Subscribe to our weekly newsletters for free

Subscribe to an email

If you want to subscribe to World & New World Newsletter, please enter
your e-mail

Defense & Security
Chess made from USA, EU and China flags on a white background. Chess made from China, Europe Union and United States of America flags. Trade, tariffs, duty and customs war

Europe’s transatlantic China challenge

by Gesine Weber

Abstract European states currently lack a clear joint strategy on China and a coordinated approach to US–China competition. This article offers a novel perspective on the challenges for European approaches to this issue due to an omnipresent transatlantic component and the risk of an alliance dilemma. Illustratively focusing on France, Germany and the UK, it demonstrates that Europeans are facing a transatlantic alliance dilemma with the risks of abandonment and entrapment. It argues that Europe needs to strike a balance between its dependence on Washington, especially with regard to European security, while fearing entrapment by the US approach towards Beijing as it aims to maintain economic ties with China. The article concludes that the ramifications of this dilemma can be mitigated through a distinctly European approach to China, strengthening European coordination on China and bolstering European strategic autonomy. As a conceptual piece rather than a full empirical analysis, this article therefore unpacks the strategic challenge and lays the groundwork for further empirical works on the topic. Introduction Strategic competition between the US and China plays out in many realms of international affairs, ranging from global trade to security in the Indo-Pacific. European states are directly affected by this dynamic as they maintain critical ties with both sides. Albeit allies of the US through NATO, Europeans have been reluctant to align with the US on its approach to the Indo-Pacific and China, which is currently characterised by the quest to win the strategic competition with Beijing in all areas of international affairs (see Leoni 2023). Furthermore, Europe maintains close economic ties with Beijing, and imports from China to the EU have most recently increased (Lovely and Yan 2024). European governments certainly do not pursue an approach of maintaining equidistance between the US and China: not only do they regularly emphasise their strategic proximity to Washington, but more recent events, such as the willingness of European allies to publicly adopt the wording of the communiqué from NATO’s Washington summit (NATO 2024) describing China as an ‘enabler of Russia’s war effort in Ukraine’, clearly demonstrate that the tone is changing in European capitals (Politi 2023). However, Europeans still tend to emphasise China’s role in global affairs and the importance of including it in multilateral cooperation formats. With the re-election of Donald Trump as US president, European policy on China and its approach to US–China competition will increasingly be a focus of the US administration. While the exact approach of the new US government still remains to be defined, there are good reasons to anticipate a more hawkish China policy from Washington, through which the US might seek not only to further compete with China, but to actually win this competition (see Pottinger and Gallagher 2023). When designing their approaches towards China—which, among the key European states, only Germany has done so far, with the publication of its China strategy in 2023—Europeans always face a transatlantic elephant in the room. US–China competition, a structuring feature of international relations shaping the global order today through the increasing emergence of geopolitical blocs (see Leoni and Tzinieris 2024), and China’s rising global influence in almost all areas of international affairs—ranging from climate to economics, the rules-based order and security—are forcing European states to reflect on their approach vis-à-vis Beijing (for a full discussion, see Oertel 2023; García-Herrero and Vasselier 2024). As NATO members, European states also need to adapt their strategy in light of the partnership with the US as their key ally. This article argues that European approaches towards China, as shown in the examples of France, Germany and the UK, have a distinctly transatlantic component. It illustrates how these three European states find themselves in an alliance dilemma with the US, and how the risks associated with alliances also define European approaches to China and US–China competition more broadly. As the US administration regularly refers to China as a ‘challenge’ (US Department of Defense 2022), this article alludes to this formulation through the coining of the term ‘transatlantic China challenge’ to describe the strategic challenges Europeans are facing with regard to defining their approach vis-à-vis China and US–China competition more broadly. It offers a conceptual understanding of the strategic challenges for Europe in this context and thereby constitutes a basis for a more thorough empirical analysis. The alliance dilemma and European strategy in US–China competition Originating in realist international relations theory, the alliance dilemma generally describes a situation in which states face risks resulting from joining an alliance. As demonstrated by Snyder (1984), smaller allies especially face a parallel risk of abandonment and entrapment by a hegemon, that is, the dominating power, after joining an alliance. Abandonment, in these circumstances, implies that the hegemon has no further interest in defending or supporting the smaller allies, whereas entrapment refers to a situation in which a state is ‘dragged into a conflict over an ally’s interests that [it] does not share, or shares only partially’ (see Snyder 1984, 466–8). In the context of alliances, a small state is ‘the weaker part in an asymmetric relationship, which is unable to change the nature or functioning of the relationship on its own’ (Wivel et al. 2014, 9), and hence has more limited space for action than the great powers (Wivel and Thorhallsson 2018, 267). This definition arguably applies to Europe in its partnership with the US, as demonstrated by the excessive military and economic dominance of the US as compared to the European states (see Stockholm International Peace Research Institute n.d.; International Monetary Fund 2025). The re-election of Trump as US president now presents the risk of an increased alliance dilemma for Europeans. On the one hand, Trump has announced several times that he does not value the alliance commitments within NATO and potentially would not defend European allies (Sullivan 2024), threatening Europe with abandonment. This scenario is being taken seriously in European capitals, and reflections on how ‘defending Europe with less America’ (Grand 2024) could shape up have gained traction, especially in 2024. Similarly, defence initiatives within the EU to enhance the European contribution to the continent’s security have leapt forward in recent years (see Scazzieri 2025). On the other hand, even the Biden administration had pushed Europe to align with the US approach on China (see Lynch et al. 2023). However, France and Germany in particular, as the big EU member states, have been hesitant to do so, as reflected in France’s opposition to the opening of a NATO liaison office in Tokyo (McCurry 2023) and Germany’s vote against tariffs on Chinese electric vehicles, fearing reprisals from Beijing (Demarais 2024). Trump’s foreign policy might be strongly characterised by issue linkage, which means that policies in one area will be linked to those in another area. Through this strategy, the new US administration might force Europeans into alignment and thereby entrap them, making them accept policies they are not eager to support (see Barkin and Kratz 2025). The exact policies of the Trump administration vis-à-vis European allies remain to be seen, but it is not hard to imagine a scenario in which abandonment and entrapment could emerge or increase, namely when the threat of abandonment is used to entrap allies and force them to support certain policy decisions. The alliance dilemma could play out for Europeans specifically when designing their approaches towards China (see Barkin and Kratz 2025) and formulating their response to US–China competition more generally. As noted above, among the big European states, only Germany has formally adopted a strategy on China, in 2023 (The Federal Government of Germany 2023). However, China and the response to US–China competition takes a prominent place in France’s Indo-Pacific Strategy and its strategy review (Government of France 