenarios and energy measures. Results in Engineering 21: 101724. Crossref. Web of Science.Englert M, Pistner C (2023) Technological readiness of alternative reactor concepts. Safety of Nuclear Waste Disposal 2: 209–209. Crossref.Espín J, Estrada S, Benítez D, et al. (2023) A hybrid sliding mode controller approach for level control in the nuclear power plant steam generators. Alexandria Engineering Journal 64: 627–644. Crossref. Web of Science.European Economy Discussion Papers (EEDP) (2023) The development of renewable energy in the electricity market. Available at: https://economy-finance.ec.europa.eu/ecfin-publications_en.Fälth HE, Atsmon D, Reichenberg L, et al. (2021) MENA compared to Europe: The influence of land use, nuclear power, and transmission expansion on renewable electricity system costs. Energy Strategy Reviews 33: 100590. Crossref. Web of Science.Fernández-Arias P, Vergara D, Antón-Sancho Á (2023) Global review of international nuclear waste management. Energies 16(17): 6215. Crossref. Web of Science.Fragkos P, Van Soest HL, Schaeffer R, et al. (2021) Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States. Energy 216: 119385. Crossref. Web of Science.Frilingou N, Xexakis G, Koasidis K, et al. (2023) Navigating through an energy crisis: Challenges and progress towards electricity decarbonisation, reliability, and affordability in Italy. Energy Research & Social Science 96: 102934. Crossref. Web of Science.Grambow B (2022) Mini review of research requirements for radioactive waste management including disposal. Frontiers in Nuclear Engineering 1: 1052428. Crossref.Guidi G, Violante AC, De Iuliis S (2023) Environmental impact of electricity generation technologies: A comparison between conventional, nuclear, and renewable technologies. Energies 16(23): 7847. Crossref. PubMed. Web of Science.Gungor G, Sari R (2022) Nuclear power and climate policy integration in developed and developing countries. Renewable and Sustainable Energy Reviews 169: 112839. Crossref. Web of Science.Halkos G, Zisiadou A (2023) Energy crisis risk mitigation through nuclear power and RES as alternative solutions towards self-sufficiency. Journal of Risk and Financial Management 16(1): 45. Crossref. Web of Science.Haneklaus N, Qvist S, Gładysz P, et al. (2023) Why coal-fired power plants should get nuclear-ready. Energy 280: 128169. Crossref. Web of Science.Hickey SM, Malkawi S, Khalil A (2021) Nuclear power in the Middle East: Financing and geopolitics in the state nuclear power programs of Turkey, Egypt, Jordan and the United Arab Emirates. Energy Research & Social Science 74: 101961. Crossref. Web of Science.Ho M, Obbard E, Burr PA, et al. (2019) A review on the development of nuclear power reactors. Energy Procedia 160: 459–466. Crossref.Högberg L (2013) Root causes and impacts of severe accidents at large nuclear power plants. AMBIO 42(3): 267–284. Crossref. PubMed. Web of Science.Hunter CA, Penev MM, Reznicek EP, et al. (2021) Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids. Joule 5(8): 2077–2101. Crossref. Web of Science.Ichord RF Jr (2022) Nuclear energy and global energy security in the new tripolar world order. Available at: https://www.atlanticcouncil.org/blogs/energysource/nuclear-energy-and-global-energy-security-in-the-new-tripolar-world-order/.International Energy Agency (IEA) (2019) Nuclear power in a clean energy system, OECD Publishing, Paris. Available at: Crossref.International Energy Agency (IEA) (2022) Nuclear power and secure energy transitions, IEA, Paris. Available at: https://www.iea.org/reports/nuclearpower-and-secure-energy-transitions.Islam MM, Shahbaz M, Samargandi N (2024) The nexus between Russian uranium exports and US nuclear-energy consumption: Do the spillover effects of geopolitical risks matter? Energy 293: 130481. Crossref. Web of Science.Islam MS, Roy S, Alfee SL, et al. (2023) An empirical study of the risk-benefit perceptions between the nuclear and non-nuclear groups towards the nuclear power plant in Bangladesh. Nuclear Engineering and Technology 55(12): 4617–4627. Crossref. Web of Science.Jenkins JD, Zhou Z, Ponciroli R, et al. (2018) The benefits of nuclear flexibility in power system operations with renewable energy. Applied Energy 222: 872–884. Crossref. Web of Science.Jewell J, Ates SA (2015) Introducing nuclear power in Turkey: A historic state strategy and future prospects. Energy Research & Social Science 10: 273–282. Crossref. Web of Science.Jewell J, Vetier M, Garcia-Cabrera D (2019) The international technological nuclear cooperation landscape: A new dataset and network analysis. Energy Policy 128: 838–852. Crossref. Web of Science.Jin B, Bae Y (2023) Prospective research trend analysis on zero-energy building (ZEB): An artificial intelligence approach. Sustainability 15(18): 13577. Crossref. Web of Science.Kanugrahan SP, Hakam DF (2023) Long-term scenarios of Indonesia power sector to achieve nationally determined contribution (NDC) 2060. Energies 16(12): 4719. Crossref. Web of Science.Khaleel M, Yusupov Z, Guneser M, et al. (2024) Towards hydrogen sector investments for achieving sustainable electricity generation. Journal of Solar Energy and Sustainable Development 13(1): 71–96. Crossref.Khalid F, Bicer Y (2019) Energy and exergy analyses of a hybrid small modular reactor and wind turbine system for trigeneration. Energy Science & Engineering 7(6): 2336–2350. Crossref. Web of Science.Khan SU-D, Khan SU-D, Haider S, et al. (2017) Development and techno-economic analysis of small modular nuclear reactor and desalination system across Middle East and North Africa region. Desalination 406: 51–59. Crossref. Web of Science.Kharitonov VV, Semenova DY (2023) On the economic efficiency of nuclear power digitization under the conditions of global energy transition. Studies on Russian Economic Development 34(2): 221–230. Crossref.Kim P, Yasmine H, Yim MS, et al. (2024) Challenges in nuclear energy adoption: Why nuclear energy newcomer countries put nuclear power programs on hold? Nuclear Engineering and Technology 56(4): 1234–1243. Crossref. Web of Science.Kosai S, Unesaki H (2024) Nuclear power, resilience, and energy security under a vulnerability-based approach. Cleaner Energy Systems 7: 100107. Crossref.Kröger W, Sornette D, Ayoub A (2020) Towards safer and more sustainable ways for exploiting nuclear power. World Journal of Nuclear Science and Technology 10(3): 91–115. Crossref.Krūmiņš J, Kļaviņš M (2023) Investigating the potential of nuclear energy in achieving a carbon-free energy future. Energies 16(9): 3612. Crossref. Web of Science.Kwasi S, Cilliers J, Yeboua K, et al. (2025) A developing country’s perspective on race to sustainability: Sustainability for countries with weak economic performance—Case study: Egypt’s challenge and opportunities to 2050. In: The Sustainability Handbook, Volume 1. Elsevier, 511–569. Crossref.Kyne D, Bolin B (2016) Emerging environmental justice issues in nuclear power and radioactive contamination. International Journal of Environmental Research and Public Health 13: 00. Crossref. Web of Science.Lau HC, Tsai SC (2023) Global decarbonization: Current status and what it will take to achieve net zero by 2050. Energies 16(23): 7800. Crossref. Web of Science.Lee JI (2024) Review of small modular reactors: Challenges in safety and economy to success. Korean Journal of Chemical Engineering 41: 2761–2780. Crossref. Web of Science.Li N, Brossard D, Anderson AA, et al. (2016) How do policymakers and think tank stakeholders prioritize the risks of the nuclear fuel cycle? A semantic network analysis. Journal of Risk Research 21(5): 599–621. Crossref. Web of Science.Li N, Brossard D, Su LYF, et al. (2015) Policy decision-making, public involvement and nuclear energy: What do expert stakeholders think and why? Journal of Responsible Innovation 2(3): 266–279. Crossref.Lin B, Xie Y (2022) Analysis on operational efficiency and its influencing factors of China’s nuclear power plants. Energy 261: 125211. Crossref. Web of Science.Liu L, Guo H, Dai L, et al. (2023) The role of nuclear energy in the carbon neutrality goal. Progress in Nuclear Energy 162: 104772. Crossref. Web of Science.Makarov V, Kaplin M, Perov M, et al. (2023) Optimization of coal products supply for the power industry and the country’s economy. In: Studies in Systems, Decision and Control, Cham: Springer Nature Switzerland, pp.87–98.Markard J, Bento N, Kittner N, et al. (2020) Destined for decline? Examining nuclear energy from a technological innovation systems perspective Energy Research & Social Science 67: 101512. Crossref. Web of Science.Marzouk OA (2024) Expectations for the role of hydrogen and its derivatives in different sectors through analysis of the four energy scenarios: IEA-STEPS, IEA-NZE, IRENA- PES, and IRENA-1.5°C. Energies 17(3): 46. Crossref. Web of Science.Mason-Renton SA, Luginaah I (2019) Lasting impacts and perceived inequities: Community reappraisal of the siting of a regional biosolids processing facility in rural Ontario. Journal of Risk Research 22(8): 1044–1061. Crossref. Web of Science.Mathew MD (2022) Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy 143: 104080. Crossref. Web of Science.Mendelevitch R, Kemfert C, Oei PY, et al. (2018) The electricity mix in the European low-carbon transformation: Coal, nuclear, and renewables. In: Energiewende “Made in Germany”. Cham: Springer International Publishing, 241–282. Crossref.Moon HS, Song YH, Lee JW, et al. (2024) Implementation cost of net zero electricity system: Analysis based on Korean national target. Energy Policy 188: 114095. Crossref. Web of Science.Murphy C, Cole W, Bistline J, et al. (2023) Nuclear power’s future role in a decarbonized US electricity system (No. NREL/TP-6A20-84451). National Renewable Energy Laboratory (NREL), Golden, CO (United States).Nassar YF, El-Khozondar HJ, El-Osta W, et al. (2024) Carbon footprint and energy life cycle assessment of wind energy industry in Libya. Energy Conversion and Management 300: 117846. Crossref. Web of Science.Nian V, Hari MP (2017) Incentivizing the adoption of nuclear and renewable energy in Southeast Asia. Energy Procedia 105: 3683–3689. Crossref.Nicolau AS, Cabral Pinheiro VH, Schirru R, et al. (2023) Deep neural networks for estimation of temperature values for thermal ageing evaluation of nuclear power plant equipment. Progress in Nuclear Energy 156: 104542. Crossref. Web of Science.Nilsuwankosit S (2017) Report on feasibility study for radiation alarming data collection from containers at Laem Cha Bang International Sea Port, Thailand. Volume 4: Nuclear Safety, Security, Non-Proliferation and Cyber Security; Risk Management. American Society of Mechanical Engineers.Nkosi NP, Dikgang J (2021) South African attitudes about nuclear power: The case of the nuclear energy expansion. International Journal of Energy Economics and Policy 11(5): 138–146. Crossref.Nnabuife SG, Oko E, Kuang B, et al. (2023) The prospects of hydrogen in achieving net zero emissions by 2050: A critical review. Sustainable Chemistry for Climate Action 2: 100024. Crossref. Web of Science.Nuclear Energy Agency (NEA) (2015) Nuclear energy: Combating climate change. Available at: https://www.oecd-nea.org/jcms/pl_14914.Obekpa HO, Alola AA (2023) Asymmetric response of energy efficiency to research and development spending in renewables and nuclear energy usage in the United States. Progress in Nuclear Energy 156: 104522. Crossref. Web of Science.Orikpete OF, Ewim DRE (2024) Interplay of human factors and safety culture in nuclear safety for enhanced organisational and individual performance: A comprehensive review. Nuclear Engineering and Design 416: 112797. Crossref. Web of Science.Oxford Institute for Energy Studies (OIES) (2024) Nuclear energy in the global energy landscape: Advancing sustainability and ensuring energy security? Available at: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2024/02/OEF-139-.pdf.Pan B, Adebayo TS, Ibrahim RL, et al. (2023) Does nuclear energy consumption mitigate carbon emissions in leading countries by nuclear power consumption? Evidence from quantile causality approach Energy & Environment 34(7): 2521–2543. Crossref. Web of Science.Pinho BE, Oliva JDJR, Maia Y L (2024) An approach for evaluation of the spent nuclear fuel management strategy for Brazilian nuclear power plants based on multi-criteria decision-making methodology. Nuclear Engineering and Design 424: 113186. Crossref. Web of Science.Pioro I, Duffey RB, Kirillov PL, et al. (2019) Current status and future developments in nuclear-power industry of the world. Journal of Nuclear Engineering and Radiation Science 5(2): 024001. Crossref.Poinssot C, Bourg S, Boullis B (2016) Improving the nuclear energy sustainability by decreasing its environmental footprint. Guidelines from life cycle assessment simulations. Progress in Nuclear Energy 92: 234–241. Crossref. Web of Science.Price J, Keppo I, Dodds PE (2023) The role of new nuclear power in the UK’s net-zero emissions energy system. Energy 262: 125450. Crossref. Web of Science.Ragosa G, Watson J, Grubb M (2024) The political economy of electricity system resource adequacy and renewable energy integration: A comparative study of Britain, Italy and California. Energy Research & Social Science 107: 103335. Crossref. PubMed. Web of Science.Raj AX (2023) Human reliability design—an approach for nuclear power plants in India. In: Risk, Reliability and Safety Engineering. Singapore: Springer Nature Singapore, 167–186.Ram Mohan MP, Namboodhiry SK (2020) An exploration of public risk perception and governmental engagement of nuclear energy in India. Journal of Public Affairs 20(3): e2086. Crossref. Web of Science.Rekik S (2024) Optimizing green hydrogen strategies in Tunisia: A combined SWOT-MCDM approach. Scientific African 26: e02438. Crossref. Web of Science.Rekik S, El Alimi S (2023a) Land suitability mapping for large-scale solar PV farms in Tunisia using GIS-based MCDM approach. In: 2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE), pp.1–5: IEEE.Rekik S, El Alimi S (2023b) Wind site selection using GIS and MCDM approach under fuzzy environment: A case of Tunisia. In: 2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE), pp.1–5: IEEE.Rekik S, El Alimi S (2024a) Prioritizing sustainable renewable energy systems in Tunisia: An integrated approach using hybrid multi-criteria decision analysis. Energy Exploration & Exploitation 42(3): 1047–1076. Crossref. Web of Science.Rekik S, El Alimi S (2024b) Unlocking renewable energy potential: A case study of solar and wind site selection in the Kasserine region, central-western Tunisia. Energy Science & Engineering 12(3): 771–792. Crossref. Web of Science.Rekik S, El Alimi S (2024c) A spatial perspective on renewable energy optimization: Case study of southern Tunisia using GIS and multicriteria decision making. Energy Exploration & Exploitation 42(1): 265–291. Crossref. Web of Science.Rekik S, El Alimi S (2024d) A GIS based MCDM modelling approach for evaluating large-scale solar PV installation in Tunisia. Energy Reports 11: 580–596. Crossref. Web of Science.Rekik S, El Alimi S (2024e) A spatial ranking of optimal sites for solar-driven green hydrogen production using GIS and multi-criteria decision-making approach: A case of Tunisia. Energy Exploration & Exploitation 42(6): 2150–2190. Crossref. Web of Science.Ren Y, Li G, Wang H, et al. (2024) China’s zero-coal power system future. International Journal of Electrical Power & Energy Systems 156: 109748. Crossref. Web of Science.Ruhnau O, Stiewe C, Muessel J, et al. (2023) Natural gas savings in Germany during the 2022 energy crisis. Nature Energy 8(6): 621–628. Crossref. Web of Science.Sadiq M, Shinwari R, Wen F, et al. (2023) Do globalization and nuclear energy intensify the environmental costs in top nuclear energy-consuming countries? Progress in Nuclear Energy 156: 104533. Crossref. Web of Science.Sadiq M, Wen F, Dagestani AA (2022) Environmental footprint impacts of nuclear energy consumption: The role of environmental technology and globalization in ten largest ecological footprint countries. Nuclear Engineering and Technology 54(10): 3672–3681. Crossref. Web of Science.Salam MA, Khan SA (2018) Transition towards sustainable energy production – A review of the progress for solar energy in Saudi Arabia. Energy Exploration & Exploitation 36(1): 3–27. Crossref. Web of Science.Sančanin B, Penjišević A (2023) Safe management of medical radiological waste. MEDIS - International Journal of Medical Sciences and Research 2(2): 7–13. Crossref.Temiz M, Dincer I (2021) Enhancement of a nuclear power plant with a renewable based multigenerational energy system. International Journal of Energy Research 45(8): 12396–12412. Crossref. Web of Science.Therme C (2023) French nuclear policy towards Iran: From the Shah to the Islamic Republic. Diplomacy & Statecraft 34(1): 117–139. Crossref. Web of Science.Utami I, Riski MA, Hartanto DR (2022) Nuclear power plants technology to realize net zero emission 2060. International Journal of Business Management and Technology 6(1): 158–162.Vujić J, Bergmann RM, Škoda R, et al. (2012) Small modular reactors: Simpler, safer, cheaper? Energy 45(1): 288–295. Crossref. Web of Science.Wagner F (2021) CO2 Emissions of nuclear power and renewable energies: A statistical analysis of European and global data. The European Physical Journal Plus 136(5): 62. Crossref. Web of Science.Wang Z, He Y, Duan Z, et al. (2023) Experimental study on transient flow characteristics in an equal-height-difference passive heat removal system for ocean nuclear power plants. International Journal of Heat and Mass Transfer 208: 124043. Crossref. Web of Science.Wheatley S, Sovacool B, Sornette D (2016) Of disasters and dragon kings: A statistical analysis of nuclear power incidents and accidents. Risk Analysis 37(1): 99–115. Crossref. PubMed. Web of Science.Wisnubroto DS, Sunaryo GR, Susilo YSB, et al. (2023) Indonesia’s experimental power reactor program (RDE). Nuclear Engineering and Design 404: 112201. Crossref. Web of Science.Yamagata H (2024) Public opinion on nuclear power plants in Japan, the United Kingdom, and the United States of America: A prescription for peculiar Japan. Energy Policy 185: 113939. Crossref. Web of Science.Yang X, Xue Y, Cai B (2024) Pathway planning of nuclear power development incorporating assessment of nuclear event risk. Journal of Modern Power Systems and Clean Energy 12(2): 500–513. Crossref. Web of Science.Zhan L, Bo Y, Lin T, et al. (2021) Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews 34: 100630. Crossref. Web of Science.Zhang S, Liu J, Liu X (2022) Comparing the environmental impacts of nuclear and renewable energy in top 10 nuclear- generating countries: Evidence from STIRPAT model. Environmental Science and Pollution Research 30(11): 31791–31805. Crossref. Web of Science.Zheng S, Liu H, Guan W, et al. (2024) How do nuclear energy and stringent environmental policies contribute to achieving sustainable development targets? Nuclear Engineering and Technology 56(10): 3983–3992. Crossref. Web of Science.Zimmermann F, Keles D (2023) State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects. Energy Policy 173: 113403. Crossref. Web of Science.