2021; Secrétariat général de la défense et de la sécurité nationale 2022), and the UK systematically included the dimension of strategic competition in its Integrated Review and its refresh (Government of the United Kingdom 2021, 2023) and has announced an ‘audit’ of its China policy under the new government (Taylor 2024). While these strategies emphasise their individual approaches towards China and the risks stemming from US–China competition, the US has increasingly pressured Europe to align with its approach (Lynch et al. 2023) and can be expected to continue this pressure (Barkin and Kratz 2025). Through the potential issue linkage of security (openly questioned by President Trump) and China policy, Europe therefore finds itself in a new form of alliance security dilemma. European approaches to US–China competition: strategic hedging How can Europe respond to the alliance dilemma of the risks of abandonment and entrapment when it comes to its approaches to China? Reviewing the theoretical literature on the alliance dilemma, one can imagine different strategies. According to Snyder, members of alliances can choose between strategies that strengthen or weaken their commitment to the alliance. To demonstrate commitment, actions could include reassurances for the ally or demonstrations of loyalty, whereas actions to weaken the commitment to the alliance could consist of restraining the ally (mostly to reduce the risk of entrapment in a conflict), increasing bargaining power over the ally or preserving options for realignment outside the existing alliance (for a full discussion, see Snyder 1984, 466–9). Alternative strategies include hiding from cooperation, that is, ‘seeking to maximize autonomy by opting out of specific aspects of the cooperation or by setting up “bastions” in the cooperation’, or bandwagoning, through which states pursue strategies of adaptation ‘to the more powerful actors in the cooperation’ (Pedersen 2023, 442). At the moment, it seems that France, Germany and the UK ‘drive on sight’ rather than approaching the question holistically. The following analysis aims to unpack how the three European states see US–China competition, the risk of the alliance dilemma and how these reflections have played out so far in their strategies. The strategies of France, Germany and the UK on China demonstrate that their approaches are influenced by a distinctly transatlantic component and reflect the transatlantic alliance dilemma. This is visible in their (1) high awareness of the risks stemming from great power competition, (2) approaches to managing the risk of short-term abandonment, and (3) hedging to mitigate the medium- and long-term risks of abandonment and entrapment. The empirical evidence for this analysis was gathered through a qualitative analysis of European strategic documents, statements and policy decisions taken mostly during the period of the Biden administration. However, in light of the risk of a scaling-up of the alliance dilemma under the Trump administration, sources and evidence accessible by the end of January 2025 were included to illustrate the European approaches. In addition to publicly available documents and the sources mentioned above, this paper draws on conversations with policymakers and experts under the Chatham House rule. Mitigating risks from US–China competition: multilateralism instead of alignment That France, Germany and the UK are close allies with the US is clearly visible in their respective strategies on China, not least because of references they make to the importance of the alliance and their descriptions of their own positions between the two great powers. Overall, France, Germany and the UK share the perception of US–China competition and the emergence of blocs as potentially harmful to their interests. As a consequence, all three call for an inclusive multilateral order instead of falling into a logic of blocs, as the increasing competition is seen as a risk for Europe (Secrétariat général de la défense et de la sécurité nationale 2022, 9–15; The Federal Government of Germany 2020, 24–6; Government of the United Kingdom 2023, 22–6). The response of all three European powers to the emergence of blocs is multilateralism: instead of clearly aligning with the US, the French, German and British strategies call for building broader multilateral coalitions, which should, eventually, also include China (The Federal Government of Germany 2020, 23–6; Government of the United Kingdom 2023). The tone in Paris, Berlin and London towards Beijing has clearly changed over recent years; accordingly, the European capitals were also willing to support strong wording on China in the 2024 NATO summit declaration, which describes China as a ‘critical enabler’ of Russia’s ongoing war against Ukraine (NATO 2024). Albeit also recognised as a critical partner for key issues such as climate policy and trade, European states openly describe China as a ‘systemic rival’ and occasionally call out China’s behaviour, as they did, for example, in the case of a note verbale on the South China Sea (UN 2020). Nevertheless, Europe has not (yet) given in to US pressure to align with Washington’s more confrontational approach towards China (Etienne 2024). Even if European states and Washington have moved closer to each other, especially on economic security (Meyers and Reinsch 2023), the European positions on US–China competition demonstrate that Europeans are not willing to fully endorse or follow Washington’s approach—not least because European imports from China have increased in recent years (Lovely and Yan 2024). Managing the risk of short-term abandonment Since Trump’s election, the risk of abandonment by the US has been seen as increasingly high in Paris, Berlin and London.1 This is not least because Trump has openly questioned his willingness to adhere to Article 5 of the North Atlantic Treaty in the case of an armed attack on Europeans (Sullivan 2024). Europeans are especially concerned about issue linkage in this context, meaning that demands in a policy area other than security could be used as a condition. Concretely, Trump could use the threat of abandonment as leverage to compel Europe to align with the US on China policy.2 Barkin and Kratz (2025) suggest that Europe adopt a ‘carrot and stick’ approach, whereby Europe could start with an offer to the US: buying more liquified natural gas, defence goods and agricultural products from the US could mitigate the risk of abandonment. However, there is awareness among European states that coercion from the US to align on US–China policy, especially when linked to the threat of abandonment, might best be mitigated through enhancing European military capabilities—which would still leave the continent exposed to these threats, though to a lesser extent.3 Addressing the risk of medium- and long-term abandonment and entrapment: transatlantic hedging However, the risk of at least partial abandonment is not a new challenge for European strategy, and had already infused earlier strategic thinking. The shift of US strategic priorities away from Europe and to the Indo-Pacific has already been demonstrated in the allocation of resources to the different theatres. Moreover, European states have increasingly become aware that US forces will be withdrawn from their territories in the future and have concluded that they will have to step up their own commitment to European security (see Grand 2024). In parallel, there is an awareness in European capitals that showing more interest in the Indo-Pacific and giving more importance to policy on China is also a way for Europeans to demonstrate an understanding of their ally’s strategic priorities.4 Accordingly, the approaches of France, Germany and the UK to China and the Indo-Pacific also have to be understood as a commitment to the priorities of the US in order to keep this ally engaged in the European theatre and mitigate the risk of abandonment; however, European states abstain from fully aligning with the US approach, as their capabilities and strategic goals are perceived as diverging from those of the US. In this way, Europe aims to avoid entrapment over the medium term through slightly distancing itself from US policy. While all three European states also call for de-risking from China and diversification of their supply chains, maintaining strong economic ties with Beijing is a key component of their respective approaches—which contrasts with the US calls for decoupling. Furthermore, these states have never formally endorsed the US policy on China (Etienne 2024). Nevertheless, enhancing European capabilities would not only send a signal to Washington, but