Energy & Economics
Xi Jinping and Vladmir Putin at welcoming ceremony (2024)

Russia and China in the Era of Trade Wars and Sanctions

by Ivan Timofeev

Economic relations between Russia and China remain high. Beijing has become Moscow's most important trading partner, and in the context of Western sanctions, it has also become an alternative source of industrial and consumer goods, as well as the largest market for Russian energy and other raw materials. At the same time, external political factors may have a growing influence on Russian-Chinese economic relations. These include the trade war between China and the United States, a possible escalation of US sanctions against Russia, and the expansion of secondary sanctions by the European Union against Chinese companies. The trade war, in the form of increased import duties on imported goods, has become one of the calling cards of Donald Trump's second term in office. The executive order he issued on April 2, 2025, provided a detailed conceptual justification for such a policy. The main goal is the reindustrialisation of the United States through the return or transfer of industrial production to the territory of the US, as well as an equalization of the trade balance with foreign countries. The basic part of Trump's order concerned all countries throughout the world and assumes a tariff increase of 10%. It goes on to determine individual duties on the goods of more than 70 countries, with its own sets for each. China became one of the few countries which decided to mirror the tariff increases. This led to a short-lived and explosive exchange of increases in duties. While it was suspended by negotiations between the two countries in Geneva, it was not removed from the agenda. In the US trade war “against the whole world”, China remains a key target. This is determined by the high level of the US trade deficit in relations with China, which has persisted for more than 40 years. Apparently, it remained comfortable for the US until China made a noticeable leap in the field of industrial and technological development. Such a leap allowed China to gradually overcome its peripheral place in the global economy, displace American and other foreign goods from the domestic market, and occupy niches in foreign markets. Despite the critically important role of American components, patents and technological solutions in a number of industries, China has managed to reduce its dependence on them. The growing industrial and technological power of the PRC is becoming a a political problem for the US. It was clearly identified during the first term of Trump's presidency. Even then, the US pursued a course toward the technological containment of China. Despite the temporary respite in the trade war, US pressure on China will remain. The tariff policy may be supplemented by restrictive new measures (sanctions) in the field of telecommunications and other industries. During the new term of Donald Trump's presidency, the politicisation of issues that the Biden administration avoided putting at the forefront of US-Chinese relations began again. These include the problem of Hong Kong autonomy and the issue of ethnic minorities in the Xinjiang Uyghur Autonomous Region of China. Both issues received a high level of politicisation during Trump's first term. The US-China trade war has so far had little effect on Russian-Chinese relations. The increase in US tariffs has had virtually no effect on Russia. Russia is already facing a significant number of restrictive measures, and the volume of trade with the United States has been reduced to near zero since the start of Moscow’s Special Military Operation in 2022. However, Russia may feel the effects of the trade war. For example, the United States may require China to purchase American energy resources as a measure to correct the trade balance. Obviously, such a measure is unlikely to solve the imbalance. However, it has the potential to affect the volume of Russian oil supplies to China in one way or another. In addition, the trade war as a whole may affect oil prices downwards, which is also disadvantageous for Russia. On the other hand, Russia is a reliable supplier of energy resources for China, which will not politicise them. Even in the context of new aggravations of the trade war, China is unlikely to refuse Russian supplies. Another factor is US sanctions against Russia. After the start of Russian-American negotiations on Ukraine in 2025, Washington avoided using new sanctions, although all previously adopted restrictive measures and their legal mechanisms are in force. However, Donald Trump failed to carry out a diplomatic blitzkrieg and achieve a quick settlement. The negotiations have dragged on and may continue for a long time. If they fail, the United States is ready to escalate sanctions again. Existing legal mechanisms allow, for example, for an increase in the list of blocked persons, including in relation to Chinese companies cooperating with Russia. This practice was widely used by the Biden administration. It was Chinese companies that became the key target of US secondary sanctions targeting Russia. They fell under blocking financial sanctions for deliveries of industrial goods, electronics and other equipment to Russia. However, there was not a single large company among them. We were talking about small manufacturing companies or intermediary firms. At the same time, the Biden administration managed to significantly complicate payments between Russia and China through the threat of secondary sanctions. US Presidential Executive Order 14114 of December 22, 2023 threatened blocking sanctions against foreign financial institutions carrying out transactions in favour of the Russian military-industrial complex. In practice, such sanctions against Chinese financial institutions were practically not applied, except for the blocking of several Chinese payment agents in January 2025. However, the very threat of secondary sanctions forced Chinese banks to exercise a high level of caution in transactions with Russia. This problem has not yet been fully resolved. New legal mechanisms in the field of sanctions, which are being worked on in the United States, may also affect Russian-Chinese relations. We are talking about the bill introduced by US Senator Lindsey Graham and several other senators and members of congress. Their bill assumes that in the event of failure of negotiations with Russia on Ukraine, the US executive branch will receive the authority to impose 500% duties on countries purchasing Russian raw materials, including oil. China may be among them. This threat should hardly be exaggerated for now. The passage of the bill is not predetermined. Even if it is signed into law, the application of 500% tariffs against China will be an extremely difficult matter. Recent rounds of the trade war have shown that China is ready for retaliatory measures. However, the emergence of such a norm will in any case increase the risks for business and may negatively affect Russian suppliers of raw materials. Another factor is EU sanctions policy. Unlike the US, the EU continues to escalate sanctions against Russia despite the negotiations on Ukraine. Brussels is expanding the practice of secondary sanctions, which also affect Chinese companies. In the context of a deepening economic partnership between China and the EU, this factor seems significant. However, in reality, it will play a peripheral role. The EU's practice of secondary sanctions is still significantly more limited than the American one. It does not affect any significant Chinese companies. Problems may be created by the expansion of EU bans on the provision of financial messaging services for Russian banks—this will affect their relations with Chinese counterparties. But such bans stimulate the acceleration of the use of the Chinese CIPS payment system by Russians, which has the functionality of transmitting financial messages. Compared to the US, the EU policy factor remains secondary. First published in the Valdai Discussion Club.

Energy & Economics
Alternative or renewable energy financing program, financial concept : Green eco-friendly or sustainable energy symbols atop five coin stacks e.g a light bulb, a rechargeable battery, solar cell panel

The Success of Climate Change Performance Index in the Development of Environmental Investments: E-7 Countries