also qualify as hedging, understood as an ‘insurance policy’ to avoid a deterioration in US–Europe relations if the US opted for abandonment, or even as part of a move towards emancipation to reduce strategic dependencies on Washington (see Fiott 2018, 4–6). Conclusion: a transatlantic China challenge Designing their approaches to China and to US–China competition more broadly constitutes a complex strategic dilemma for European states. Paris, Berlin and London do not fully align with Washington’s approach, and it remains to be seen whether they will be willing to do so under the second Trump administration. To manage the risk of abandonment and entrapment, European states pursue different individual approaches to strategic hedging: their strategies on China and US–China competition are designed in a way that allows them to mitigate the risk of abandonment which might stem from significant transatlantic divergence, and to avoid automatic entrapment through their slight distancing from the US approach. From a theoretical perspective, this article has demonstrated that the alliance dilemma, along with the parallel fear of abandonment and entrapment by the US, is a major factor accounting for Europe’s limited strategies on China and its hedging behaviour. This article offers a conceptual analysis of the structural forces explaining European strategies, but other strategic cultures and relationships with the US could offer important complementary insights. To further analyse how individual European states design their strategies vis-à-vis China in light of the alliance dilemma and potential domestic constraints and specificities, neoclassical realism could offer an interesting analytical concept. This approach posits that structural forces set the parameters for foreign policy and treats domestic factors, including strategic culture, as intervening variables (see Rose 1998). Accordingly, it appears well suited for foreign policy analysis, and has indeed gained popularity in the field in recent years (see, for example, Martill and Sus 2024; Meibauer et al. 2021; Weber 2024). Empirically, this article constitutes a conceptual starting point rather than an exhaustive analysis of the strategy-making processes of European states with regard to China and US–China competition and makes a more comprehensive assessment desirable. The findings of this article have broader implications for policymaking. First, they demonstrate the necessity for Europe to determine its place in the increasing US–China competition. European coordination on the respective approaches vis-à-vis the US—especially in light of potential coercion to align—and China is of paramount importance to ensure that foreign policy strategies are mutually reinforcing and not undermining European objectives. Second, the article demonstrates that Europe currently responds to the ‘transatlantic China challenge’ through transatlantic hedging: while this strategy seems to be promising in the short term, it is questionable to what extent the strategy is sustainable and could help European states to navigate the parallel challenges of abandonment and entrapment. Unless Europe decides to fully align with the US—and it is questionable whether this decision would be in its interest—European states would be well advised to develop a sustainable long-term approach to China. A transatlantic dialogue on China, in which Europe and the US openly discuss synergies and divergences, could help prevent misunderstandings and decrease the risk of coercion or issue linkage due to a misreading of European approaches in Washington. Third, as the risks of (at least partial) abandonment and entrapment are systemic challenges due to the current composition of the transatlantic alliance, a logical step for European states to decrease their dependence on the US as the hegemon in the alliance would be to significantly strengthen European capabilities. Stronger military capabilities could help mitigate the ramifications of abandonment, and the aforementioned distinctly European strategy could allow Europe to avoid strategic entrapment in relation to China imposed by Washington. As Europe remains the junior partner in the transatlantic alliance, the parallel risks of abandonment and entrapment, as well as issue linkage, are highly likely to influence its approaches towards China in the long term, but there are certainly ways to render this ‘transatlantic China challenge’ less challenging. ORCID iDGesine Weber https://orcid.org/0009-0008-2643-0400Footnotes1. Conversation with French, German and British experts in Berlin, January 2025.2. Conversation with French, German and British experts in Berlin, January 2025.3. Conversation with French, German and British experts in Berlin, January 2025; conversation with European experts and officials in Paris, January 2025.4. Conversation with officials from Germany and France in Paris, November 2024; conversation with French, German and British experts in Berlin, January 2025.ReferencesBarkin N., Kratz A. (2025). Trump and the Europe–US–China Triangle. Rhodium Group, 16 January. https://rhg.com/research/trump-and-the-europe-us-china-triangle/. Accessed 18 January 2025.Demarais A. (2024). Divided we stand: The EU votes on Chinese electric vehicle tariffs. European Council on Foreign Relations, 9 October. https://ecfr.eu/article/divided-we-stand-the-eu-votes-on-chinese-electric-vehicle-tariffs/. Accessed 25 January 2025.Etienne P. (2024). The European Union between the United States and China: Should we choose between equidistance and following? Fondation Robert Schuman, 8 October. https://www.robert-schuman.eu/en/european-issues/763-the-european-union-between-the-united-states-and-china-should-we-choose-between-equidistance-and-following. Accessed 22 December 2024.Fiott D. (2018). Strategic autonomy and the defence of Europe. European Union Institute for Security Studies, Brief 12/2018. https://www.iss.europa.eu/sites/default/files/EUISSFiles/Brief%2012__Strategic%20Autonomy.pdf. Accessed 25 January 2025.García-Herrero A., Vasselier A. (2024). Updating EU strategy on China: Co-existence while de-risking through partnerships. Mercator Institute for China Studies. https://merics.org/en/external-publication/updating-eu-strategy-china-co-existence-while-de-risking-through-partnerships. Accessed 30 January 2025.Government of France. (2021). France’s Indo-Pacific strategy. https://www.diplomatie.gouv.fr/IMG/pdf/en_dcp_a4_indopacifique_022022_v1-4_web_cle878143.pdf. Accessed 31 January 2025.Government of the United Kingdom. (2021). Global Britain in a competitive age: The integrated review of security, defence, development and foreign policy. London: The Stationery Office. https://www.gov.uk/government/publications/global-britain-in-a-competitive-age-the-integrated-review-of-security-defence-development-and-foreign-policy. Accessed 18 January 2025.Government of the United Kingdom. (2023). Integrated review refresh 2023: Responding to a more contested and volatile world. London: The Stationery Office. https://www.gov.uk/government/publications/integrated-review-refresh-2023-responding-to-a-more-contested-and-volatile-world. Accessed 18 January 2025.Grand C. (2024). Defending Europe with less America. European Council on Foreign Relations, 3 July. https://ecfr.eu/publication/defending-europe-with-less-america/. Accessed 18 January 2025.International Monetary Fund. (2025). World economic outlook: GDP data mapper [Map]. https://www.imf.org/external/datamapper/NGDPD@WEO/OEMDC/ADVEC/WEOWORLD. Accessed 23 January 2025.Leoni Z. (2023). Grand strategy and the rise of China: Made in America. Agenda Publishing.Leoni Z., Tzinieris S. (2024). The return of geopolitical blocs. Survival, 66(2), 37–54.Lovely M. E., Yan J. (2024). As the US has relied less on imports from China, the EU has imported more. Pederson Institute for International Economics, 24 August. https://www.piie.com/research/piie-charts/2024/us-has-relied-less-imports-china-eu-has-imported-more. Accessed 22 December 2024.Lynch S., Toosi N., Moens B., Banco E. (2023). The U.S. wants Europe to stand up to China. Europe says: Not so fast. Politico, 3 August. https://www.politico.com/news/2023/03/08/us-europe-china-00086204. Accessed 18 January 2025.Martill B., Sus M. (2024). Winds of change? Neoclassical realism, foreign policy change, and European responses to the Russia-Ukraine War. British Journal of Politics & International Relations.McCurry J. (2023). France opposed to opening of Nato liaison office in Japan, official says. The Guardian, 7 June. https://www.theguardian.com/world/2023/jun/07/france-opposed-to-opening-of-nato-liaison-office-in-japan-official-says. Accessed 25 January 2025.Meibauer G., Desmaele L., Onea T., Kitchen N., Foulon M., Reichwein A., Sterling-Folker J. (2021). Forum: Rethinking neoclassical realism at theory’s end. International Studies Review, 23(1), 268–95.Meyers E., Reinsch W. A. (2023). The push for U.S.–EU convergence on economic security policy. Center for Strategic and International Studies, 7 July. https://www.csis.org/analysis/push-us-eu-convergence-economic-security-policy. Accessed 26 January 2025.NATO. (2024). Washington Summit declaration. https://www.nato.int/cps/cn/natohq/official_texts_227678.htm. Accessed 18 January 2025.Oertel J. (2023). Ende der China-Illusion: Wie wir mit Pekings Machtanspruch umgehen müssen. Munich: Piper Verlag.Pedersen R. B. (2023). Small states shelter diplomacy: Balancing costs of entrapment and abandonment in the alliance dilemma. Cooperation and Conflict, 58(4), 441–59.Politi A. (2023). The paradigm shift in EU–China relations and the limits of the EU’s current strategy towards China: A relational perspective. Asian Affairs 54(4), 670–93.Pottinger M., Gallagher M. (2024). No substitute for victory: America’s competition with China must be strategic and ideological. Foreign Affairs, 10 April. https://www.foreignaffairs.com/united-states/no-substitute-victory-pottinger-gallagher. Accessed 18 January 2025.Rose G. (1998). Neoclassical realism and theories of foreign policy. World Politics, 51(1), 144–72.Scazzieri L. (2025). Towards an EU ‘defence union’? Centre for European Reform, 30 January. https://www.cer.eu/publications/archive/policy-brief/2025/towards-eu-defence-union. Accessed 30 January 2025.Secrétariat général de la défense et de la sécurité nationale. (2022). Revue nationale stratégique 2022. https://www.sgdsn.gouv.fr/publications/revue-nationale-strategique-2022. Accessed 18 January 2025.Snyder G. H. (1984). The security dilemma in alliance politics. World Politics, 36(4), 461–95.Stockholm International Peace Research Institute. (n.d.). SIPRI Military Expenditure Database.Sullivan K. (2024). Trump says he would encourage Russia to ‘do whatever the hell they want’ to any NATO country that doesn’t pay enough. CNN, 11 February. https://edition.cnn.com/2024/02/10/politics/trump-russia-nato/index.html. Accessed 29 January 2025.Taylor R. (2024). UK government policy towards China. https://lordslibrary.parliament.uk/uk-government-policy-towards-china/. Accessed 18 January 2025.The Federal Government of Germany. (2020). Policy guidelines for the Indo-Pacific. www.auswaertiges-amt.de/blob/2380514/f9784f7e3b3fa1bd7c5446d274a4169e/200901-indo-pazifik-leitlinien–1–data.pdf. Accessed 21 December 2024.The Federal Government of Germany. (2023). China-Strategie der Bundesregierung. Berlin: Auswärtiges Amt. https://www.auswaertiges-amt.de/blueprint/servlet/resource/blob/2608578/810fdade376b1467f20bdb697b2acd58/china-strategie-data.pdf. Accessed 18 January 2025.UN (2020). Note verbale, UK NV No. 162/20, 16 September. https://www.un.org/Depts/los/clcs_new/submissions_files/mys_12_12_2019/2020_09_16_GBR_NV_UN_001.pdf. Accessed 25 January 2025.US Department of Defense. (2022). National Defense Strategy of the United States of America. https://media.defense.gov/2022/Oct/27/2003103845/-1/-1/1/2022-NATIONAL-DEFENSE-STRATEGY-NPR-MDR.pdf. Accessed 25 January 2025.Weber G. (2024). Zeitenwende à la française: Continuity and change in French foreign policy after Russia’s invasion of Ukraine. British Journal of Politics & International Relations.Wivel A., Bailes A. J. K., Archer C. (2014). Setting the scene: Small states and international security. In Archer C., Bailes A. J. K., Wivel A. (eds.), Small states and international security: Europe and beyond (pp. 3–25). London: Routledge.Wivel A., Thorhallsson B. (2018). Brexit and small states in Europe: Hedging, hiding or seeking shelter? In Rosamond B., Nedergaard P., Diamond P. (eds.), The Routledge handbook of the politics of Brexit, 1st edn. (pp. 266–77). Abingdon-on-Thames: Routledge.

Energy & Economics
To achieve sustainable environmental conservation, we must prioritize clean energy solutions to reduce our dependence on fossil fuels and promote a sustainable future for future generations.

Harnessing nuclear power for sustainable electricity generation and achieving zero emissions

by Mohamed Khaleel , Ziyodulla Yusupov , Sassi Rekik , Heybet Kılıç , Yasser F. Nassar , Hala J. El-Khozondar , Abdussalam Ali Ahmed

Note: some parts of the article have been excluded, if you want to go deep in the article please check  https://doi.org/10.1177/01445987251314504 for the complete version. Abstract Nuclear power plays a pivotal role in sustainable electricity generation and global net zero emissions, contributing significantly to this secure pathway. Nuclear power capacity is expected to double, escalating from 413 gigawatts (GW) in early 2022 to 812 GW by 2050 within the net zero emissions (NZE) paradigm. The global energy landscape is undergoing significant transformation as nations strive to transition to more sustainable energy systems. Amidst this shift, nuclear power has emerged as a crucial component in the pursuit of a sustainable energy transition. This study examines nuclear power's multifaceted role in shaping sustainable energy transition. It delves into nuclear energy's contributions toward decarbonization efforts, highlighting its capacity to provide low-carbon electricity and its potential role in mitigating climate change. Furthermore, the study explores the challenges and opportunities associated with integrating nuclear power into energy transition strategies, addressing issues such as safety, waste management, and public perception. In conclusion, the global nuclear power capacity is anticipated to reach approximately 530 GW by 2050, representing a substantial shortfall of 35% compared with the trajectory outlined in the NZE pathway. Under the NZE scenario, nuclear power demonstrates exceptional expansion, nearly doubling from 413 GW in early 2022 to 812 GW by 2050. Concurrently, the trajectory highlights a transformative shift in renewable energy investments, with annual expenditures surging from an average of US$325 billion during 2016–2020 to an impressive US$1.3 trillion between 2031 and 2035. These projections underscore the critical role of nuclear and renewable energy investments in achieving global sustainability and emission reduction goals. Introduction Global warming and greenhouse gas emissions pose some of the most pressing challenges of the 21st century. The combustion of fossil fuels for electricity generation is a major contributor to these issues, releasing billions of tons of carbon dioxide (CO2) into the atmosphere annually (Abbasi et al., 2020; Nassar et al., 2024; Rekik and El Alimi, 2024a). In this context, nuclear energy emerges as a critical component of the solution. Unlike fossil fuels, nuclear power generates electricity with minimal greenhouse gas emissions, offering a reliable and scalable alternative to bridge the gap between energy demand and decarbonization goals. It operates independently of weather conditions, providing consistent energy output and complementing the intermittency of renewable sources like wind and solar (Rekik and El Alimi, 2024b, 2024c). Furthermore, advancements in nuclear technologies, including small modular reactors (SMRs) and generation IV reactors, have addressed historical concerns related to safety, waste management, and cost-effectiveness (Lau and Tsai, 2023). In 2022, global investment in low-emission fuels will maintain a robust growth trajectory, reaching a sum of US$13 billion. A significant portion of this investment was allocated toward liquid biofuels, totaling US$9.4 billion, and biogas, amounting to US$2.7 billion. It is important to emphasize that liquid biofuels constituted approximately 80% of the overall investment surge observed in 2022, with investments in biogas contributing 4% of the total. The residual portion of the investment was directed toward low-emission hydrogen production, which attained a sum of US$1.2 billion in 2022, representing an almost fourfold increase compared to the figures recorded in 2021 (Khaleel et al., 2024).Nuclear power is a pivotal component of low-carbon energy, which significantly contributes to the realization of a low-carbon economy and establishment of a green energy grid (Arvanitidis et al., 2023; El Hafdaoui et al., 2024; Fragkos et al., 2021). According to current data, 442 nuclear power reactors are operational worldwide, collectively generating 393 gigawatts (GW) of electricity, thereby furnishing a consistent and dependable source of low-carbon power (Mathew, 2022). Nuclear electricity constitutes