by Başak Özarslan Doğan

Abstract Climate change is considered to be one of the biggest problems acknowledged globally today. Therefore, the causes of climate change and solutions to this problem are frequently investigated. For this reason, the purpose of this study is to empirically examine whether the ‘Climate Change Performance Index’ (CCPI) is successful in increasing environmental investments for E-7 countries with the data for the period of 2008–2023. To achieve this aim, the Parks-Kmenta estimator was used as the econometric method in the study. The study findings provide strong evidence that increases in the climate change performance support environmental investments. High climate change performance directs governments and investors toward investing in this area; therefore, environmental investments tend to increase. The study also examined the effects of population growth, real GDP and inflation on environmental investments. Accordingly, it has been concluded that population growth and inflation negatively affect environmental investments, while GDP positively affects environmental investments. 1. Introduction There is a broad consensus that the main cause of climate change is human-based greenhouse gas emissions from non-renewable (i.e., fossil) fuels and improper land use. Accordingly, climate change may have serious negative consequences as well as significant macroeconomic outcomes. For example, an upward trend of temperatures, the rising sea levels, and extreme weather conditions can seriously disrupt the output and productivity (IMF, 2008a; Eyraud et al., 2013). Due to the global climate change, many countries today see environmental investments, especially renewable energy investments, as an important part of their growth strategies. Until recent years, the most important priority of many countries was an improvement in the economic growth figures. Still, the global climate change and the emergence of many related problems are now directing countries toward implementing policies which would be more sensitive to the environment and would ensure sustainable growth rather than just increase the growth figures. (Baştürk, 2024: 327). The orientation of various countries to these policies has led to an increase in environmental investments on a global scale. A relative rise of the share of environmental investments worldwide is not only a medium-term climate goal. It also brings many new concepts to the agenda, such as an increasing energy security, reduction of the negative impact of air pollution on health, and the possibility of finding new growth resources (Accenture, 2011; McKinsey, 2009; (OECD), 2011; PriceWaterhouseCoopers, 2008; Eyraud et al., 2013). Today, environmental investments have a significant share in energy and electricity production. According to the World Energy Outlook (2023), investments in environmentally friendly energies have increased by approximately 40% since 2020. The effort to reduce emissions is the key reason for this increase, but it is not the only reason. Economic reasons are also quite strong in preferring environmental energy technologies. For example, energy security is also fundamentally important in the increase in environmental investments. Especially in fuel-importing countries, industrial plans and the necessity to spread clean (i.e., renewable) energy jobs throughout the country are important factors (IEA WEO, 2023).  In economic literature, environmental investments are generally represented by renewable energy investments. Accordingly, Figure 1 below presents global renewable energy electricity production for 2000–2020. According to the data obtained from IRENA (2024) and Figure 1, the total electricity production has increased by approximately 2.4% since 2011, with renewable energy sources contributing 6.1% to this rate, while non-renewable energy sources contributed 1.3%. In 2022 alone, renewable electricity grew by 7.2% compared to 2021. Solar and wind energy provided the largest growth in renewable electricity since 2010, which reached 11.7% of the global electricity mix in 2022.   Figure 2 below presents renewable energy investments by technology between 2013 and 2022. As shown in Figure 2, photovoltaic solar. and terrestrial wind categories are dominating, accounting for 46% and 32% of the global renewable energy investment, respectively, during 2013–2022.   Economic growth supported by environmental investments is impacted by the type and number of energy used to increase the national output. Thus, both the environmental friendliness of the energy used and the rise in energy efficiency is bound to reduce carbon emissions related to energy use and encourage economic growth (Hussain and Dogan, 2021). In this context, in order to minimize emissions and ensure sustainable economic growth, renewable energy sources should be used instead of fossil resources in energy use. Increasing environmental investments on a global scale, especially a boost in renewable energy investments, is seen as a more comprehensive solution to the current global growth-development and environmental degradation balance. In this context, as a result of the latest Conference of the Parties held in Paris, namely, COP21, it was envisaged to make an agreement covering the processes after 2020, which is accepted as the end year of the Kyoto Protocol. On December 12, 2015, the Paris Agreement was adopted unanimously by the countries that are parties to the UN Framework Convention on Climate Change (Kaya, 2020). As a result of the Paris Agreement and the reports delivered by the Intergovernmental Climate Change Panels, international efforts to adapt to the action to combat climate change and global warming have increased, and awareness has been raised in this area (Irfan et al., 2021; Feng et al., 2022; Anser et al., 2020; Zhang et al., 2021; Huang et al., 2021; Fang, 2023). The rise in the demand for low-carbon energy sources in economies has been caused by environmental investments such as renewable energy investments. The countries that are party to the Paris Agreement, commit to the way to achieve efficient energy systems through the spread of renewable energy technologies throughout the country (Bashir et al., 2021; Fang, 2023). This study empirically examines the impact of the climate change performance on increasing environmental investments for E-7 countries. The climate change performance is expressed by the ‘Climate Change Performance Index’ (CCPI) developed by the German environmental and developmental organization Germanwatch. The index evaluates the climate protection performance of 63 developed and developing countries and the EU annually, and compares the data. Within this framework, CCPI seeks to increase clarity in international climate policies and practices, and enables a comparison of the progress achieved by various countries in their climate protection struggle. CCPI evaluates the performance of each country in four main categories: GHG Emissions (40% overall ranking), Renewable Energy (20%), Energy Use (20%), and Climate Policy (20%). In calculating this index, each category of GHG emissions, renewable energy, and energy use is measured by using four indicators. These are the Current Level, the Past Trend, the Current Level Well Below 2°C Compliance, and the Countries’ Well Below 2°C Compliance with the 2030 Target. The climate policy category is evaluated annually with a comprehensive survey in two ways: as the National Climate Policy and the International Climate Policy (https://ccpi.org/methodology/).  Figure 3 below shows the world map presenting the total results of the countries evaluated in CCPI 2025 and their overall performance, including the four main categories outlined above.   As it can be seen from Figure 3, no country appears strong enough to receive a ‘very high’ score across all categories. Moreover, although Denmark continues to be the highest-ranking country in the index, but it still does not perform well enough to receive a ‘very high’ score overall. On the other hand, India, Germany, the EU, and the G20 countries/regions will be among the highest-performing countries/regions in the 2024 index. When we look at Canada, South Korea, and Saudi Arabia, they are the worst-performing countries in the G20. On the other hand, it can be said that Türkiye, Poland, the USA, and Japan are the worst-performing countries in the overall ranking. The climate change performance index is an important criterion because it indicates whether the change and progress in combating climate change is occurring across all countries at an important level. The index is important in answering various questions for countries under discussion. These questions are expressed below:  • In which stage are the countries in the categories in which the index is calculated?• What policies should countries follow after seeing the stages in which they are in each category? • Which countries are setting an example by truly combating climate change? These questions also constitute the motivation for this study. The sample group for the study was selected as E-7 countries, which are called the Emerging Economies; this list consists of Türkiye, China, India, Russia, Brazil, Mexico, and Indonesia. The reason for selecting these particular countries is that they are undergoing a rapid development and transformation process, and are also believed to be influential in the future with their increasing share in the world trade volume, huge populations, and advances in technology. Besides that, when the relevant literature has been examined, studies that empirically address the relative ranking of the climate change performance appear to be quite limited. In particular, there are almost no studies evaluating the climate change performance index for the sample group considered. Therefore, it is thought that this study will be of great importance in filling this gap in the literature. The following section of the study, which aims to empirically examine whether the climate change performance is effective in developing environmental investments in E-7 countries, includes national and international selected literature review on the subject. Then, the model of the study and the variables chosen in this model are introduced. Then, the findings obtained in the study are shared, and the study ends with discussion and policy proposal. 2. Literature Review 2.1. Studies on environmental investment  The excessive use of fossil-based energy sources, considered non-renewable and dirty energy, along with industrialization, constitutes a large part of carbon emissions and is regarded as the main reason of climate change. Thus, countries have turned to renewable energy investments with the objective to minimize the reaction of climate change and global warming, by introducing technologies which are considered more environmentally friendly and cleaner. Global energy investments are estimated to exceed 3 trillion US dollars by the end of 2024, and 2 trillion US dollars of this amount will go to clean and environmentally friendly energy base technologies and infrastructure. Investment in environmentally friendly energy has been gaining speed since 2020, and the total expense on renewable energy, networks, and storage now represents a higher figure than the total spending on oil, gas, and coal (IEA, 2024). When the energy economics literature is examined, since environmental investments are mostly represented by renewable energy investments, renewable energy investments studies and studies in related fields shall be discussed in this study section. One of the important studies in this field is the work of Eyraud et al. (2013). In the study, the authors analyzed the determinants of environmental and green (clean) investments for 35 developed and developing countries. Accordingly, they stated in the study that environmental investment has become the main driving force of the energy sector, and China has generally driven its rapid growth in recent years. In addition, in terms of the econometric results of the study, it has been found that environmental investments are supported by economic growth, a solid financial system suitable for lower interest rates, and higher fuel prices. Fang (2023) examined the relationship between investments in the renewable energy sector, the economic complexity index, green technological innovation, industrial structure growth, and carbon emissions in 32 provinces in China for the period of 2005–2019 by using the GMM method. Based on the study results, the economic complexity index causes an increase in China’s carbon dioxide levels. On the contrary, all of the following – the square of the economic complexity index, investments in clean energy, green technical innovation, and the industrial structure – were found to help decrease carbon dioxide emissions. Another important study in this field is the work of Masini and Menichetti (2013). The authors examined the non-financial sources of renewable energy investments in their study. Accordingly, the study results show that knowledge and confidence in technological competence positively impact renewable energy investments. In addition, trust in policy measures only impacts PV (Photovoltaic) and hydropower investments, whereas institutional pressure negatively impacts renewable energy investments. Finally, the study stated that experienced investors are more likely to fund innovations in renewable energy. One of the important studies on renewable energy investments is the work of Ozorhon et al. (2018). To support and facilitate the decision-making process in renewable energy investments, the authors determined the main criteria affecting investors’ decisions by reviewing the literature and examining sector-level practices. According to the findings, economic criteria, like policies and regulations, funds availability, and investment costs were the most important factors in the decision-making process for renewable energy investments. Xu et al. (2024) examined the relationship between the renewable energy investments and the renewable energy development with a threshold value analysis for China. According to the results, impact of the clean (renewable) energy investment on renewable energy development has a significant threshold value, and the general relation between them is a ‘V’ type non-linear relation. At this point, the study suggests that the state should keep spending in the segment of investments in clean energy, increase the financial proficiency, and ensure an efficient financial infrastructure for clean energy in China. 