approximately 11% of the total global electricity generation, representing a substantial portion of the global low-carbon electricity production (Alam et al., 2019). Recent advancements have enhanced the affordability and appeal of nuclear power as an alternative source of energy. These advancements encompass progress in large reactor technologies, the emergence of novel approaches such as advanced fuel utilization and SMRs, engineering breakthroughs facilitating the extension of operational lifespans for existing reactors, and innovations in materials science and improved waste management practices (Kröger et al., 2020; Zhan et al., 2021). Fast breeder reactor technology has transitioned into a commercial realm, offering benefits beyond electricity generation by enabling the production of surplus fuel and enhancing the efficiency of nuclear waste incineration, surpassing the capabilities of existing commercial reactor technologies (Lau and Tsai, 2023). Nuclear power plays a substantial role within a secure global trajectory toward achieving net zero emissions (NZE) (Addo et al., 2023; Dafnomilis et al., 2023). Nuclear power capacity experiences a twofold increase, progressing from 413 GW at the outset of 2022 to 812 GW by 2050 within the NZE paradigm. It is apparent that the annual additions to nuclear capacity peaked at 27 GW per year during the 2030s, surpassing the levels observed in the preceding decade. Despite these advancements, the global proportion of nuclear power within the overall electricity generation portfolio has experienced a marginal decline, settling at 8% (Murphy et al., 2023; Ruhnau et al., 2023). Emerging and developing economies (EMDEs) substantially dominate global growth, constituting over 90% of the aggregate, with China poised to ascend as a preeminent nuclear power producer prior to 2030. Concurrently, advanced economies collectively witness a 10% augmentation in nuclear power capacity as retirements are counterbalanced by the commissioning of new facilities, predominantly observed in nations such as the United States, France, the United Kingdom, and Canada (Bórawski et al., 2024). Furthermore, annual global investment in nuclear power has experienced a notable escalation, soaring from US$30 billion throughout the 2010s to surpass US$100 billion by 2030, maintaining a robust trajectory above US$80 billion by 2050 (IEA, 2022). In 2022, global nuclear power capacity experienced a modest increase of approximately 1.5 GW, reflecting a marginal year-on-year growth of 0.3%. This expansion was primarily driven by new capacity additions that surpassed the retirement of an over 6 GW of existing capacity (Fernández-Arias et al., 2023; Mendelevitch et al., 2018). EMDEs accounted for approximately 60% of the new capacity additions, underscoring their increasing significance in the global nuclear energy landscape. Conversely, more than half of the retirements were observed in advanced economies, including Belgium, the United Kingdom, and the United States. Table 1 shows the nuclear power capacity by region in the NZE from 2018 to 2030.   In alignment with the Net Zero Scenario, it is imperative for the global nuclear capacity to undergo an expansion averaging approximately 15 GW per annum, constituting a growth rate slightly exceeding 3% annually, until 2030. This strategic augmentation is crucial for sustaining the contribution of the nuclear sector to electricity generation, maintaining its share at approximately 10% (Liu et al., 2023). Such an expansion necessitates concerted efforts in both advanced economies and EMDEs. Furthermore, prioritizing the extension of operational lifetimes of existing nuclear facilities within G7 member states would not only fortify the existing low-emission infrastructure, but also facilitate the integration of new nuclear capacity, thereby augmenting the overall nuclear energy portfolio. [...] The significant contribution of nuclear power to sustainable energy transitions is underscored by its multifaceted role in addressing the pressing challenges of climate change and energy security (Asif et al., 2024). As nations worldwide endeavor to shift toward greener energy systems, nuclear power has emerged as a critical pillar of the decarbonization journey. Its ability to provide low-carbon electricity, mitigate climate change impacts by 2050, and enhance energy security highlights its pivotal importance in the broader context of sustainable energy transitions (Bhattacharyya et al., 2023; NEA, 2015). Thus, to fully realize its potential, challenges such as safety, waste management, and public perception must be addressed effectively. By leveraging robust policy frameworks, technological advancements, and international collaboration, nuclear power is poised to play a vital role in shaping the future of sustainable energy transitions on a global scale. Furthermore, the dynamic landscape of nuclear power development is evident in the significant influence exerted by EMDEs, particularly China, which is expected to emerge as a leading nuclear power producer by 2030 (Fälth et al., 2021; Nkosi and Dikgang, 2021). Concurrently, advanced economies are witnessing notable expansions in nuclear power capacity driven by the commissioning of new facilities to offset retirements (Budnitz et al., 2018). This trend is further reinforced by a notable surge in annual global investment in nuclear power, underscoring the sustained commitment to nuclear energy's pivotal role in sustainable energy transitions in the foreseeable future (IEA, 2019). The primary objective of this article is to explore the strategic role of nuclear power in advancing global sustainability goals and achieving zero emissions. The objective is structured around the following key agendas: •Nuclear power: prominence and green electricity source•Nuclear's role in achieving net zero by 2050•Nuclear power's significance in power system adequacySpecific technologies for sustainability in nuclear energy production•Investment in nuclear power•Addressing policy implications This comprehensive analysis aims to provide actionable insights into harnessing nuclear power for sustainable electricity generation and its pivotal role in achieving global zero-emission targets. Data and methodology This article conducts an in-depth analysis of the role of nuclear power in achieving sustainable electricity generation and supporting NZE targets. The article also addresses the potential of nuclear energy as a prominent and environmentally favorable electricity source, examining nuclear power's contribution toward the net zero by 2050 goal, its critical importance in ensuring power system adequacy, investment imperatives, and the broader policy implications.  [...] Nuclear power: prominence and green electricity source In 2020, nuclear power will constitute approximately 10% of the global electricity generation portfolio. This proportion, which had previously stood at 18% during the late 1990s, has experienced a decline; nonetheless, nuclear energy retains its status as the second-largest provider of low-emission electricity, trailing only hydroelectricity, and serves as the primary source within advanced economies. Despite the substantial proliferation of wind and solar PV technologies, nuclear electricity production in 2020 surpassed the aggregate output of these renewable sources. As of 2021, the global cumulative installed nuclear capacity has reached 413 GW, with 270 GW of this total being installed in advanced economies (Guidi et al., 2023; Halkos and Zisiadou, 2023; Pan et al., 2023; Zhang et al., 2022). Nuclear power generation during this period amounted to 2653 TWh, positioning it as the second largest source of electricity generation after hydropower, which generated 4275 TWh, as depicted in Figure 1.   In addition to its significant role in power generation, nuclear energy plays a crucial role in mitigating carbon dioxide (CO2) emissions. Since the 1970s, nuclear power has helped avoid the global release of approximately 66 gigatons (Gt) of CO2 globally, as shown in Figure 2.   