2.2. Studies on Climate Change and their Impact on Economic Variables  The widespread use of fossil-based energy sources, considered dirty energy, continues to create a negative externality in carbon emissions despite the globally implemented policies like the Kyoto Protocol and the Paris Agreement (Rezai et al., 2021). The economic literature on climate change focuses particularly on the adverse effect of climate change on the economy. One of the important studies in this field is the study of Fan et al. (2019). In their study, the authors focused on the impact of climate change on the energy sector for 30 provinces in China and conducted their research with the help of a fixed-effect regression feedback model. As a result of the study, it was found that hot and low-temperature days positively affected the electricity demand. On the other hand, Singh et al. (2022) examined the effects of climate change on agricultural sustainability in India with data from 1990–2017. On the grounds of the study, it was found that India’s agricultural sector was negatively impacted by the climate change. In this regard, it is stated that India needs to take powerful climate policy action so that to reduce the adverse effect of the climate change and increase its sustainable agricultural development. One of the important studies in this field is the study of Gallego-Alvarez et al. (2013). This study investigated how the climate change affects the financial performance with a sample of 855 international companies operating in sectors with high greenhouse gas/ CO2 emissions from 2006–2009. The results reveal that the relationship between the environmental and financial performance is higher in times of economic crisis triggered by climate crisis. In other words, these results show that companies should continue investing in sustainable projects in order to achieve higher profits. Kahn et al. (2021) examined the long-term macroeconomic impact of the climate change by using a panel data set consisting of 174 countries between 1960 and 2014. According to the findings, the amount of output per capita is negatively affected by temperature changes, but no statistically significant effect is observed for changes in precipitation. In addition, according to the study’s results, the main effects of temperature shocks also vary across income groups. Alagidede et al. (2015) examined the effect of climate change on sustainable economic growth in the Sub-Saharan Africa region in their study. The study stated that the relationship between the real GDP and the climate change is not linear. In addition, Milliner and Dietz (2011) investigated the long-term economic consequences of the climate change. Accordingly, as the economy develops over time, and as progress is achieved, this situation will automatically be less affected by the adverse impact of the climate change. Structural changes made with economic development will make sectors more sensitive to the climate change, such as the agricultural sector, which would become stronger and less dependent. Dell et al. (2008) examined the effect of climate change on economic activity. The study’s main results are as follows: an increase of temperatures significantly decreases economic growth in low-income countries. Furthermore, increasing temperature does not affect economic growth in high-income countries. On the other hand, when examining the effects of climate change on the economy, the study of Zhou et al. (2023) is also fundamentally important. Zhou et al. (2023) examined the literature on the effects of climate change risks on the financial sector. In the studies examined, it is generally understood that natural disasters and climate change reduce bank stability, credit supply, stock and bond market returns, and foreign direct investment inflows. In their study for Sri Lanka, Abeysekara et al. (2023) created a study using the general equilibrium model ORANI-G-SL with the objective to investigate the economic impacts of the climate change on agricultural production. The study findings suggest that reductions in the production of many agricultural products will lead to increases in consumer prices for these agricultural commodities, resulting in a decrease in the overall household consumption. The projected decrease in crop production and increases in food prices will increase the potential for food insecurity Another important document in this field is the study by Caruso et al. (2024) examining the relationship between the climate change and human capital. The study findings reveal a two-way result regarding the effects of the climate change damages and the effects of climate change mitigation and adaptation on the human capital. Accordingly, the climate change has direct effects on health, nutrition and welfare, while changes in markets and damage to the infrastructure are expressed as indirect effects. In addition to these studies, the uncertainty of the climate change policies also exerts an impact on economic factors. Studies conducted in this context in recent years have also enriched the literature on the climate change. For example, Çelik and Özarslan Doğan (2024) examined the effects of uncertainty of the climate change policies on economic growth for the USA by using the ARDL bounds test. Their results confirmed the existence of a positive and statistically significant relationship between the climate policy uncertainty and economic growth in the USA. 3. Model Specification  This study empirically examines whether the climate change performance index successfully develops environmental investments in E-7 countries. For further details related to the mathematical model check https://doi.org/10.15388/Ekon.2025.104.2.6 4. Conclusion and Policy Implications  Today, many national and international initiatives are within the scope of combating global warming and climate change. In addition, many developed and developing countries are differentiating their growth and development policies with the objective to prevent these disasters. Although they vary from country to country, as well as from region to region, these policies mostly represent those policies which reduce carbon emissions and ensure energy efficiency. At this point, the key factor is renewable energy investments, which represent environmentally friendly investments. However, according to Abban and Hasan (2021), the amount of environmentally friendly investments is not the same in every country. This is because the determinants of environmentally friendly investments vary from country to country. While financial and economic factors are more encouraging in increasing these investments in some countries, international sanctions are the driving force in this regard in some other countries as well. This study aims to empirically examine whether CCPI is effective in the success of environmental investments in the E-7 countries in the period of 2008–2023 with the help of the Parks-Kmenta estimator. In this direction, the study’s dependent variable is environmental investments, represented by renewable energy investments. On the other hand, the climate change performance is represented by the ‘Climate Change Performance Index’ calculated by Germanwatch, which constitutes the main independent variable of the study. Other control variables considered in the study are the population growth, the real GDP per capita, and inflation. The study findings provide strong evidence that increases in the climate change performance support environmental investments. High-rate climate change performance drives governments and investors toward investing in this area; thus, environmental investments tend to increase. These results are consistent with the study results of Raza et al. (2021). As a result of their study, Raza et al. (2021) stated that the climate change performance is an important channel for the general environmental change, and that renewable energy has a very important role in this regard.  In addition, the study concludes that population growth and inflation negatively affect environmental investments. These results are consistent with Suhrab et al. (2023), but not with Yang et al. (2016). While Suhrab et al. (2023) obtained results regarding the negative effects of inflation on green investments, Yang et al. (2016) focused on the positive effect of population on renewable energy. Finally, the effect of the real GDP per capita on environmental investments has been found to be positive. These results are also consistent with Tudor and Sova (2021). The authors found that Real GDP encourages green investments. This study offers policymakers a number of policy recommendations. These are presented below. • One of the important factors affecting the climate change performance is the raising of awareness of the populations in these countries at this point, and providing them with the knowledge to demand clean energy. In this way, consumers, would demand environmental energy, and investors would invest more in this area. This is of great importance in increasing environmental investments. • The climate change performance also shows how transparent the energy policies implemented by countries are. Therefore, the more achievable and explanatory are the goals of policy makers in this regard, the more climate change performance will increase, which will strengthen environmental investments. • Moreover, the initial installation costs are the most important obstacles on the way toward developing environmental investments. At this point, the country needs to develop support mechanisms that would encourage investors to invest more. • Environmental investments, similar to other types of physical investments, are greatly affected by the country’s macroeconomic indicators. At this point, a stable and foresighted economic policy will encourage an increase in such investments. The countries in the sample group represent developing countries. Therefore, in many countries in this category, the savings rates within the country are insufficient to make investments. At this point, the financial system that will bring together those who supply funds and those who demand funds in the country; this system needs to be developed further. In addition, more extensive use of new and various financial instruments should be encouraged with the objective to collect the capital required for environmental investments. References Abban, A. R., & Hasan, M. Z. (2021). Revisiting the determinants of renewable energy investment-New evidence from political and government ideology. Energy Policy, 151, 112184. https://doi.org/10.1016/j. enpol.2021.112184 (missing in the following “Access date:dd.mm.20yy”) Abeysekara, W. C. S. M., Siriwardana, M., & Meng, S. (2023). Economic consequences of climate change impacts on the agricultural sector of South Asia: A case study of Sri Lanka. Economic Analysis and Policy, 77, 435-450. https://doi.org/10.1016/j.eap.2022.12.003 (missing in the following “Access date:dd.mm.20yy”) Accenture, 2011, New Waves of Growth: Unlocking Opportunity in the Multi-Polar World, Worldwide, Oxford. McKinsey & Company, 2009. Pathways to a Low-Carbon Economy, New York. Anser, M. K., Iqbal, W., Ahmad, U. S., Fatima, A., & Chaudhry, I. S. (2020). Environmental efficiency and the role of energy innovation in emissions reduction. Environmental Science and Pollution Research, 27, 29451-29463. https://doi.org/10.1007/s11356-020-09129-w (missing in the following “Access date:dd. mm.20yy”) etc .... Bashir, M. F., Ma, B., Bashir, M. A., Radulescu, M., & Shahzad, U. (2022). Investigating the role of environmental taxes and regulations for renewable energy consumption: evidence from developed economies. Economic Research-Ekonomska Istraživanja, 35(1), 1262-1284. https://doi.org/10.1080/1331677X.2021.1962383Baştürk, M. F. (2024) Yeşil Tahviller ve Yenilenebilir Enerji Üretimi İlişkisi: AB Örneği. Verimlilik Dergisi, 58(3), 325-336. https://doi.org/10.51551/verimlilik.1443364 Caruso, G., de Marcos, I., & Noy, I. (2024). Climate changes affect human capital. Economics of Disasters and Climate Change, 8(1), 157-196. https://doi.org/10.1007/s41885-023-00140-2 Climate Change Performance Index, 2024. (https://ccpi.org/wp-content/uploads/CCPI-2024-Results.pdf) Çelik, B. S., & Doğan, B. Ö. (2024). Does Uncertainty in Climate Policy Affect Economic growth? Empirical Evidence from the US. Ekonomika, 103(1), 44-55. https://doi.org/10.15388/Ekon.2024.103.1.3 Dell M, Jones BF, Olken BA (2008) Climate change and economic growth: evidence from the last half century, NBER Working Paper Series, No. 14132 Eyraud, L., Clements, B., & Wane, A. (2013). Green investment: Trends and determinants. Energy policy, 60, 852-865. https://doi.org/10.1016/j.enpol.2013.04.039 Fan, J. L., Hu, J. W., & Zhang, X. (2019). Impacts of climate change on electricity demand in China: An empirical estimation based on panel data. Energy, 170, 880-888. https://doi.org/10.1016/j.energy.2018.12.044 Fang, Z. (2023). Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China. Renewable Energy, 205, 772-782. https://doi.org/10.1016/j.renene.2023.01.014 Feng, H., Liu, Z., Wu, J., Iqbal, W., Ahmad, W., & Marie, M. (2022). Nexus between government spending’s and green economic performance: role of green finance and structure effect. Environmental Technology & Innovation, 27, 102461. https://doi.org/10.1016/j.eti.2022.102461 Gallego‐Álvarez, I., García‐Sánchez, I. M., & da Silva Vieira, C. (2014). Climate change and financial performance in times of crisis. Business Strategy and the Environment, 23(6), 361-374. https://doi.org/10.1002/ bse.1786 Germanwatch, 2024 (https://www.germanwatch.org/en/indices?pk_campaign=20733850518&pk_content=155627208696&pk_kwd=climate%20change&pk_source=g&pk_cid=679389546151&mtm_placement=&gad_source=1&gclid=Cj0KCQjwwuG1BhCnARIsAFWBUC2ChKtgVoXt2XG7BKUJ_FRK90m86VeI6oRnpIDCPSnDTpZthsvvaQcaAnmjEALw_wcB) Access date:11.08.2024). Huang, H., Chau, K. Y., Iqbal, W., & Fatima, A. (2022). Assessing the role of financing in sustainable business environment. Environmental Science and Pollution Research, 1-18. https://doi.org/10.1007/s11356-021- 16118-0 IEA, 2024 (https://www.iea.org/reports/world-energy-investment-2024/overview-and-key-findings) . International Energy Agency (IEA, 2023, World Energy Outlook 2023, Paris.https://www.iea.org/reports/ world-energy-outlook-2023/overview-and-key-findings International Monetary Fund, 2008a, Climate Change and the Global Economy, World Economic Outlook, Washington. IRENA (2015), Renewable capacity statistics 2015, International Renewable Energy Agency, Abu Dhabi. IRENA (2024), Renewable capacity statistics 2024, International Renewable Energy Agency, Abu Dhabi. IRENA (2024). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Jul/Renewable_energy_highlights_FINAL_July_2024.pdf?rev=469292ef67144702b515ecb20575ec7d Irfan, M., Zhao, Z. Y., Li, H., & Rehman, A. (2020). The influence of consumers’ intention factors on willingness to pay for renewable energy: a structural equation modeling approach. Environmental Science and Pollution Research, 27, 21747-21761. https://doi.org/10.1007/s11356-020-08592-9 Kaya, H. E. (2020). Kyoto’dan Paris’e Küresel İklim Politikaları. Meriç Uluslararası Sosyal ve Stratejik Araştırmalar Dergisi, 4(10), 165-191. Kahn, M. E., Mohaddes, K., Ng, R. N., Pesaran, M. H., Raissi, M., & Yang, J. C. (2021). Long-term macroeconomic effects of climate change: A cross-country analysis. Energy Economics, 104, 105624. https:// doi.org/10.1016/j.eneco.2021.105624 Karaçor, Z., Özer, H., Saraç, T.B. (2011). Enflasyon ve ekonomik büyüme ilişkisi: Türkiye ekonomisi üzerine ekonometrik bir uygulama (1988-2007). Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 4(2), 29-44.Masini, A., & Menichetti, E. (2013). Investment decisions in the renewable energy sector: An analysis of non-financial drivers. Technological Forecasting and Social Change, 80(3), 510-524. https://doi.org/10.1016/j. techfore.2012.08.003 Milliner A, Dietz S (2011) Adaptation to climate change and economic growth in developing countries, Centre for Climate Change Economics and Policy, Working Paper, No. 69 Organization of Economic Cooperation and Development (OECD), 2011. Towards Green Growth, Paris. Ozorhon, B., Batmaz, A., & Caglayan, S. (2018). Generating a framework to facilitate decision making in renewable energy investments. Renewable and Sustainable Energy Reviews, 95, 217-226. https://doi. org/10.1016/j.rser.2018.07.035 PriceWaterhouseCoopers, 2008. Going Green: Sustainable Growth Strategies, New York. Raza, A., Sui, H., Jermsittiparsert, K., Żukiewicz-Sobczak, W., & Sobczak, P. (2021). Trade liberalization and environmental performance index: Mediation role of climate change performance and greenfield investment. Sustainability, 13(17), 9734. https://doi.org/10.3390/su13179734 Rezai, A., Foley, D. K., & Taylor, L. (2012). Global warming and economic externalities. Economic theory, 49, 329-351. https://doi.org/10.1007/s00199-010-0592-4 Shrimali, G., & Kniefel, J. (2011). Are government policies effective in promoting deployment of renewable electricity resources?. Energy Policy, 39(9), 4726-4741. https://doi.org/10.1016/j.enpol.2011.06.055 Singh, A. K., Kumar, S., & Jyoti, B. (2022). Influence of climate change on agricultural sustainability in India: A state-wise panel data analysis. Asian Journal of Agriculture, 6(1). https://doi.org/10.13057/asianjagric/ g060103 Suhrab, M., Ullah, A., Pinglu, C. et al. Boosting green energy: impact of financial development, foreign direct investment, and inflation on sustainable energy productivity in China–Pakistan economic corridor (CPEC) countries. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04093-0 Tudor, C., & Sova, R. (2021). On the impact of gdp per capita, carbon intensity and innovation for renewable energy consumption: worldwide evidence. Energies, 14(19), 6254. https://doi.org/10.3390/en14196254 Yang, J., Zhang, W., & Zhang, Z. (2016). Impacts of urbanization on renewable energy consumption in China. Journal of Cleaner Production, 114, 443-451. https://doi.org/10.1016/j.jclepro.2015.07.158 Xu, G., Yang, M., Li, S., Jiang, M., & Rehman, H. (2024). Evaluating the effect of renewable energy investment on renewable energy development in China with panel threshold model. Energy Policy, 187, 114029. https://doi.org/10.1016/j.enpol.2024.114029 Zhang, Y., Abbas, M., Koura, Y. H., Su, Y., & Iqbal, W. (2021). The impact trilemma of energy prices, taxation, and population on industrial and residential greenhouse gas emissions in Europe. Environmental Science and Pollution Research, 28, 6913-6928. https://doi.org/10.1007/s11356-020-10618-1 Zhou, F., Endendijk, T., & Botzen, W. W. (2023). A review of the financial sector impacts of risks associated with climate change. Annual Review of Resource Economics, 15(1), 233-256. https://doi.org/10.1146/ annurev-resource-101822-105702 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Contents lists available at Vilnius University Press

Energy & Economics
Chinese yuan on the map of South America. Trading between China and Latin American countries, economy and investment

China-Latin America Green Cooperation and the Global Development Initiative

by Cao Ting

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском Abstract The global development initiative proposed by China aims to promote global sustainable development and has received support from many Latin American countries. At present, green cooperation between China and Latin America has achieved positive results in multiple fields such as clean energy, green agriculture, and green transportation. Latin American countries can become important partners for China to promote the Global Development Initiatives. However, in terms of green cooperation, China and Latin America also face some challenges. Both sides must strengthen consensus and achieve coordinated development in various fields. Sustainable Development and the Global Development Initiative The current international situation is turbulent and constantly changing, with a global economy that remains stagnant, while challenges such as geopolitical conflicts, climate change, and the food crisis are becoming increasingly intertwined and exacerbated. In this context, all countries around the world face the important task of promoting sustainable development and maintaining healthy economic and social growth. On September 21, 2021, Chinese President Xi Jinping officially launched the Global Development Initiative at the United Nations, outlining a path toward a new stage of global development that is balanced, coordinated, and inclusive (Ministry of Foreign Affairs of China, 2021). The Global Development Initiative is aligned with the 2030 United Nations Sustainable Development Goals and places climate change and sustainable development as key areas of cooperation, emphasizing the idea of harmonious coexistence between humanity and nature. Its goal is to promote stronger, more sustainable, and healthier global development, and to build a global community for development. The 33 countries of Latin America and the Caribbean are a fundamental part of the Global South and, in general, place great importance on sustainable development, which has allowed them to achieve notable successes in the field of sustainable cooperation. In a context of great power competition and ongoing regional conflicts, the strengthening of sustainable cooperation between China and Latin American countries presents numerous opportunities, creating ample space to jointly advance in sustainable development. The concept of a sustainable economy evolved from the idea of sustainable development, with harmony between humanity and nature at its core and the goal of achieving long-term sustainability. This approach maintains that economic growth is not an unlimited or uncontrolled process but rather must be conditioned by the ecological environment’s capacities and the resource carrying capacity. The concept of a sustainable economy emerged in the late 1980s when British environmental economist David Pearce introduced it in his work “Blueprint for a Green Economy”, published in 1989. However, it was not until the United Nations Conference on Sustainable Development, held in Rio de Janeiro in 2012, that the sustainable economy began to receive greater attention and became a central concept in global development strategies. According to the United Nations Environment Programme (UNEP), a sustainable economy is driven by public and private investments that reduce carbon emissions and pollution, improve energy and resource efficiency, and prevent the loss of biodiversity and ecosystems. A sustainable economy has always promoted development goals that integrate economic, social, and environmental aspects. This respect for the environment and nature is closely linked to traditional Chinese worldviews. Since ancient times, the Chinese have developed ideas about following the laws of nature and protecting the ecological environment. In the classical text “Yi Zhou Shu Ju Pian”, it is recorded: "During the three months of spring, no axes are used in the mountains and forests, to allow plants to grow; during the three months of summer, no nets are placed in rivers and lakes." These ideas have been a fundamental part of the spiritual thought and culture of the Chinese people for over five thousand years, and through them, they have envisioned humanity and nature as an organic and indivisible whole. They represent the basic understanding of the relationship between humans and nature in ancient Chinese agricultural society, where coexistence and mutual promotion between people and the ecological environment reflected a dialectical relationship of unity. These ideas, full of deep wisdom, constitute an essential component of China’s rich cultural tradition. Consensus Base for Green Cooperation In 2021, the Global Development Initiative, aligned with the United Nations Sustainable Development Agenda, established eight key areas of cooperation: poverty reduction, food security, industrialization, connectivity, pandemic response, development financing, climate change, and the digital economy. It also proposed key principles such as “prioritizing development,” “people-centered focus,” “universal inclusion,” “innovation-driven efforts,” “harmony between humanity and nature,” and “action-oriented approaches.” Latin American countries also place great importance on sustainable development and share numerous points of consensus with China on these principles. Currently, several countries in the region, including Peru and Colombia, have joined the “Group of Friends of the Global Development Initiative.” This shared commitment to sustainable development between China and Latin America provides an important foundation for advancing sustainable cooperation. Particularly, China and Latin American countries have broad consensus in the following areas: 1. Prioritizing national development. Both China and many Latin American countries are developing nations and consider the promotion of sustainable development a crucial goal. President Xi Jinping emphasized in the report presented at the 19th National Congress of the Communist Party of China (CPC): “The fundamental fact that our country is still and will long remain in the primary stage of socialism has not changed; our international status as the largest developing country in the world has not changed.” (Xi, 2017) China’s fundamental national situation determines that its main task is to advance along the path of socialism with Chinese characteristics and to focus its efforts on socialist construction. The Global Development Initiative also highlights “prioritizing development” as one of its core pillars. Latin America, for its part, faces the challenge of progressing in development. Although it was one of the regions in the Global South to achieve national independence and begin economic development relatively early, some Latin American countries have experienced stagnation in their economic transformation and have not managed to overcome the so-called “middle-income trap.” Affected by factors such as low global economic growth, fiscal constraints, and limited policy space, Latin America’s economy has shown a weak recovery in recent years, with some countries facing serious inflation and debt problems. Therefore, promoting sustainable development has become a top priority for governments in the region. In 2016, Latin American countries promoted the creation of the Forum of the Countries of Latin America and the Caribbean on Sustainable Development, as a regional mechanism for implementing the 2030 Agenda for Sustainable Development (ECLAC, 2016). By the end of 2023, six successful conferences had been held, and the Latin America and the Caribbean Sustainable Development Report had been published annually to assess the region’s progress in meeting the Sustainable Development Goals (SDGs). 2. Addressing welfare issues as a central task Since the 18th National Congress of the CPC, the Party’s central leadership, led by Xi Jinping, has promoted a people-centered development approach, insisting that everything should be done for the people and depend on the people, always placing them in the highest position. During the centennial celebration of the CPC’s founding, General Secretary Xi emphasized: “To learn from history and forge the future, we must unite and lead the Chinese people in a tireless struggle for a better life.” In contrast, Latin America is one of the most unequal regions in the world. The unequal distribution of wealth, along with gender and racial discrimination, are persistent issues that have been worsened by the COVID-19 pandemic and the global economic slowdown. According to data from the Economic Commission for Latin America and the Caribbean (ECLAC), in 2023 the region’s poverty rate was 29.1%, and extreme poverty was 11.4%, both slightly higher than in 2022 (29% and 11.2%, respectively) (France24, 2023). As a response, many Latin American governments — such as those in Brazil, Mexico, Chile, and Cuba — have incorporated attention to welfare issues and improving their citizens’ quality of life as key pillars in their public policy agendas. 3. Embracing inclusion and shared benefits as a guiding principle Following the end of the Cold War, the world experienced a trend toward multipolarity and continued economic globalization. However, in recent years, there has been a resurgence of protectionism in various forms, accompanied by a rise in unilateralism and hegemonic policies. These “deglobalization” practices not only fail to resolve internal problems, but also disrupt global supply chains, hinder healthy economic development, and harm the interests of countries. In response, developing nations such as China and Latin American countries advocate for multipolar development and oppose unilateralism and power politics. In December 2023, China’s Central Conference on Foreign Affairs Work emphasized the importance of inclusive and mutually beneficial economic globalization. Similarly, Latin America has maintained a diversified foreign policy and has worked toward building a new, fair, and equitable international political and economic order. Amid rising tensions among major powers, most Latin American countries have chosen not to take sides, maintaining a non-aligned policy. Moreover, countries in Latin America are increasingly focused on inclusive development both within their nations and across the region, striving to address internal development imbalances. In 2010, the Andean Development Corporation (predecessor to the Development Bank of Latin America and the Caribbean) released the “Latin America Vision Plan 2040”, which highlighted the need to strengthen economic inclusion in order to achieve truly sustainable growth (CAF, 2010). In January 2023, the Community of Latin American and Caribbean States (CELAC) Summit in Argentina approved the “Buenos Aires Declaration,” which stressed the importance of promoting inclusive development in the region and fostering inclusive dialogue with other regions (CELAC, 2023). 4. Embracing innovation as a key driver Marx pointed out that “science is also part of the productive forces” and that “the development of fixed capital shows the extent to which the general knowledge of society has become a direct productive force.” In 1988, at the National Science Conference, Deng Xiaoping declared, “science and technology are the primary productive forces.” Since the 18th CPC Congress, China has firmly pursued innovation-led development. It launched the National Innovation-Driven Development Strategy, issued the Medium- to Long-Term Science and Technology Development Plan (2021–2035), and rolled out the Technological Innovation Blueprint under the 14th Five-Year Plan. Thanks to this framework, China has made significant progress in accelerating emerging technologies such as artificial intelligence, big data, quantum communication, and blockchain. Latin American countries are also intensifying their focus on technological innovation. In 2023, CELAC’s Buenos Aires Declaration underscored the importance of innovation for enhancing regional competitiveness and job quality, while encouraging scientific exchanges among nations and subregional organizations. Furthermore, the President of Brazil, Luiz Inácio Lula da Silva, committed to increasing investment in technological development. To that end, he announced at the 28th Conference of the Parties to the United Nations Framework Convention on Climate Change an investment of approximately 21 billion reais (around 4.28 billion U.S. dollars) in sustainable economy, innovative technologies, and low-carbon economy. In the 2023 Global Innovation Index, Brazil ranked 49th out of 132 countries, improving by five positions compared to the previous year. The President of Chile, Gabriel Boric, pledged to increase public funding for research and to finance the work of universities and research institutions. In 2019, the Colombian government established the “International Mission of Wise People,” a body composed of 46 national and international academic experts to promote production diversification and automation, with the goal of doubling the share of manufacturing and agriculture in the country’s Gross Domestic Product (GDP) by 2030. The current president of Colombia, Gustavo Petro, has committed to transforming the country into a “knowledge society” and to continuing this initiative. 5. Making harmony between humans and nature a central goal Developing countries — including China and Latin American nations — prioritize climate issues and actively contribute to global climate governance. Since ancient China during the Spring and Autumn and Warring States periods, philosophical schools such as Confucianism and Taoism had already proposed concepts about the “unity between Heaven and humankind.” Similarly, Indigenous cultures in Latin America also share related cultural traditions. The Quechua peoples of Peru, Ecuador, and Bolivia promote the concept of “’Buen Vivir’” (“Good Living”), which emphasizes harmony between human society and nature. The Aymara of Peru and Bolivia, the Guaraní of Brazil, Argentina, Paraguay, and Bolivia, the Shuar of Ecuador, and the Mapuche of Chile all have similar philosophical expressions. So far in the 21st century, China and Latin American countries have intensified their focus on sustainable development. In August 2005, during a visit to Anji in China’s Zhejiang Province, Xi Jinping, then Secretary of the Communist Party of China in Zhejiang, put forward the principle that “lucid waters and lush mountains are as valuable as mountains of gold and silver,” highlighting the idea that economic growth should not be achieved at the expense of the environment. China’s Global Development Initiative includes climate change and sustainable development as key cooperation areas, aiming for stronger, healthier global progress. Simultaneously, Latin American countries value sustainability highly. Ten nations in the region have officially submitted carbon-neutrality timelines and developed emissions-reduction plans. Several governments have taken significant measures to accelerate energy transition, restore ecosystems, and enhance international cooperation. Notably, Brazil, Chile, Costa Rica, and Uruguay have made substantial strides in renewable energy: in Q1 2023, more than 90 % of Brazil’s energy came from renewables — the highest level since 2011. Progress of Green Cooperation between China and Latin America 1. High-level design for sustainable cooperation between China and Latin American countries has been continuously strengthenedAs comprehensive cooperation between China and Latin America progresses, sustainable collaboration has also become integrated into the strategic high-level planning. At the third Ministerial Meeting of the China-CELAC Forum in 2021, the "Joint Action Plan for Cooperation in Key Areas between China and CELAC Member States (2022–2024)" was adopted. This plan emphasizes the continuation of cooperation in areas such as renewable energy, new energy, civil nuclear energy, energy technology equipment, electric vehicles and their components, as well as energy-related geological and mineral resources. It also outlines the expansion of cooperation in emerging industries related to clean energy resources, support for technology transfer between companies, and the respect and protection of the natural environment. Joint declarations between China and countries such as Brazil, Mexico, and Argentina on establishing and deepening comprehensive strategic partnerships mention strengthening cooperation in areas such as climate change and clean energy. During the sixth meeting of the Sino-Brazilian High-Level Commission for Coordination and Cooperation in May 2022, the Chinese Ministry of Commerce and the Brazilian Ministry of Economy agreed to sign a Memorandum of Understanding on Promoting Investment Cooperation for Sustainable Development, aimed at promoting investment in clean and low-carbon technologies in both countries. In April 2023, during Brazilian President Luiz Inácio Lula da Silva's visit to China, the two countries issued the “China-Brazil Joint Declaration on Combating Climate Change” and signed several cooperation agreements related to the sustainable economy. For example, Article 3 mentions “expanding cooperation in new fields such as environmental protection, combating climate change, the low-carbon economy, and the digital economy,” while Article 10 notes the aim to “strengthen cooperation on environmental protection, climate change, and biodiversity loss, promote sustainable development, and accelerate the transition to a low-carbon economy.” In the same month, the “China-Brazil Joint Declaration on Combating Climate Change,” the “Memorandum of Understanding on Research and Innovation Cooperation between the Ministries of Science and Technology of China and Brazil,” and the “Memorandum of Understanding on Promoting Investment and Industrial Cooperation between China and Brazil” identified key areas of future cooperation, including sustainable infrastructure, the development of sustainable industries, renewable energy, electric vehicles, sustainable technological innovation, and green financing. 2. Clean energy cooperation has deepened The development and use of clean energy are essential means for achieving green development. In recent years, clean energy cooperation between China and Latin America has shown the following main characteristics. The scope of clean energy cooperation is becoming increasingly broad. Currently, cooperation between China and Latin America in the fields of clean energy — such as hydropower, solar energy, wind power, nuclear energy, biomass energy, and lithium batteries — has reached a certain level of breadth and depth. At the same time, both sides have also initiated cooperation efforts in emerging areas such as green hydrogen and smart energy storage. China is constantly diversifying its target countries and modes of investment in clean energy in Latin America. In 2015, China began increasing its investment in the renewable energy sector in the region. Between 2005 and 2020, China’s main investment targets in renewable energy in Latin America included countries such as Brazil, Mexico, Peru, Argentina, and Bolivia. Investments in projects, mergers and acquisitions, and greenfield investments have gone hand in hand. 3. Green cooperation in the transportation sector has yielded outstanding results. Chinese companies continue to cooperate with Latin American countries in the field of public transportation infrastructure and electric vehicles, promoting the low-carbon development of the transport sector in Latin America. First, cooperation in public transportation infrastructure is advancing. In recent years, Chinese companies have actively participated in the construction of public infrastructure such as railways, roads, and bridges in Latin American countries, aiming to promote interconnectivity and green travel across the region. Bogotá Metro Line 1, in the capital of Colombia, currently under construction with Chinese investment, is to date the largest public-private partnership (PPP) project in individual transportation infrastructure in Latin America. Second, trade in electric vehicles is developing rapidly. China’s electric vehicle industry has extensive experience in large-scale production and a relatively complete industrial supply chain, making it a new growth area in China–Latin America trade. Electric buses and cars from independent Chinese brands such as BYD, JAC, and Dongfeng are favored in Latin America due to their good quality and low price. Third, cooperation in battery and tram production is also improving. China and Latin America have also begun bold attempts in green capacity cooperation within the manufacturing sector. Currently, BYD is carrying out a range of production activities in Brazil, including the assembly of bus chassis and the production of photovoltaic modules and batteries. 4. Green agricultural cooperation is on the rise. Latin America has vast and fertile land, and agricultural cooperation is an important component of China–Latin America trade. In recent years, Chinese companies have paid increasing attention to using advanced technologies to strengthen environmental protection and actively promote the green transformation of agricultural cooperation. COFCO (‘China National Cereal, Oil & Foodstuff Corporation’) and its Brazilian partners conducted risk assessments of more than 1,700 soybean suppliers in the Amazon and Cerrado ecological zones, and mapped over 1.1 million hectares of soybean fields using remote sensing satellites, which has raised farmers' awareness of sustainable development. By the end of 2021, COFCO had achieved 100% traceability for all direct soybean purchases in Matopiba, a major soybean-producing region in Brazil. At the same time, China and several Latin American countries are promoting cooperation in green agricultural research and development. The Chinese Academy of Tropical Agricultural Sciences has established cooperative relationships with nine Latin American countries, including Colombia, Panama, Ecuador, and Costa Rica. It has achieved progress in exchange and cooperation in areas such as the innovative use and protection of germplasm resources, efficient transformation and comprehensive utilization of biomass energy, green pest and disease prevention and control technologies, and efficient cultivation techniques. 5. Cooperation on green financing plays an important bridging role. The Global Development and South-South Cooperation Fund and the China-United Nations Peace and Development Fund are key financial platforms through which China supports project cooperation under the Global Development Initiative. In addition to the above-mentioned platforms, current green financial instruments between China and Latin America include the Asian Infrastructure Investment Bank, the China–Latin America Cooperation Fund, the China–Latin America Development Finance Cooperation Mechanism, and subsidies provided by China’s Ministry of Commerce and Ministry of Foreign Affairs. Currently, all three financing projects of the Asian Infrastructure Investment Bank in Brazil are related to the green economy. Challenges facing Sino–Latin American green cooperation Although green cooperation between China and Latin America has gradually achieved results and presents many development opportunities, the risks and challenges of cooperation should not be ignored. Most Latin Americans expect that foreign cooperation will promote social well-being, eliminate poverty, and reduce inequality in their countries. They place great importance on the social benefits of projects and pay close attention to the environmental impact of projects on local ecosystems. Currently, the process of extracting lithium from brine places high demands on water resources and carries the risk of air and water pollution. As a result, lithium mining has also faced opposition from Indigenous communities in some Latin American countries. In 2023, Indigenous peoples from Argentina’s Jujuy Province staged several protests against the exploitation of a lithium mine (Reventós, 2023). To reduce pollution in lithium extraction, further scientific and technological research is needed. The integration of Chinese companies into Latin America also faces many obstacles. The official languages of most Latin American countries are Spanish and Portuguese, which are deeply influenced by European and U.S. cultures. In addition to geographical distance, there is limited mutual understanding between the peoples of China and Latin America, and transportation and logistics costs are high. Most Chinese companies lack personnel fluent in Spanish or Portuguese and familiar with local laws and regulations. Currently, the U.S. government continues to view China as a strategic competitor. Latin America has also become a battleground for strategic competition between China and the United States. The U.S. has increasingly turned its attention to China’s cooperation with Latin American countries. In 2019, the U.S. House Committee on Foreign Affairs published an article stating that “China’s green investment in Latin America cannot offset local environmental damage” (Cote-Muñoz, 2019). In general, green cooperation between China and Latin America will face a more complex environment in the future. Final considerations In recent years, China has put forward the Global Development Initiative to promote international cooperation for sustainable development. Latin America, one of the regions with the most developing countries in the world, actively promotes the implementation of the Sustainable Development Agenda and has a solid green economic foundation. In this sense, the region can be an important partner for China in achieving the goals of the 2030 Agenda and building a shared future for humanity. China must continue to build consensus on development priorities with Latin American countries, plan key areas of cooperation according to their conditions and needs, promote connections between governments, businesses, universities, and media in China and Latin America, and jointly advance the green cooperation to a new level. China and Latin America have achieved multidisciplinary coverage in green cooperation. It is necessary to further improve the quality of cooperation in the future and achieve coordinated development across various sectors. For example, in the long term, the development of renewable energy will require greater energy storage capacity and wider electric grid coverage. Additionally, Chinese companies need to integrate more into local societies and generate greater social benefits while ensuring economic returns. They can strengthen cooperation with Latin American companies in order to quickly become familiar with local laws, regulations, and market conditions. Furthermore, more research — including environmental assessments and social consultations — should be conducted before launching projects. References CAF (2010). "Corporación Andina de Fomento, Visión para América Latina 2040 Hacia una sociedad más incluyente y próspera". https://scioteca.caf.com/bitstream/handle/123456789/496/latinamerica_2040_summary_esp.pdf?sequence=1&isAllowed=yCELAC (2023). "Declaración de Buenos Aires". https://www.cancilleria.gob.ar/userfiles/prensa/declaracion_ de_buenos_aires_-_version_final.pdf CEPAL (2016). "El Foro de los Países de América Latina y el Caribe sobre el Desarrollo Sostenible y el Seguimiento Regional de la Agenda 2030". https://www.cepal.org/es/temas/agenda-2030-desarrollo-sostenible/ foro-paises-america-latina-caribe-desarrollo-sostenible-seguimiento-regional-la-agenda-2030Cote-Muñoz, N. (2019). "China's Green Investments Won't Undo Its Environmental Damage to Latin America". Council on Foreign Relations. https://www.cfr.org/blog/chinas-green-investments-wont-undo-its-environmental-damage-latin-americaFrance24 (2023). "Tasa de pobreza se mantiene en 29 % en América Latina en 2023". https://www.france24.com/es/minuto-a-minuto/20231125-tasa-de-pobreza-se-mantiene-en-29-en-am%C3%A9rica-latina-en-2023-dice-cepalMinistry of Foreign Affairs of China (2021). "Global Development Initiative-Building on 2030 SDGs for Stronger, Greener and Healthier Global Development". https://www.mfa.gov.cn/eng/zy/jj/GDI_140002/wj/202406/ P020240606606193448267.pdfReventós, B. y N. Fabre (2023). "Los grupos indígenas en Argentina que se oponen a la extracción del litio". BBC. https://www.bbc.com/mundo/articles/cevzgv0elp9o Cuadernos de Nuestra América. No. 014 | Nueva Época 2025, Centro de Investigaciones de Política Internacional (CIPI). Under CC BY-NC 4.0