Without the contribution of nuclear power, cumulative emissions from electricity generation would have increased by approximately 20%, whereas total energy-related emissions would have increased by 6% over this period (Wagner, 2021). Advanced economies accounted for more than 85% of these avoided emissions, with the European Union accounting for 20 Gt and the United States for 24 Gt, representing over 40% and 25% of total electricity generation emissions, respectively. In the absence of nuclear power, Japan would have experienced an estimated 25% increase in emissions from electricity generation, whereas Korea and Canada would have seen an increase of approximately 50%. Nuclear's role in achieving net zero by 2050 Nuclear energy has emerged as a pivotal low-emission technology within the trajectory toward achieving NZE (Pioro et al., 2019). In addition, it serves as a complementary force, bolstering the accelerated expansion of renewables, thereby facilitating the reduction of emissions from the global electricity sector to net zero by 2040 (Krūmiņš and Kļaviņš, 2023; Islam et al., 2024). Beyond its intrinsic contribution to fostering a low-emission electricity supply, nuclear power is significant as a dispatchable generating asset, fortifying supply security through its provision of system adequacy and flexibility. Furthermore, it is instrumental in furnishing heat for district heating networks and in selecting industrial facilities. Despite this, the prospective role of nuclear energy hinges significantly on the deliberations and determinations of policymakers and industry stakeholders concerning the pace of new reactor construction initiatives and the continued operational lifespan of existing nuclear facilities (Li et al., 2016; Li et al., 2015).In terms of the NZE trajectory, the global nuclear power capacity exhibits a remarkable surge, nearly doubling from 413 GW at the onset of 2022 to 812 GW by 2050 (Price et al., 2023; Utami et al., 2022). This augmentation primarily stems from the vigorous initiation of new construction endeavors, which effectively counterbalance the gradual decommissioning of numerous extant plants. Such an escalation constitutes a pronounced acceleration in comparison to the preceding three decades, characterized by a mere 15% increment in capacity, equivalent to approximately 60 GW (Haneklaus et al., 2023; Obekpa and Alola, 2023; Sadiq et al., 2023). Figure 3 demonstrates the nuclear power capacity within each country/region under the NZE by 2050 scenario.   The expected growth in nuclear power capacity far exceeds the path outlined by the current policies and legal frameworks. According to the Stated Policies Scenario (STEPS), the nuclear capacity is projected to reach approximately 530 GW by 2050, which is 35% lower than that of the NZE pathway (Espín et al., 2023; Nicolau et al., 2023; Nnabuife et al., 2023; Wang et al., 2023). Without a significant shift from recent nuclear power development trends, achieving NZE would require a limited reliance on a smaller range of low-emission technologies. This could compromise energy security and lead to higher total investment costs, resulting in increased electricity prices for consumers. Table 2 shows the average annual capacity addition for global nuclear power in NZE from 1981 to 2030.   In 2022, the global deployment of new nuclear power capacity witnessed a notable upsurge, with 7.9 GW added, representing a substantial 40% increase compared to the preceding year (Ho et al., 2019). It is worth bearing in mind that China spearheaded this expansion by completing the construction of two reactors, maintaining its streak for consecutive years as the leading contributor to global nuclear power capacity augmentation. It is noteworthy that the projects were successfully completed in various other nations, including Finland, Korea, Pakistan, and the United Arab Emirates. Additionally, significant strides were made in the initiation of new construction endeavors, with the commencement of construction activities on five reactors in China, two reactors in Egypt, and one reactor in Turkey (Hickey et al., 2021). Nuclear power's significance in power system adequacy Nuclear power facilities have persistently underpinned the dependability of power systems, thereby bolstering the adequacy of the system. Across diverse national contexts, nuclear power plants have historically maintained operational readiness, manifesting availability rates consistently exceeding 90%, thereby demonstrating their reliability in power generation. Given that a substantial proportion of nuclear power capacity directly contributes to system adequacy metrics, its significance in fortifying system reliability and adequacy significantly outweighs its proportional contribution to the total power capacity (Orikpete and Ewim, 2024; Frilingou et al., 2023; Raj, 2023; Ragosa et al., 2024). The contribution of nuclear power to system adequacy is demonstrated by the consistent trajectory of its share within the aggregate dispatchable power capacity, hovering at around 8% between 2021 and 2050 within the NZE framework (IEA, 2022; OIES, 2024). Dispatchable electricity sources have historically constituted the primary mechanism for ensuring system adequacy, a trend that endures within the NZE paradigm, especially as electricity systems undergo evolution marked by an escalating reliance on variable solar photovoltaic (PV) and wind energy sources (Marzouk, 2024; Moon et al., 2024; Wisnubroto et al., 2023). It is indisputable that unabated fossil fuel resources predominantly dominate dispatchable capacity; however, their prominence clearly diminishes, declining by a quarter by 2030 within the NZE framework and experiencing a precipitous decline thereafter. Unabated coal-fired power, currently the most substantial dispatchable source, anticipates a decline exceeding 40% in operational capacity by 2030 and approaches a state of negligible contribution by the early 2040s. Conversely, the unabated natural gas-fired power capacity exhibits a sustained level of stability until 2030, primarily driven by the necessity to offset the diminishing role of coal; nonetheless, it subsequently undergoes a rapid descent throughout the 2030s. Oil, constituting a comparatively minor contributor, experiences rapid phasing out across most regions, except for remote locales, within the delineated scenario (Makarov et al., 2023; Ren et al., 2024). Figure 4 highlights the global capacity of dispatchable power categorized by category in the scenario of achieving NZE by 2050.   In this context, fossil fuels equipped with Carbon Capture, Utilization, and Storage (CCUS) technology have emerged as notable contributors to bolstering system adequacy. Yet, nuclear power remains a steady contributor to the power system flexibility. In advanced economies, the proportion of hour-to-hour flexibility is projected to increase from approximately 2% to 5% by 2050. Similarly, in EMDEs, this ratio is anticipated to increase from 1% to 3% over the same temporal span (Jenkins et al., 2018). It is worth highlighting that in France, where nuclear power fulfills the lion's share of electricity generation requisites, flexibility has been ingrained within reactor designs (Ho et al., 2019). This feature enables certain plants to swiftly modulate their output to align with the fluctuating electricity supply and demand, operating in a load-following mode (Chen, 2024; Jin and Bae, 2023; Kanugrahan and Hakam, 2023). Although many nations have not habitually engaged nuclear power in such operational dynamics, a considerable number of reactors are capable of performing load-following operations with minimal or no requisite technical adaptations (Caciuffo et al., 2020). Figure 5 demonstrates the hour-to-hour power system flexibility based on the source and regional grouping in the NZE by the 2050 scenario.   Innovation holds promise in enhancing the flexibility of nuclear power. Advanced technological advancements, such as SMRs, can facilitate nuclear reactors to adjust their electricity output with greater ease, as illustrated in Figure 6 (Ho et al., 2019; Lee, 2024; Wisnubroto et al., 2023). Moreover, these technologies offer the prospect of enabling reactors to transition toward generating heat or producing hydrogen either independently or concurrently with electricity generation. Initiatives are underway to disseminate information to policymakers and planners regarding the potential cost advantages associated with enhancing nuclear power flexibility.  Figure 6 demonstrates the nuclear system augmented by wind turbines for trigeneration.   