Energy & Economics
 March 28, 2018, the US and Chinese flags and texts at a studio in Seoul, Korea. An illustrative editorial. trade war

International trade war - Spice Road against Silk Road

by Joon Seok Oh

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском AbstractPurpose The purpose of this paper is to analyse the international political economy of Korea and its effects due to geopolitical tension between China and the USA. Design/methodology/approach Economic war between China and the USA has prolonged longer than expected. Aftermath of the COVID-19 pandemic, reforming the supply chain has been the centre of economic tension between China and the USA. Quite recently, with the rapid expansion of Chinese e-commerce platforms, distribution channels come upon a new economic tension between the two. And now is the time to pivot its pattern of conflict from competition into cooperation. In this end, economic diplomacy could be a useful means to give a signal of cooperation. From the view of economic diplomacy, this paper tries to analyse the projected transition of economic war between China and the USA with its implication on the trade policy of Korea. Findings As an implementation of economic diplomacy, China suggested the Belt and Road Initiative (BRI), enhancing trade logistics among related countries to gain competitiveness. In 2023, the Biden administration suggested the India-Middle East and Europe Economic Corridor as a counter to BRI, which will be a threshold for changing trade policy from economic war into economic diplomacy. As a result, it is expected China and the USA will expand their economic diplomacy in a way to promote economic cooperation among allied states, while the distribution channel war would continue to accelerate the economic tension between China and the USA. Korea has to prepare for and provide measures handling this geopolitical location in its trade policy or economic diplomacy. Originality/value This research contributes to the awareness and understanding of trade environments from the perspective of economic diplomacy. 1. Introduction The advent of globalisation has led to widespread economic integration, creating global production networks and markets. However, the COVID-19 pandemic has acted as a significant setback to this trend. In the wake of COVID-19, an economic war has arisen between China and the USA, centred on the restructuring of global supply chains following widespread disruptions. International political economy (IPE) examines the power dynamics between states and the structures of influence within regional economies. Consequently, economic diplomacy has gained unprecedented attention. Economic diplomacy focuses on government actions regarding international economic issues, distinct from political diplomacy through its market-oriented approach in foreign policy. Putnam (1988) categorises economic diplomacy into two levels: unilateralism and bilateralism. Unilateral economic diplomacy (or unilateralism) often relies on hard power, involving decisions on trade liberalisation or market protection without negotiation. Bilateral economic diplomacy (or bilateralism) or multilateral economic diplomacy (or multilateralism), by contrast, involves negotiation among trade partners, resulting in agreements such as regional or global free trade agreements (FTAs). A vast range of state or non-state actors engage in economic diplomacy, navigating the complex interplay between international and domestic factors. Defining economic diplomacy is extremely challenging, but one useful definition is “the broad concept of economic statecraft, where economic measures are taken in the pursuit of political goals, including punitive actions such as sanctions” (Blanchard and Ripsman, 2008).  Figure 1 Recent trend of economic diplomacy To exert influence internationally, ministers and heads of government strive to demonstrate their capacity for national security through two primary approaches, as shown in Figure 1 (above): economic war (or competition) and economic diplomacy (or international cooperation). In the context of global supply chain restructuring, the economic conflict between China and the USA has intensified, marked by threats of supply chain disruptions. This has led to emerging strategies aimed at “crowding out” the USA from global supply chains (去美戰略) or excluding China through alliances such as the Allied Supply Chain and Chip 4. While economic war is inherently “temporary” due to its painstaking nature, economic diplomacy or international cooperation offer a more “long-term” approach because it is gains-taking. This paper analyses the factors contributing to the prolonged nature of this economic war and explores potential outcomes of the supply chain tensions between China and the USA from the perspectives of IPE or geo-economics. In conclusion, it highlights the importance of preparing for trade policy adjustments and strategic economic diplomacy. 2. International trade war and strategic items2.1 Supply chain The supply chain encompasses a network of interconnected suppliers involved in each stage of production, from raw materials and components to the finished goods or services. This network can include vendors, warehouses, retailers, freight stations and distribution centres. Effective supply chain management is a “crucial process because an optimised supply chain results in lower costs and a more efficient production cycle” [1]. Within the supply chain, a leading company typically holds governance power, enabling it to coordinate scheduling and exercise control across the interconnected suppliers, resulting in reduced costs and shorter production times (Gereffi et al., 2005) [2]. Since the 2000s, forward and backward integration have been key strategies for managing time, cost and uncertainty in supply chains. For example, Toyota’s Just-In-Time (JIT) system demonstrated the efficiency of locally concentrated supply chains until disruptions from the 2011 East Japan Earthquake and the Thailand flood. Following supply chain shutdowns in 2020, many businesses shifted from local to global supply chains, utilising advancements of the information technology (IT) and transportation technologies to geographically diversify operations. As the need for a systematically functioning global supply chain has grown, a leading nation, much like a leading company, often assumes governance power in international trade and investment, as illustrated in Figure 2 (below), by aligning with the leadership of a dominant market competitiveness, which makes this leadership valuable.  Figure 2 Supply chain The COVID-19 pandemic dealt a severe blow to the global supply chain, causing sudden lockdowns that led to widespread supply chain disruptions. To mitigate the risks of future global disruptions, supply chains have begun restructuring to operate on a more regionally segmented basis. In this shift toward regional supply chains, China and the USA are at the centre, drawing allied countries within their spheres of influence. This alignment helps explain why the economic war between China and the USA has lasted longer than anticipated. 2.2 Strategic items China has restricted exports of two rare metals, gallium and germanium, which are critical to semiconductor production. Kraljic (1983) highlighted the importance of managing “strategic items” within the framework of supply chain management, as shown in Figure 3. Kraljic emphasises the need to strengthen and diversify critical items. The Kraljic matrix provides a valuable tool for identifying essential items that require focused management within the supply chain.  Figure 3 Kraljic matrix Kraljic identified the importance of managing “bottleneck items” in strategic supply chain management – items that present high supply risk but have relatively low business value. Due to the potential costs associated with non-delivery or compromised quality of strategic items, these must be closely monitored and controlled. From a risk management perspective, establishing medium-term business relationships and collaboration with suppliers is essential. For example, South Korea imports over 90% of its urea for agricultural and industrial purposes from China [3]. Heavily dependent on China for urea supplies due to pricing factors, Korea faced challenges when China imposed export controls on urea, underscoring Korea’s vulnerability within China’s sphere of influence. The European Union (EU) also faces challenges with critical raw materials (CRMs). China remains the EU’s sole supplier of processed rare earth elements, while Chile supplies 79% of its lithium. In response, the EU introduced the CRM Act (CRMA) to support projects aimed at increasing “the EU’s capacity to extract, process, and recycle strategic raw materials and diversify supplies from the third countries” [4]. 2.3 Resilient supply chain alliance In contrast to China’s approach of leveraging supply disruptions to strengthen its influence, the Biden administration in the USA has adopted a cooperative approach focused on building resilient supply chains (Pillar 2) through the Indo-Pacific Economic Framework (IPEF), which includes 14 member countries [5]. The need for resilient supply chains has been further underscored by the Russia–Ukraine crisis. The IPEF aims to address supply chain vulnerabilities by fostering global efforts to reduce risks associated with concentrated, fragile supply chains [6].  Figure 4 Resilient supply chain alliance In Figure 4, the EU Commission presented the Single Market Emergency Instrument (SMEI) in September 2022, a crisis governance framework designed to ensure the availability of essential goods and services during future emergencies. The SMEI operates on three levels: contingency planning, vigilance and emergency. The contingency planning phase focuses on collaboration among member states to mitigate supply chain disruption and monitor incidents. The vigilance phase can be activated when a significant disruption is anticipated, enabling specific measures such as mapping and monitoring supply chains and production capacities. Finally, the emergency phase is activated in cases of severe disruption to the functioning of the single market [7]. Establishing a resilient supply chain through international cooperation may be appealing, yet the reality often falls short of the ambition. In South Korea, the IPEF took effect on 17 April 2024, after an extended negotiation process, marking the first multilateral agreement on supply chains. As a result, during non-crisis periods, the 14 member countries will collaborate to strengthen international trade, investment and trade logistics. In times of crisis, member countries will activate a “crisis response network”. Conversely, opportunities for negotiation with China, South Korea’s largest trading partner, are essential for building supply chain resilience [8]. China has pursued an industrial policy focused on enhancing its supply chain management capabilities. In the semiconductor sector, the decoupling between China and the USA has become increasingly evident. Contrary to expectations, China has adopted a policy of internalising its supply chains, returning to the integration strategies of the 2000s rather than furthering globalisation. A promising opportunity for transformation between the two countries has emerged recently. Since 2015, China and South Korea have maintained bilateral FTA, and with the second phase of FTA negotiations currently underway, there is an opportunity to strengthen trade and investment ties, fostering positive progress through international cooperation. 2.4 China manufacturing exodus During the COVID-19 pandemic, China imposed sudden lockdowns without prior notice or preparation, halting production and logistics cycles. This “zero COVID” policy may have triggered a shift towards “de-risking” China from supply chain disruptions. Although China still offers significant advantages as “the factory of the world,” with vast market potential, prolonged trade tensions with the USA, intensified during the Trump administration, have prompted global manufacturers with substantial USA market bases to relocate operations amid rising geopolitical uncertainties. For example, Nike and Adidas have shifted much of their footwear manufacturing to Vietnam, Apple has begun iPhone production at a Foxconn in Chennai, India, and AstraZeneca has contracted production with India’s Serum Institute. In the pre-globalised era, defining the Rule of Origin (ROO) was straightforward, as a product’s components were usually manufactured and assembled within a single country. However, with the complexity of global supply chains, particularly since 2012, determining ROO has become a time-consuming and subjective process. ROO are classified as either non-preferential or preferential. The USA applies non-preferential ROO to restrict imports from countries like Cuba, Iran and North Korea, while offering trade preference programmes for others. Preferential ROO are used to determine duty-free eligibility for imports from approved countries [9], whereas non-preferential ROO play a crucial role in “country of origin labelling, government procurement, enforcement of trade remedy actions, compilation of trade statistics, supply chain security issues.” [10] China manufacturing exodus may negatively impact capital inflows into Hong Kong, traditionally seen as the Gateway to China. In 2023, Hong Kong’s initial public offering volume fell to a 20-year low of $5.9bn [11]. While China-oriented business remains in Hong Kong, which returns fully to Chinese control in 2047, non-China-oriented businesses have migrated to Singapore. As the certainty of contract and ownership rights forms the foundation of capitalism, this capital flight from Hong Kong is likely to persist. 3. Trade logistics and economic corridors Globalisation has allowed supply chains to leverage interdependence and interconnectedness, maximising efficiency. However, while these efficiencies have been beneficial, they have also created a fertile ground for friction between trade partners due to a “survival of the fittest” mindset and the principle of “winner takes all.” This interdependence has also highlighted vulnerabilities; the global supply chain struggled to manage the disruptions caused by COVID-19, prompting a shift towards regional integration initiatives, such as Association of Southeast Asian Nations, Regional Comprehensive Economic Partnership, United States–Mexico–Canada Agreement and Comprehensive and Progressive Agreement for Trans-Pacific Partnership. As the global economy seeks stability, collaboration over competition has become increasingly essential, with economic diplomacy emerging as a priority. The prolonged economic war between China and the USA arguably needs to shift towards economic diplomacy. The global supply chain is restructuring into regional supply chains, building resilience by operating in regional segments that can withstand crises. Michael Porter introduced the concept of value chain as “a set of activities that a firm performs to deliver a valuable product or service to the market.” [12] Complex finished goods often depend on global value chains, traversing multiple countries. As shown in Figure 5, the value chain consists of supply chain and trade channel components. While the focus has traditionally been on which country holds lead status within a regional supply chain, the emphasis is now shifting to how these regional segments can be interconnected and relayed. In this context, the supply chain competition may evolve into a “channel war” in international trade, where trade logistics will centre on the internal flow of goods, standardising channel processes and establishing authority over these channels.  Figure 5 Supply chain v. trade channel 3.1 Trade logistics It is natural for governments to seek environments that enhance competitiveness within in their countries. In terms of trade, effective trade logistics are essential for maintaining competitive advantage. As a prerequisite, a strong IT management infrastructure is indispensable. As shown in Figure 6, trade logistics encompass the internal flow of goods to market, integrating physical infrastructure with operating software – such as transport hubs, warehouses, highways, ports, terminals, trains and shipping vessels. Key areas of conflict in trade logistics involve the standardisation of channel processes and determining who holds governance over operation of these logistics systems. This is equally relevant within the digital economy. Recently, Chinese e-commerce – often referred to as C-commerce – has aggressively sought to gain control over digital distribution channels, interconnected delivery networks and trade logistics via digital platforms. Chinese platforms such as Taobao, Temu and AliExpress are actively working to increase their monthly active users (MAUs), positing themselves as counterweights to USA-based platforms such as Amazon and eBay in digital trade [13].  Figure 6 Trade logistics When the agenda of establishing international trade logistics is introduced to relevant trade members across various countries, initial progress and effective responses are often achieved. However, efforts soon encounter obstacles related to standardising logistics processes and establishing operational governance. Greater reliance on international institutions could help resolve these issues (Bayne, 2017). Yet governments frequently prioritise domestic interests, and after prolonged negotiations, the risk of international agreements failing increases. Amid the economic war between China and the USA, China launched a trade logistics initiative known as the Belt and Road Initiative (BRI), or One Belt One Road, in 2013. Often referred to as the New Silk Road, the BRI aims to establish economic corridors for trade logistics. The World Bank estimates that the BRI could boost trade flows by 4.1% and reduce trade costs by 1.1% [14]. In response, the Biden administration proposed the India-Middle East and Europe Economic Corridor (IMEC) in September 2023 to strengthen transport and communication links between Europe and Asia as a countermeasure to China’s BRI. IMEC has been well received by participating countries, with expectations of fostering economic growth, enhancing connectivity and potentially rebalancing trade and economic relations between the EU and China [15]. Both BRI and IMEC are ambitious projects aimed at boosting international trade through substantial investments in trade logistics infrastructure. Each seeks to assert governance over international trade channels, signalling that the supply chain war may soon evolve into a trade channel war between China and the USA. 3.2 Economic corridors Economic corridors are transport networks designed to support and facilitate the movement of goods, services, people and information. These corridors often include integrated infrastructure, such as highways, railways and ports, linking cities or even countries (Octaviano and Trishia, 2014). They are typically established to connect manufacturing hubs, high-supply and high-demand areas, and producers of value-added goods. Economic corridors comprise both hard infrastructure – such as trade facilities – and soft infrastructure, including trade facilitation and capacity-building measures. The Asian Development Bank introduced the term “economic corridor” in 1998 to describe networks connecting various economic agents within a region [16]. Economic corridors are integrated trade logistics networks, providing essential infrastructure for connecting regional segments of supply chains. As supply chains increasingly operate in regional “chunks,” linking these segments becomes ever more important. Economic corridors typically include a network of transport infrastructure, such as highways, railways, terminals and ports. Initiatives like the BRI and IMEC use economic corridors as instruments of economic diplomacy, shifting strategies from hard power to soft power, as shown in Figure 7. Because less-developed or developing countries often lack sufficient funding to invest in trade logistics, they tend to welcome these initiatives from developed countries, which offer international collaboration and support. However, these initiatives usually come with the condition that participating countries must accept standardised trade processes and governance led by the sponsoring developed country.  Figure 7 Economic corridor initiatives as economic diplomacy To succeed, economic corridors must meet three key conditions [17]. First, government intervention is essential, as economic corridor initiatives primarily involve public infrastructure investments beyond the scope of the private sector. In realising these projects, governments must reconcile three tensions to ensure their policies are mutually supportive: tensions between politics and economics, between international and domestic pressures and between governments and other stakeholders. Second, intermediate outcomes should be measured and demonstrated as results of economic corridors, allowing participants to experience tangible benefits throughout these longer-term projects. Finally, economic corridors should deliver broader benefits. Participants need incentives to utilise the infrastructure sustainably. These benefits may extend beyond economic welfare, such as wages and income, to include social inclusion, equity and environmental gains, which support the long-term viability of the infrastructure. 4. BRI vs IMEC4.1 Belt and Road Initiative (BRI) - Silk Road The BRI can be a modern-day realisation of the Silk Road concept, connecting Europe as a market base with China as a production base. Unlike the ancient Silk Road, which connected trade routes across Eurasia, the BRI poses potential challenges due to its extensive connectivity. Firstly, there are social and environmental externalities, such as increased congestion and accidents from concentrating traffic flows through limited links and nodes within trade networks. Secondly, while the connectivity may benefit the production and market bases at either end, regions situated between these hubs, through which highways and railways pass, may gain minimal advantage. Thirdly, there is often a mismatch between where costs and benefits are realised. Transit regions that facilitate network traffic often see fewer direct benefits compared to high-density nodes within the network. 4.2 India-Middle East and Europe Economic Corridor (IMEC) - The Spice Road The ancient Spice Roads once connected the Middle East and Northeast Africa with Europe, facilitating the exchange of goods such as cinnamon, ginger, pepper and cassia, which, like silk, served as a form of currency. The IMEC proposes a modern route from India to Europe through the United Arab Emirates (UAE), Saudi Arabia, Israel and Greece. Since its announcement in September 2023, some regional experts have expressed reservations about its feasibility, particularly regarding the connection between the Middle East and Israel. The project has faced delays due to the Israel–Hamas war. Despite these challenges, IMEC holds potential to drive economic growth and strengthen connectivity, especially as countries like Vietnam and India emerge as alternative manufacturing bases for companies relocating from China. For Saudi Arabia and the UAE, IMEC is not viewed as a challenge to China but rather as an opportunity to diversify their economies and solidify their roles within the Middle East region [18]. 5. Conclusion A new trade war between China and the USA has begun, with the Biden Administration’s introduction of IMEC as a counter to China’s BRI. This shift could soon transform the nature of economic war from a focus on supply chains to one on trade channels. The China manufacturing exodus was further accelerated by supply disruptions during the COVID-19 pandemic. Amidst the economic tensions between China and the USA, the restructuring of global supply chains into regional networks has made significant progress. With China maintaining its stance on export controls for strategic items, South Korea must prepare for resilient supply chain management. In relation to China–Korea FTA, which is currently undergoing its second phase of negotiation, South Korea should seek clarity on the transparency of China’s strategic item controls. The Committee on Foreign Investment in the United States (CFIUS) plays a key role in monitoring the quality of inbound investments; similarly, South Korea is experiencing increased inbound investment due to the manufacturing shift from China and should apply similar standards to evaluate investment quality. This emerging economic war between China and the USA is now marked by the competing initiatives of the BRI and IMEC. The BRI can be viewed as a modern Silk Road, linking China with Europe, while the IMEC seeks to establish a trade logistics corridor connecting Saudi Arabia, the UAE, Israel and Greece. The South Korean Government should take proactive steps to prepare for the evolving dynamics of the trade war between China and the USA. CitationOh, J.S. (2025), "International trade war - Spice Road against Silk Road", International Trade, Politics and Development, Vol. 9 No. 1, pp. 2-11. https://doi.org/10.1108/ITPD-06-2024-0031  Notes 1. https://www.investopedia.com/terms/s/supplychain.asp2. According to Gary Gereffi et al, 5 governance types of a lead company could be categorised as market, modular, relational, captive and hierarchy.3. Korea imports urea from 12 countries including Qatar, Vietnam, Indonesia and Saudi Arabia, in addition to China.4. https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials/strategic-projects-under-crma_en5. IPEF was launched on May 23,2022 at Tokyo. 14 member countries are Australia, Brunei, Fiji, India, Indonesia, Japan, Republic of Korea, Malaysia, New Zealand, Philippines, Singapore, Thailand, Vietnam and the USA. 4 Pillar of IPEF are Trade (Pillar 1), Supply Chain (Pillar 2),Clean Economy (Pillar 3) and Fair Economy (Pillar 4).6. Critics say “lack of substantive actions and binding commitments, instead focusing on process-driven framework building.” https://www.piie.com/blogs/realtime-economics/its-time-ipef-countries-take-action-supply-chain-resilience7. https://ec.europa.eu/commission/presscorner/detail/en/ip_22_54438. As of 2023, the first-largest trade partner of Korea is China (Trade volume of $267.66bn), the second is the US ($186.96bn) and the third is Vietnam ($79.43bn)9. As preferential ROO contain the labour value content requirement in the USMCA, it could increase compliance costs for importers. https://crsreports.congress.gov/product/pdf/RL/RL3452410. USITC(1996), Country of Origin Marking: Review of Laws, Regulations and Practices, USITC Publication 2975, July, pp. 2–411. https://www.barrons.com/articles/hong-kong-financial-center-china-46ba5d3612. Porter identifies a value chain broken in five primary activities: inbound logistics, operations, outbound logistics, marketing and sales and post-sale services. https://www.usitc.gov/publications/332/journals/concepts_approaches_in_gvc_research_final_april_18.pdf13. MAU is a metric commonly used to identify the number of unique users who engage with apps and website. MAU is an important measurement to the level of platform competitiveness in the digital trade logistics or e-commerce industry.14. https://home.kpmg/xx/en/home/insights/2019/12/china-belt-and-road-initiative-and-the-global-chemical-industry.html15. https://www.bradley.com/insights/publications/2023/10/the-india-middle-east-europe-economic-corridor-prospects-and-challenges-for-us-businesses16. The Asian Development Bank (ADB), which first used the term in 1998, defines economic corridors as important networks or connections between economic agents along a defined geography, which link the supply and demand sides of markets. http://research.bworldonline.com/popular-economics/story.php?id=350&title=Economic-corridors-boost-markets,-living-conditions17. Legovini et al. (2020) comments traditional cross border agreements of transport investment focuses only on a narrow set of direct benefits and cost. However, economic corridors can entail much wider economic benefits and costs such as trade and economic activity, structural change, poverty reduction, pollution and deforestation.18. Arab Centre Washington D.C. https://arabcenterdc.org/resource/the-geopolitics-of-the-india-middle-east-europe-economic-corridor/ References Bayne, N. (2017), Challenge and Response in the New Economic Diplomacy, 4th ed., The New Economic Diplomacy, Routledge, London, p. 19.Blanchard, J.M.F. and Ripsman, N.M. (2008), “A political theory of economic statecraft”, Foreign Policy Analysis, Vol. 4, pp. 371-398, doi: 10.1111/j.1743-8594.2008.00076.x.Gereffi, G., Humphrey, J. and Sturgeon, T. (2005), “The governance of value chain”, Review of International Political Economy, Vol. 12 No. 1, pp. 78-104, doi: 10.1080/09692290500049805.Kraljic, P. (1983), “Purchasing must be supply management”, Harvard Business Review, Vol. 61 No. 5, September.Legovini, A., Duhaut, A. and Bougna, T. (2020), “Economic corridors-transforming the growth potential of transport investments”, p. 10.Octaviano, B.Y. and Trishia, P. (2014), Economic Corridors Boost Markets, Living Conditions, Business World Research, Islamabad, October.United States International Trade Commission (USITC) (1996), “Country of origin marking: Review of Laws, Regulations, and Practices”, USITC Publication, Vol. 2975, July, pp. 2-4.Further readingPorter, M. (1985), Competitive Advantage: Creating and Sustaining Superior Performance, Free Press.Putman, R.D. (1988), “Diplomacy and domestic politics; the logic of two-level games”, International Organization, Vol. 42 No. 4, pp. 427-600.USITC (2019), “Global value chain analysis: concepts and approaches”, Journal of International Commerce and Economics, April, pp. 1-29.

Energy & Economics
Comparison of Drought and flood metaphor for climate change and extreme weather.

Global Climate Agreements: Successes and Failures

by Clara Fong , Lindsay Maizland

International efforts, such as the Paris Agreement, aim to reduce greenhouse gas emissions. But experts say countries aren’t doing enough to limit dangerous global warming. Summary Countries have debated how to combat climate change since the early 1990s. These negotiations have produced several important accords, including the Kyoto Protocol and the Paris Agreement. Governments generally agree on the science behind climate change but have diverged on who is most responsible, how to track emissions-reduction goals, and whether to compensate harder-hit countries. The findings of the first global stocktake, discussed at the 2023 UN Climate Summit in Dubai, United Arab Emirates (UAE), concluded that governments need to do more to prevent the global average temperature from rising by 1.5°C. Introduction Over the last several decades, governments have collectively pledged to slow global warming. But despite intensified diplomacy, the world is already facing the consequences of climate change, and they are expected to get worse. Through the Kyoto Protocol and Paris Agreement, countries agreed to reduce greenhouse gas emissions, but the amount of carbon dioxide in the atmosphere keeps rising, heating the Earth at an alarming rate. Scientists warn that if this warming continues unabated, it could bring environmental catastrophe to much of the world, including staggering sea-level rise, devastating wildfires, record-breaking droughts and floods, and widespread species loss. Since negotiating the Paris accord in 2015, many of the 195 countries that are party to the agreement have strengthened their climate commitments—to include pledges on curbing emissions and supporting countries in adapting to the effects of extreme weather—during the annual UN climate conferences known as the Conference of the Parties (COP). While experts note that clear progress has been made towards the clean energy transition, cutting current emissions has proven challenging for the world’s top emitters. The United States, for instance, could be poised to ramp up fossil fuel production linked to global warming under the Donald Trump administration, which has previously minimized the effects of climate change and has withdrawn twice from the Paris Agreement. What are the most important international agreements on climate change? Montreal Protocol, 1987. Though not intended to tackle climate change, the Montreal Protocol [PDF] was a historic environmental accord that became a model for future diplomacy on the issue. Every country in the world eventually ratified the treaty, which required them to stop producing substances that damage the ozone layer, such as chlorofluorocarbons (CFCs). The protocol has succeeded in eliminating nearly 99 percent of these ozone-depleting substances. In 2016, parties agreed via the Kigali Amendment to also reduce their production of hydrofluorocarbons (HFCs), powerful greenhouse gases that contribute to climate change. UN Framework Convention on Climate Change (UNFCCC), 1992. Ratified by 197 countries, including the United States, the landmark accord [PDF] was the first global treaty to explicitly address climate change. It established an annual forum, known as the Conference of the Parties, or COP, for international discussions aimed at stabilizing the concentration of greenhouse gases in the atmosphere. These meetings produced the Kyoto Protocol and the Paris Agreement. Kyoto Protocol, 2005. The Kyoto Protocol [PDF], adopted in 1997 and entered into force in 2005, was the first legally binding climate treaty. It required developed countries to reduce emissions by an average of 5 percent below 1990 levels, and established a system to monitor countries’ progress. But the treaty did not compel developing countries, including major carbon emitters China and India, to take action. The United States signed the agreement in 1998 but never ratified it and later withdrew its signature.  Paris Agreement, 2015. The most significant global climate agreement to date, the Paris Agreement requires all countries to set emissions-reduction pledges. Governments set targets, known as nationally determined contributions (NDCs), with the goals of preventing the global average temperature from rising 2°C (3.6°F) above preindustrial levels and pursuing efforts to keep it below 1.5°C (2.7°F). It also aims to reach global net-zero emissions, where the amount of greenhouse gases emitted equals the amount removed from the atmosphere, in the second half of the century. (This is also known as being climate neutral or carbon neutral.) The United States, the world’s second-largest emitter, is the only country to withdraw from the agreement, a move President Donald Trump made during his first administration in 2017. While former President Joe Biden reentered the agreement during his first day in office, Trump again withdrew the United States on the first day of his second administration in 2025. Three other countries have not formally approved the agreement: Iran, Libya, and Yemen. Is there a consensus on the science of climate change? Yes, there is a broad consensus among the scientific community, though some deny that climate change is a problem, including politicians in the United States. When negotiating teams meet for international climate talks, there is “less skepticism about the science and more disagreement about how to set priorities,” says David Victor, an international relations professor at the University of California, San Diego. The basic science is that:• the Earth’s average temperature is rising at an unprecedented rate; • human activities, namely the use of fossil fuels—coal, oil, and natural gas—are the primary drivers of this rapid warming and climate change; and,• continued warming is expected to have harmful effects worldwide. Data taken from ice cores shows that the Earth’s average temperature is rising more now than it has in eight hundred thousand years. Scientists say this is largely a result of human activities over the last 150 years, such as burning fossil fuels and deforestation. These activities have dramatically increased the amount of heat-trapping greenhouse gases, primarily carbon dioxide, in the atmosphere, causing the planet to warm. The Intergovernmental Panel on Climate Change (IPCC), a UN body established in 1988, regularly assesses the latest climate science and produces consensus-based reports for countries. Why are countries aiming to keep global temperature rise below 1.5°C? Scientists have warned for years of catastrophic environmental consequences if global temperature continues to rise at the current pace. The Earth’s average temperature has already increased approximately 1.1°C above preindustrial levels, according to a 2023 assessment by the IPCC. The report, drafted by more than two hundred scientists from over sixty countries, predicts that the world will reach or exceed 1.5°C of warming within the next two decades even if nations drastically cut emissions immediately. (Several estimates report that global warming already surpassed that threshold in 2024.) An earlier, more comprehensive IPCC report summarized the severe effects expected to occur when the global temperature warms by 1.5°C: Heat waves. Many regions will suffer more hot days, with about 14 percent of people worldwide being exposed to periods of severe heat at least once every five years. Droughts and floods. Regions will be more susceptible to droughts and floods, making farming more difficult, lowering crop yields, and causing food shortages.  Rising seas. Tens of millions of people live in coastal regions that will be submerged in the coming decades. Small island nations are particularly vulnerable. Ocean changes. Up to 90 percent of coral reefs will be wiped out, and oceans will become more acidic. The world’s fisheries will become far less productive. Arctic ice thaws. At least once a century, the Arctic will experience a summer with no sea ice, which has not happened in at least two thousand years. Forty percent of the Arctic’s permafrost will thaw by the end of the century.  Species loss. More insects, plants, and vertebrates will be at risk of extinction.  The consequences will be far worse if the 2°C threshold is reached, scientists say. “We’re headed toward disaster if we can’t get our warming in check and we need to do this very quickly,” says Alice C. Hill, CFR senior fellow for energy and the environment. Which countries are responsible for climate change? The answer depends on who you ask and how you measure emissions. Ever since the first climate talks in the 1990s, officials have debated which countries—developed or developing—are more to blame for climate change and should therefore curb their emissions. Developing countries argue that developed countries have emitted more greenhouse gases over time. They say these developed countries should now carry more of the burden because they were able to grow their economies without restraint. Indeed, the United States has emitted the most of all time, followed by the European Union (EU).   However, China and India are now among the world’s top annual emitters, along with the United States. Developed countries have argued that those countries must do more now to address climate change.   In the context of this debate, major climate agreements have evolved in how they pursue emissions reductions. The Kyoto Protocol required only developed countries to reduce emissions, while the Paris Agreement recognized that climate change is a shared problem and called on all countries to set emissions targets. What progress have countries made since the Paris Agreement? Every five years, countries are supposed to assess their progress toward implementing the agreement through a process known as the global stocktake. The first of these reports, released in September 2023, warned governments that “the world is not on track to meet the long-term goals of the Paris Agreement.” That said, countries have made some breakthroughs during the annual UN climate summits, such as the landmark commitment to establish the Loss and Damage Fund at COP27 in Sharm el-Sheikh, Egypt. The fund aims to address the inequality of climate change by providing financial assistance to poorer countries, which are often least responsible for global emissions yet most vulnerable to climate disasters. At COP28, countries decided that the fund will be initially housed at the World Bank, with several wealthy countries, such as the United States, Japan, the United Kingdom, and EU members, initially pledging around $430 million combined. At COP29, developed countries committed to triple their finance commitments to developing countries, totalling $300 billion annually by 2035. Recently, there have been global efforts to cut methane emissions, which account for more than half of human-made warming today because of their higher potency and heat trapping ability within the first few decades of release. The United States and EU introduced a Global Methane Pledge at COP26, which aims to slash 30 percent of methane emissions levels between 2020 and 2030. At COP28, oil companies announced they would cut their methane emissions from wells and drilling by more than 80 percent by the end of the decade. However, pledges to phase out fossil fuels were not renewed the following year at COP29. Are the commitments made under the Paris Agreement enough? Most experts say that countries’ pledges are not ambitious enough and will not be enacted quickly enough to limit global temperature rise to 1.5°C. The policies of Paris signatories as of late 2022 could result in a 2.7°C (4.9°F) rise by 2100, according to the Climate Action Tracker compiled by Germany-based nonprofits Climate Analytics and the NewClimate Institute. “The Paris Agreement is not enough. Even at the time of negotiation, it was recognized as not being enough,” says CFR’s Hill. “It was only a first step, and the expectation was that as time went on, countries would return with greater ambition to cut their emissions.” Since 2015, dozens of countries—including the top emitters—have submitted stronger pledges. For example, President Biden announced in 2021 that the United States will aim to cut emissions by 50 to 52 percent compared to 2005 levels by 2030, doubling former President Barack Obama’s commitment. The following year, the U.S. Congress approved legislation that could get the country close to reaching that goal. Meanwhile, the EU pledged to reduce emissions by at least 55 percent compared to 1990 levels by 2030, and China said it aims to reach peak emissions before 2030. But the world’s average temperature will still rise more than 2°C (3.6°F) by 2100 even if countries fully implement their pledges for 2030 and beyond. If the more than one hundred countries that have set or are considering net-zero targets follow through, warming could be limited to 1.8˚C (3.2°F), according to the Climate Action Tracker.   What are the alternatives to the Paris Agreement? Some experts foresee the most meaningful climate action happening in other forums. Yale University economist William Nordhaus says that purely voluntary international accords like the Paris Agreement promote free-riding and are destined to fail. The best way to cut global emissions, he says, would be to have governments negotiate a universal carbon price rather than focus on country emissions limits. Others propose new agreements [PDF] that apply to specific emissions or sectors to complement the Paris Agreement.  In recent years, climate diplomacy has occurred increasingly through minilateral groupings. The Group of Twenty (G20), representing countries that are responsible for 80 percent of the world’s greenhouse gas pollution, has pledged to stop financing new coal-fired power plants abroad and agreed to triple renewable energy capacity by the end of this decade. However, G20 governments have thus far failed to set a deadline to phase out fossil fuels. In 2022, countries in the International Civil Aviation Organization set a goal of achieving net-zero emissions for commercial aviation by 2050. Meanwhile, cities around the world have made their own pledges. In the United States, more than six hundred local governments [PDF] have detailed climate action plans that include emissions-reduction targets. Industry is also a large source of carbon pollution, and many firms have said they will try to reduce their emissions or become carbon neutral or carbon negative, meaning they would remove more carbon from the atmosphere than they release. The Science Based Targets initiative, a UK-based company considered the “gold standard” in validating corporate net-zero plans, says it has certified the plans of  over three thousand firms, and aims to more than triple this total by 2025. Still, analysts say that many challenges remain, including questions over the accounting methods and a lack of transparency in supply chains. Recommended Resources This timeline tracks UN climate talks since 1992. CFR Education’s latest resources explain everything to know about climate change.  The Climate Action Tracker assesses countries’ updated NDCs under the Paris Agreement. CFR Senior Fellow Varun Sivaram discusses how the 2025 U.S. wildfires demonstrate the need to rethink climate diplomacy and adopt a pragmatic response to falling short of global climate goals. In this series on climate change and instability by the Center for Preventive Action, CFR Senior Fellow Michelle Gavin looks at the consequences for the Horn of Africa and the National Defense University’s Paul J. Angelo for Central America. This backgrounder by Clara Fong unpacks the global push for climate financing.

Energy & Economics
Prime Minister of India Narendra Modi and President of the People’s Republic of China Xi Jinping before the beginning of the BRICS Leaders' meeting.

Bridges or bargains? Examining India and China’s infrastructure expansion in South Asia

by Bharadaz Uday Hazarika

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском India races to match China’s growing influence in South Asia In recent decades, South Asian nations have emerged as pivotal destination points for major infrastructure investments from both India and China. Stretching from the shores of the Indian Ocean to the Himalayan foothills, the growing footprint of these two regional powers is reshaping the landscape of development. While many projects share similar outcomes, they have also raised concerns about their impact on local economies and everyday life. China’s Belt and Road Initiative: Initiation and controversy   Credits: Proposed Belt and Road Initiative. Illustrated in 2017 by Lommes, via Wikimedia Commons. CC BY-SA 4.0. First initiated in 2013, China’s Belt and Road Initiative (BRI) is considered one of the most ambitious international infrastructure endeavours in recent history. Spanning more than 150 nations and involving over USD 1 trillion in investments, the BRI has supported the development of ports, railroads, highways, and energy networks throughout Asia, Africa, and Latin America. As per the Green Finance and Development Center, there has been a revival in BRI financing after the COVID-19 pandemic, largely driven by Chinese policy banks and state-owned companies. In Sri Lanka, however, the BRI has become a cautionary example. The Hambantota Port, built with loans from the Export-Import Bank of China, failed to generate the expected revenue. In 2017, the Sri Lankan government granted a 99-year lease to China Merchants Port Holdings, raising concerns over sovereignty and economic vulnerability. Critics, particularly in Western media, have pointed to this as evidence of what they describe as China’s “debt-trap diplomacy” — a claim that Chinese officials strongly deny. However, some scholars argue that the term “debt-trap diplomacy” is misleading. Deborah Brautigam of Johns Hopkins University argues in her 2020 article “A critical look at Chinese ‘debt-trap diplomacy’: the rise of a meme” argued that debt crises in countries such as Sri Lanka are mainly caused by domestic mismanagement, aggressive infrastructure spending, and global economic pressures — rather than coercion by China. In Bangladesh, foreign initiatives have significantly influenced the country's infrastructure and energy landscape. A key example is the Payra Power Plant, a USD 2.48 billion coal-fired project constructed under the BRI framework with Chinese funding and technical expertise. The plant, operational since 2020, has helped alleviate chronic energy shortages but has been criticized for its environmental footprint and reliance on imported coal. Moreover, concerns have emerged regarding its long-term sustainability and alignment with Bangladesh’s climate commitments under the 2015 Paris Agreement. Another flagship BRI project is the Dhaka Elevated Expressway, a 20-kilometer-long project linking the capital’s airport to major industrial areas. Executed by the China Major Bridge Engineering Company, the project was structured as a public-private partnership under a 25-year build-own-transfer model. While it is expected to ease traffic congestion and boost logistics efficiency, experts have flagged the lack of competitive bidding and limited transparency in financial arrangements. In March 2025, during an official visit to China, Bangladesh's Chief Adviser, Muhammad Yunus, successfully secured a pledge of a total of USD 2.1 billion in investments, loans, and grants for Bangladesh, marking a significant step in strengthening bilateral cooperation between the two countries. In the Maldives, Chinese loans under the BRI supported major housing projects and the Sinamalé Bridge, an important link between Malé and Hulhulé Island. In 2018, reports indicated that the Maldives’ total public debt rose to 72 percent of its GDP, reaching around USD 3.8 billion. By early 2024, worries have resurfaced as the Maldives’ total debt rose to approximately USD 8.2 billion — 116.5 percent of its GDP in the first quarter, up from 110.4 percent during the same period the previous year. About half of that is external debt, with a big portion owed to China, which has extended loans totalling USD 1.37 billion to the country. The growing debt burden has sparked concerns regarding autonomy and repayment conditions. However, Maldives President Mohamed Muizzu has described China as “one of the Maldives’ closest allies and development partners.” He has pledged to deepen cooperation under the Belt and Road Initiative (BRI), with a focus on infrastructure development. In January 2025, the China Machinery Engineering Corporation (CMEC) signed a deal with the Maldivian Ministry of Construction, Housing, and Infrastructure to build major infrastructure on Gulhifalhu Island in the Malé Atoll, further expanding China’s footprint in the country. India’s rise: Neighbourhood First and Act East India, long seen as a regional power, is increasingly using infrastructure as a tool of foreign diplomacy. However, with the exception of Bhutan, most of India’s South Asian neighbors have joined China’s Belt and Road Initiative (BRI), leading to a significant rise in Chinese investments across the region. Since 2018, China has invested more than USD 150 billion in the economies of Bangladesh, the Maldives, Myanmar, Nepal, and Sri Lanka. China’s expanding influence has raised concerns in India, and in response, Prime Minister Narendra Modi has strengthened India’s regional outreach through the “Neighbourhood First” policy, aimed at deepening ties between South Asian countries. Complementing this is the “Act East” policy, which focuses on building closer partnerships with Southeast Asia and the broader Asia-Pacific region. Unlike China’s debt-driven mega-projects, India’s approach emphasizes three core principles: transparency, respect for sovereignty, and people-centric development. India’s infrastructure engagement in Sri Lanka has largely focused on strategic support, including over USD 4 billion in credit lines during the country’s 2022 economic crisis. This assistance covered essential imports such as fuel and food and played a key role in stabilizing the Sri Lankan economy. India has also contributed to energy cooperation, particularly through projects like the Trincomalee Oil Tank Farm and renewable energy initiatives in the north. However, these efforts have drawn criticism regarding transparency and local impact. For instance, a USD 442 million wind energy project awarded to India’s Adani Group without a competitive bidding process sparked concerns over environmental oversight and national sovereignty. India’s flagship initiative in the Maldives — the USD 500 million Greater Malé Connectivity Project (GMCP) — faced backlash from the “India Out” movement, led by opposition figures in 2022 who claimed the project threatened national sovereignty and enabled a foreign military presence. The protest underscored the fragile balance between development and concerns over external influence. In an effort to rebuild trust, India launched a USD 110 million sanitation project in 2024, covering 28 Maldivian islands. Construction on the GMCP resumed in February 2025 following diplomatic negotiations. As a goodwill gesture, India introduced visa-free travel for Maldivian citizens in March 2025 to help repair bilateral ties. The Maitree Super Thermal Power Project, a joint venture between India and Bangladesh with equal stakes, currently provides 1,320 MW to Bangladesh’s grid through its coal-fired facility in Rampal, Khulna, financed under India’s special financing program. A number of projects, such as the Bangladesh-India Friendship Pipeline, have been indefinitely suspended due to the August 2024 change of government in Bangladesh. On April 4, 2025, Modi met with Muhammad Yunus on the sidelines of the BIMSTEC Summit in Bangkok, holding talks for the first time since 2024. The meeting opened up opportunities for reconciliation and restarting the paused projects. The road ahead Despite a history of tension, China and India are key players in South Asia, each with different strategies. China focuses on large-scale BRI projects, while India prioritizes connectivity and capacity building. However, there are areas where India’s and China’s interests overlap, which creates room for cooperation. With South Asia’s infrastructure needs reaching into the trillions, both countries’ initiatives are complementing each other, expanding their influence through trade and investment. While India gains from improved connectivity and trade with its neighbors, it will need to strengthen its economic diplomacy to keep pace with China’s growing influence in today’s geopolitical landscape.

Energy & Economics
The image displays mineral rocks alongside US currency and flags of Ukraine and the USA, highlighting the complex relationship involving economics, power, and resources.

Why Zelensky – not Trump – may have ‘won’ the US-Ukraine minerals deal

by Eve Warburton , Olga Boichak

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском Last week, the Trump administration signed a deal with Ukraine that gives it privileged access to Ukraine’s natural resources. Some news outlets described the deal as Ukrainian President Volodymyr Zelensky “caving” to US President Donald Trump’s demands. But we see the agreement as the result of clever bargaining on the part of Ukraine’s war-time president. So, what does the deal mean for Ukraine? And will this help strengthen America’s mineral supply chains? Ukraine’s natural resource wealth Ukraine is home to 5% of the world’s critical mineral wealth, including 22 of the 34 minerals identified by the European Union as vital for defence, construction and high-tech manufacturing. However, there’s a big difference between resources (what’s in the ground) and reserves (what can be commercially exploited). Ukraine’s proven mineral reserves are limited. Further, Ukraine has an estimated mineral wealth of around US$14.8 trillion (A$23 trillion), but more than half of this is in territories currently occupied by Russia. What does the new deal mean for Ukraine? American support for overseas conflict is usually about securing US economic interests — often in the form of resource exploitation. From the Middle East to Asia, US interventions abroad have enabled access for American firms to other countries’ oil, gas and minerals. But the first iteration of the Ukraine mineral deal, which Zelensky rejected in February, had been an especially brazen resource grab by Trump’s government. It required Ukraine to cede sovereignty over its land and resources to one country (the US), in order to defend itself from attacks by another (Russia). These terms were highly exploitative of a country fighting against a years-long military occupation. In addition, they violated Ukraine’s constitution, which puts the ownership of Ukraine’s natural resources in the hands of the Ukrainian people. Were Zelensky to accept this, he would have faced a tremendous backlash from the public. In comparison, the new deal sounds like a strategic and (potentially) commercial win for Ukraine. First, this agreement is more just, and it’s aligned with Ukraine’s short- and medium-term interests. Zelenksy describes it as an “equal partnership” that will modernise Ukraine. Under the terms, Ukraine will set up a United States–Ukraine Reconstruction Investment Fund for foreign investments into the country’s economy, which will be jointly governed by both countries. Ukraine will contribute 50% of the income from royalties and licenses to develop critical minerals, oil and gas reserves, while the US can make its contributions in-kind, such as through military assistance or technology transfers. Ukraine maintains ownership over its natural resources and state enterprises. And the licensing agreements will not require substantial changes to the country’s laws, or disrupt its future integration with Europe. Importantly, there is no mention of retroactive debts for the US military assistance already received by Ukraine. This would have created a dangerous precedent, allowing other nations to seek to claim similar debts from Ukraine. Finally, the deal also signals the Trump administration’s commitment to “a free, sovereign and prosperous Ukraine” – albeit, still without any security guarantees. Profits may be a long time coming Unsurprisingly, the Trump administration and conservative media in the US are framing the deal as a win. For too long, Trump argues, Ukraine has enjoyed US taxpayer-funded military assistance, and such assistance now has a price tag. The administration has described the deal to Americans as a profit-making endeavour that can recoup monies spent defending Ukrainian interests. But in reality, profits are a long way off. The terms of the agreement clearly state the fund’s investment will be directed at new resource projects. Existing operations and state-owned projects will fall outside the terms of the agreement. Mining projects typically work within long time frames. The move from exploration to production is a slow, high-risk and enormously expensive process. It can often take over a decade. Add to this complexity the fact that some experts are sceptical Ukraine even has enormously valuable reserves. And to bring any promising deposits to market will require major investments. What’s perhaps more important It’s possible, however, that profits are a secondary calculation for the US. Boxing out China is likely to be as – if not more – important. Like other Western nations, the US is desperate to diversify its critical mineral supply chains. China controls not just a large proportion of the world’s known rare earths deposits, it also has a monopoly on the processing of most critical minerals used in green energy and defence technologies. The US fears China will weaponise its market dominance against strategic rivals. This is why Western governments increasingly make mineral supply chain resilience central to their foreign policy and defence strategies. Given Beijing’s closeness to Moscow and their deepening cooperation on natural resources, the US-Ukraine deal may prevent Russia — and, by extension, China — from accessing Ukrainian minerals. The terms of the agreement are explicit: “states and persons who have acted adversely towards Ukraine must not benefit from its reconstruction”. Finally, the performance of “the deal” matters just as much to Trump. Getting Zelensky to sign on the dotted line is progress in itself, plays well to Trump’s base at home, and puts pressure on Russian President Vladimir Putin to come to the table. So, the deal is a win for Zelensky because it gives the US a stake in an independent Ukraine. But even if Ukraine’s critical mineral reserves turn out to be less valuable than expected, it may not matter to Trump.

Energy & Economics
Flags of America and China atand on table during talks between diplomats and businessmen. American and Chinese representatives sit opposite each other to discuss relations between countries.

China and US agree to cut tariffs imposed in April

by Abdul Rahman

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском The agreement was an acknowledgment of the significance of their trade for mutual economic development and the health of the global economy, the joint statement says. China and the US agreed to roll back high tariffs imposed on one another last month for a period of 90 days. The agreement was announced in a joint statement issued on Monday, May 12. The agreement was a result of a high-level meeting on trade and economic affairs held between Chinese and US delegations in Geneva, Switzerland over the weekend. As described in a press conference on Monday by the US Treasury Secretary Scott Bessent who was part of the US delegation, both sides have agreed to reduce the tariffs by 115%. That would mean that the US will reduce its tariffs on China to 30% from its present 145% while the Chinese will lower their tariffs to 10% from its present 125%. These new tariff rates would be effective from Wednesday for the next 90 days. Both the countries also agreed to explore a more stable arrangement in the interim period. China also agreed to reverse additional measures imposed in response to US President Donald Trump’s tariff war, such as putting various US companies on the sanctions list and placing export controls on rare earth minerals. The parties committed to taking these measures as an acknowledgment of the mutual significance of their bilateral trade and its importance for the global economy and for “moving forward in the spirit of mutual opening, continued communication, cooperation and mutual respect,” a joint statement says. The 30% US tariff includes a 10% baseline tariff imposed on all imports by Trump in April after suspending his reciprocal tariff regime for 90 days, and a 20% tariff imposed by the Trump administration before April in the name of stopping the illegal flow of the drug fentanyl. Answering a question on the cooperation between both the countries over fentanyl, the spokesperson of the Chinese Foreign Ministry Lin Jian criticized “the wrongly slapped tariffs on Chinese imports” by citing the issue and claiming that “if the US truly wants to cooperate with China, it should stop vilifying and shifting the blame.” Jian also advised the US “to seek dialogue with China based on equality, respect and mutual benefit.” Relief for the global economy  Trump announced a reciprocal tariff regime on April 2 against all those countries which had a trade surplus with the US, including China. After global backlash, Trump later postponed the implementation of the regime for 90 days, inviting countries to seek bilateral agreements to avoid high tariffs while imposing a 10% common tariff. The Trump administration had claimed that reciprocal tariffs were required in order to lower the US trade deficit, which is over a trillion dollars. China, the third largest trade partner of the US, faced the highest tariff rates under Trump’s tariff war and chose to retaliate. It also called the policy a violation of international law and an attempt by the US to weaponize trade. On Tuesday, Chinese President Xi Jinping reiterated his country’s position that there are no winners in trade and tariff wars, claiming bullying and hegemony will only result in self-isolation. He was addressing the fourth ministerial meeting of the China-CELAC (Community of Latin American and Caribbean States) forum in Beijing. The tariff war between the world’s leading economies was seen as a disaster for the global economy and trade. A large number of US businesses had also opposed Trump’s tariff war. They had claimed high tariffs may lead to a rise in prices which harm both the consumer and domestic production. Several businesses filed lawsuits in the US claiming Trump’s reciprocal tariff regime was illegal and harmful for their ability to do business. US trade representative Jamieson Greer, who was part of the negotiating team in Geneva, claimed that the talks with various countries, including China, is the first step to reducing the US trade deficit and ending the national emergency declared by Trump to authorize the reciprocal tariff decrees, South China Morning Post reported. The Chinese Ministry of Commerce also hailed the agreement as “substantive progress” for mutual economic development. It expressed hope that “the US side will build on the meeting, continue to work with China in the same direction, completely rectify its wrong practices of unilateral tariff hikes, and keep strengthening mutually beneficial cooperation.” Acknowledging that “high levels of tariffs were equivalent to an embargo and neither side wanted that,” Bessent declared on Monday that the US wants a trade relationship with China, though a balanced one. The Chinese Ministry of Commerce also hoped that the US would pursue the matter much more seriously and “inject more certainty and stability into the world economy.” Both the countries have agreed to establish “a joint mechanism” to continue their trade and economic negotiations in future. Text under Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) license

Energy & Economics
US President Donald Trump and Benjamin Franklin's portrait on the back of the $100 bill. Trump imposes additional tariffs on many countries. New York. U.S. 20.04.2025

Tariffs: Zero-sum game or an own goal?

by Ottón Solís

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском By assuming that trade relations are a zero-sum game in which one party must lose for the other to win, and that a trade deficit represents a loss while a surplus represents a win, President Trump reveals a simplistic view far removed from the dynamics of international trade. Let’s imagine that the global economy is Central America, that Costa Rica imports more goods than it exports, and that other countries accept paper printed by its Central Bank — bills in colones — as payment for their exports. Furthermore, let’s assume that a good portion of their trade surpluses are used to buy Costa Rican government bonds and make deposits in its banks, accepting — due to confidence in the strength of its economy — lower interest rates than they might obtain in other markets, and that those debts can be paid with the same printed paper. Trade deficits arise because a significant share of Costa Rican consumers and investors prefer to source final, intermediate, and capital goods from other Central American countries where prices are lower than at home. In other words, those deficits are the result of a national choice to enjoy a higher quality of life and greater productivity than what its economy would otherwise allow. Under these circumstances, Costa Rica, far from being a victim of other countries’ policies, would actually be enjoying levels of consumption above its means and economic growth beyond what its productivity would justify. The willingness of those countries to hold the colones derived from their trade surpluses in Costa Rican government bonds and bank deposits results in lower interest rates in Costa Rica. This enables a higher sustainable level of public debt, greater investment at low cost to improve infrastructure and service quality, and lower interest rates for private investment — all of which contribute to a higher rate of economic growth without endangering macroeconomic stability. In such a scenario, making imports more expensive through tariffs to boost local production competitiveness and eliminate trade deficits would, one by one, remove these advantages — amounting to nothing more than an own goal. This remains true even if Central American countries did not retaliate by restoring relative competitiveness to its starting point, and even if Costa Rican investors were not left uncertain about whether a future government might remove the tariffs. The U.S. economy faces the world in a situation identical to that hypothetical scenario of Costa Rica. It takes advantage of the fact that with paper printed by its central bank — the dollar — can pay for the real production of other countries, allowing it to live far beyond its means. Far from being “cheated” by other nations, as Trump claims, the United States enjoys a standard of living well above its capacity precisely because of this. That does not mean the U.S. is cheating anyone, since it is thanks to its economic strength that the rest of the world accepts that paper as a means of payment and trusts in its government bonds and banking system. Thus, by assuming that trade relations are a “zero-sum game” — where one must lose for the other to win — and that a trade deficit signals losing while a surplus signals winning, President Trump ignores these realities. He reveals a board-game level of simplification, detached from the complex chessboard that defines international trade dynamics. It is nothing less than a massive own goal. Trade deficits are an economic problem for countries like Costa Rica, which must pay for their imports using foreign currency, often requiring them to take on debt and/or attract foreign investment through subsidies and tax exemptions. This combination of factors permanently threatens macroeconomic stability and forces governments to limit spending on infrastructure and social services to free up resources to cover interest payments and the growing fiscal costs of structuring an economy based on incentives to foreign companies. Adding to the absurdity of Trump’s proposals, his goal is to achieve trade surpluses with every country in the world. However, the United States does not produce coffee or cocoa; thus, with some of the countries that export these products, running trade deficits is not only inevitable but also beneficial for the U.S. Many countries in the region, even without the advantages the United States enjoys, are unlikely to avoid trade deficits — for example, with oil-producing countries or those manufacturing goods that incorporate cutting-edge technologies. In such cases, raising tariffs could severely damage their economies. Trump boasts that the countries affected by the tariffs are lining up to renegotiate, claiming that this was his goal. If so, it marks the beginning of an uncertain period, contaminated by threats and blackmail, with China standing by to benefit from the resentment against the United States. This scenario will severely affect private sector investment plans, employment, and economic growth — not only in the United States but around the world. Far from "Making America Great Again" (MAGA), Trump is diminishing both his country and the world while violating every rule of international trade, both global ones under the WTO framework and those contained in free trade agreements like CAFTA-DR. This, of course, validates the concerns of those of us who argued that such treaties did not guarantee protected access to the U.S. market against political or geopolitical shifts. In international relations, the historical rule has been that decisions are not based on any moral or legal absolutes but rather on the exercise of power from unequal positions ("might is right"). This is why we always doubted that a free trade agreement with weaker countries would truly guide the behavior of the United States. But Trump's overwhelming violations of international law (surprisingly and disappointingly supported by more than half of his country’s political establishment) strip the United States of any moral authority to criticize countries that do not act according to the rules. This imposing attitude, reaffirmed by Trump when he paraphrases emperors and tyrants — enemies of any democratic principle — who claimed that "those who save their country violate no law," leads us to a world where anything is permitted for those who hold power. From the perspective of the definition of civilization, a world where anything goes loses its value. It takes us back to the law of the jungle — the rule of the strongest, of violence and war, or of peace imposed by one over others, not through harmony and goodwill. This is not a new “Washington Consensus”, now guided by the mercantilism typical of the 18th and 19th centuries, because in this case neither multilateral organizations like the World Bank or the International Monetary Fund nor other Western powers share Trump’s decisions. Far from consensus, today the most frequently heard word in those circles is “retaliation”. Latin America will be affected by the potential decline in global GDP growth, the tariffs imposed on our exports, and the rise in interest rates resulting from inflation that could be triggered by higher import taxes in the United States. However, the region could benefit from the U.S. confrontation with its developed-world allies by strengthening economic ties with Europe, China, Japan, India, and other powers of the Global South — without, of course, abandoning the U.S. market. To achieve this, our governments must stop meekly following Trump’s directives, such as preventing Huawei from competing to sell us 5G technology, participating in a shameful deportation policy that violates fundamental human rights, or undermining Panama’s absolute sovereignty over the Canal. What is needed is to build and implement a foreign policy with dignity, one that best serves the interests of each of our countries — not the whims of a single power.