Investment in nuclear power The renaissance of nuclear power within the NZE trajectory necessitates a substantial surge in investment in the coming decades. This surge is envisaged to encompass the construction of new nuclear reactors and extension of operational lifespans for existing facilities. Within this scenario, annual global investment in nuclear power is poised to escalate to exceed US$100 billion during the initial half of the 2030s within the NZE framework, surpassing the threefold average investment level of US$30 billion recorded during the 2010s (IEA, 2022). Subsequently, investment levels are expected to gradually decline as the imperative for dispatchable low emissions generating capacity diminishes, tapering to approximately US$70 billion by the latter half of the 2040s (Kharitonov and Semenova, 2023; Zimmermann and Keles, 2023). Over the period spanning from 2021 to 2050, the allocation of investment toward nuclear power constitutes a fraction representing less than 10% of the aggregate investment dedicated to low-emission sources of electricity (IEA, 2022). By comparison, within this framework, the annual investment in renewable energy experiences a notable escalation, escalating from an average of US$325 billion during the interval from 2016 to 2020 to US$1.3 trillion during the period 2031–2035 (EEDP, 2023; Rekik and El Alimi, 2024d). It is worth noting that the latter consideration elucidates the rationale behind the disproportionate allocation of investment toward advanced economies in later decades. China, for instance, requires an annual expenditure averaging close to US$20 billion on nuclear infrastructure by 2050, representing a nearly twofold increase compared to the average observed during the 2010s (Aghahosseini et al., 2023; Vujić et al., 2012). Conversely, other EMDEs witness a tripling of investment, reaching approximately US$25 billion per year, on average. In contrast to advanced economies, the imperative for investment in these nations is more pronounced in the period leading up to 2035 (Bhattacharyya et al., 2023; Khaleel et al., 2024). Thus, nuclear energy, despite its advantages as a low-carbon energy source, faces notable challenges. High capital costs and long deployment timelines, driven by complex construction and regulatory requirements, often hinder its adoption. The management of radioactive waste remains a costly and contentious issue, while safety concerns, shaped by historical incidents, continue to influence public perception. Additionally, reliance on uranium, with its geographically concentrated supply, raises geopolitical and environmental concerns. Nuclear power also competes with the rapidly advancing and cost-effective renewable energy sector, while decommissioning aging plants poses long-term financial and logistical burdens. Addressing these limitations through advanced technologies, public engagement, and international collaboration is crucial for enhancing nuclear energy's role in sustainable energy transitions. Technologies for sustainability in nuclear energy production The pursuit of sustainability in nuclear energy production has been supported by advancements in innovative technologies that enhance efficiency, safety, and environmental compatibility (Aktekin et al., 2024; Ali et al., 2024; Zheng et al., 2024; Khan et al., 2017). These technologies are crucial for positioning nuclear power as a key contributor to clean and sustainable energy transitions. Below are some of the most impactful technologies in this domain: Advanced nuclear reactors: Small modular reactors (SMRs): SMRs are compact, scalable, and safer than traditional large-scale reactors. Their modular design allows for deployment in remote locations, making them suitable for decentralized energy systems. Generation IV reactors: These reactors incorporate advanced cooling systems and fuel cycles to improve efficiency, safety, and waste reduction. Examples include sodium-cooled fast reactors and gas-cooled fast reactors. Thorium-based reactors: Thorium fuel cycle reactors use thorium-232 as an alternative to uranium, offering a more abundant and sustainable fuel source. Thorium reactors produce less nuclear waste and have a lower risk of proliferation. Fusion energy: Although still in the experimental stage, nuclear fusion promises to be a game-changing technology. Fusion produces minimal radioactive waste and harnesses abundant fuel sources like deuterium and tritium, making it a virtually limitless and clean energy solution. Molten salt reactors (MSRs): MSRs use liquid fuels or coolants, such as molten salts, which operate at lower pressures and higher temperatures. These reactors are inherently safer and have the capability to utilize a variety of fuel types, including spent nuclear fuel and thorium. Reactor safety enhancements: Passive safety systems: These systems enhance reactor safety by using natural forces like gravity, natural convection, or condensation to cool the reactor core without human intervention. Digital twin technologies: Digital simulations and monitoring of reactor systems allow for predictive maintenance and real-time safety management. Nuclear waste management technologies Fast reactors: These reactors can recycle spent fuel, reducing the volume and radioactivity of nuclear waste. Deep geological repositories: Advances in geotechnical engineering have improved the safety of long-term waste storage in deep geological formations. Hybrid nuclear-renewable systems: Combining nuclear power with renewable energy sources like wind and solar can optimize energy production and grid stability. Hybrid systems leverage the reliability of nuclear energy with the intermittency of renewables for a balanced, low-carbon energy mix. Artificial intelligence (AI) and machine learning: AI and machine learning technologies are being deployed to enhance reactor performance, optimize fuel usage, and improve operational safety. Predictive analytics also play a critical role in maintenance and risk assessment. Fuel advancements: High-assay low-enriched uranium (HALEU): HALEU fuels enable reactors to operate more efficiently and reduce waste. Accident-tolerant fuels (ATFs): These are designed to withstand extreme conditions, reducing the likelihood of core damage during accidents. Integrated energy systems: Nuclear reactors are increasingly being used for purposes beyond electricity generation, such as hydrogen production, district heating, and desalination. The integration of digital technologies, including AI and machine learning, coupled with fuel advancements like HALEU and accident-tolerant fuels, highlights the continuous evolution of the nuclear sector. These innovations not only enhance efficiency and safety but also expand the applications of nuclear energy beyond electricity generation to include hydrogen production, desalination, and district heating. Despite these technological advancements, the sustainable deployment of nuclear energy requires robust policy frameworks, increased investments, and public acceptance. Addressing these challenges is critical to unlocking the full potential of nuclear power in achieving global energy security and NZE by 2050. [...] Discussion and policy implications Nuclear power presents a compelling case as a sustainable energy source owing to its several key advantages. Its high-energy density allows for substantial electricity generation from minimal fuel, enabling continuous operation, unlike intermittent renewables, such as solar and wind (Rekik and El Alimi, 2023a, 2023b), thus contributing significantly to grid stability (Cramer et al., 2023). Furthermore, nuclear power is a crucial tool for emissions reduction, boasting virtually no greenhouse gas emissions during operation. Although lifecycle emissions associated with fuel processing and plant construction exist, they remain comparable to or lower than those of renewables. Several studies have reported on the energy production capabilities of nuclear power and its contribution to reducing greenhouse gas emissions compared to other energy sources. A key aspect of these analyses is quantifying the potential contribution of nuclear power to reducing greenhouse gas emissions and achieving net zero targets. However, direct comparison of reported data can be challenging due to variations in model assumptions, geographic scope, and time horizons.  [...] From another perspective, radioactive waste generation poses a significant challenge to nuclear power because of its long-term hazardous nature. This necessitates meticulous management and disposal strategies to mitigate potential social impacts. These impacts arise from perceived or actual risks to human health and the environment, fueling public anxiety and opposition to nuclear power, which is often expressed through protests and legal action (Kyne and Bolin, 2016; Nilsuwankosit, 2017; Ram Mohan and Namboodhiry, 2020). Additionally, communities near waste sites can experience stigmatization, resulting in decreased property values and social isolation. The persistent nature of radioactive waste also raises intergenerational equity issues, burdening future generations with its management (Deng et al., 2020; Mason-Renton and Luginaah, 2019). Thus, transparent communication and stakeholder engagement are crucial for building public trust and ensuring responsible radioactive waste management (Dungan et al., 2021; Sančanin and Penjišević, 2023). There are various radioactive waste disposal pathways, each with unique social and technical considerations. Deep geological disposal, an internationally favored method for high-level waste disposal, involves burying waste deep underground for long-term isolation. Interim storage provides a secure temporary holding until a permanent solution is obtained (Chapman, 1992; Grambow, 2022). Reprocessing spent nuclear fuel recovers reusable materials, reducing high-level waste but creating lower-level waste. Advanced reactor technologies aim to minimize waste and improve safety, potentially converting long-lived isotopes into shorter-lived isotopes (Dixon et al., 2020; Englert and Pistner, 2023). Choosing a disposal pathway requires careful evaluation of factors, such as waste type and volume, geology, feasibility, cost, and public acceptance, often leading to a combined approach. Ongoing community engagement and addressing concerns are essential to safe and responsible waste management. Effective management and disposal of this waste require advanced technological solutions, robust regulatory frameworks, and long-term planning to ensure safety and sustainability (Abdelsalam et al., 2024; Rekik and El Alimi, 2024a), Moreover, its relatively small land footprint compared to other energy sources, especially solar and wind farms, minimizes the ecosystem impact and makes it a sustainable option in densely populated areas (Poinssot et al., 2016; Sadiq et al., 2022). Nuclear power also enhances energy security by reducing reliance on fossil fuels, which is particularly valuable in countries with limited domestic resources (Cramer et al., 2023; Ichord Jr., 2022). Additionally, nuclear power exhibits synergy with other clean technologies, providing a stable baseload complementing variable renewables and facilitating hydrogen production for diverse energy applications (Abdelsalam et al., 2024; El-Emam and Subki, 2021; Salam and Khan, 2018; Rekik, 2024; Rekik and El Alimi, 2024e). Finally, ongoing advancements in reactor design, such as SMRs, promise enhanced safety, reduced costs, and greater deployment flexibility, further solidifying the role of nuclear power in decarbonizing the electricity sector (Aunedi et al., 2023). Supportive policies and international cooperation are essential for fully realizing the potential of nuclear energy. Streamlined licensing and regulatory frameworks are crucial for reducing deployment time and costs and ensuring that safety standards are met efficiently (Gungor and Sari, 2022; Jewell et al., 2019). Furthermore, incentivizing investments through financial tools such as tax credits and loan guarantees can attract private capital and create a level-playing field for nuclear power (Decker and Rauhut, 2021; Nian and Hari, 2017; Zimmermann and Keles, 2023). Addressing public perception through education and engagement is equally important for building trust and acceptance. Moreover, international cooperation is vital in several respects. The disposal of radioactive waste remains a complex issue, requiring careful long-term management and securing geological repositories to prevent environmental contamination owing to the long half-life of some isotopes. Furthermore, while modern reactors incorporate advanced safety features, the potential for accidents such as Chernobyl and Fukushima remains a concern because of the potential for widespread radiation release and long-term health consequences (Denning and Mubayi, 2016; Högberg, 2013; Wheatley et al., 2016). Moreover, the high initial costs associated with design, construction, and licensing present significant barriers to new nuclear projects, particularly in developing countries. In addition, the risk of nuclear proliferation, in which technology intended for peaceful energy production is diverted for weapons development, necessitates stringent international safeguards, as highlighted by following reference. Public perception also plays a crucial role because negative opinions and concerns about safety and waste disposal can create opposition to new projects. Finally, the decommissioning of nuclear plants at the end of their operational life is a complex and costly process that requires substantial resources and expertise to dismantle reactors and manage radioactive materials. [...] Conclusion The role of nuclear power in sustainable energy transition is multifaceted and significant. As nations worldwide strive to transition toward more environmentally friendly energy systems, nuclear power has emerged as a crucial component of the decarbonization journey. Its capacity to provide low-carbon electricity, mitigate climate change, and contribute to energy security underscores its importance in the broader context of sustainable energy transitions. Despite this, challenges such as safety, waste management, and public perception must be addressed to fully harness the potential of nuclear power to achieve sustainability goals. By leveraging policy frameworks, technological innovations, and international cooperation, nuclear power can play a vital role in shaping the future of sustainable energy transition on a global scale. In this context, EMDEs exert a substantial influence on global growth, collectively accounting for over 90% of the aggregate, with China positioned to emerge as the foremost nuclear power producer before 2030. Concurrently, advanced economies have witnessed a notable 10% increase in their nuclear power capacity. This augmentation is attributed to the commissioning of new facilities, which offset retirements, manifestly observed in nations such as the United States, France, the United Kingdom, and Canada. Furthermore, there is a marked escalation in annual global investment in nuclear power, surging from US$30 billion throughout the 2010s to surpass US$100 billion by 2030. This upward trajectory is robustly sustained, remaining above US$80 billion by 2050. In conclusion, the remarkable decline in the levelized cost of electricity (LCOE) for solar PV and wind power over the past decade has positioned renewable energy as a cost-competitive and viable alternative to fossil fuels in many regions. The over 80% reduction in LCOE for utility-scale solar PV from 2010 to 2022 exemplifies the economic feasibility of renewables. Concurrently, the steady growth in renewable energy capacity, spearheaded by solar and wind energy, underscores their critical role in the global energy transition. With renewable electricity capacity surpassing 3300 GW in 2023 and accounting for over one-third of the global power mix, renewable energy is undeniably at the forefront of efforts to achieve a sustainable, low-carbon energy future. Declaration of conflicting interestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.FundingThe authors received no financial support for the research, authorship, and/or publication of this article.ORCID iDSassi Rekik https://orcid.org/0000-0001-5224-4152Supplemental materialSupplemental material for this article is available online.ReferencesAbbasi K, Jiao Z, Shahbaz M, et al. (2020) Asymmetric impact of renewable and non-renewable energy on economic growth in Pakistan: New evidence from a nonlinear analysis. Energy Exploration & Exploitation 38(5): 1946–1967. Crossref. Web of Science.Abdelsalam E, Almomani F, Azzam A, et al. (2024) Synergistic energy solutions: Solar chimney and nuclear power plant integration for sustainable green hydrogen, electricity, and water production. Process Safety and Environmental Protection 186: 756–772. Crossref. Web of Science.Addo EK, Kabo-bah AT, Diawuo FA, et al. (2023) The role of nuclear energy in reducing greenhouse gas (GHG) emissions and energy security: A systematic review. International Journal of Energy Research 2023(1): 8823507.Aghahosseini A, Solomon AA, Breyer C, et al. (2023) Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Applied Energy 331: 120401. Crossref. Web of Science.Ake SC, Arango FO, Ruiz RSG (2024) Possible paths for Mexico’s electricity system in the clean energy transition. Utilities Policy 87: 101716. Crossref. Web of Science.Aktekin M, Genç MS, Azgın ST, et al. (2024) Assessment of techno-economic analyzes of grid-connected nuclear and PV/wind/battery/hydrogen renewable hybrid system for sustainable and clean energy production in Mersin-Türkiye. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B 190: 340–353. Crossref. Web of Science.Alam F, Sarkar R, Chowdhury H (2019) Nuclear power plants in emerging economies and human resource development: A review. Energy Procedia 160: 3–10. Crossref.Ali M, Samour A, Soomro SA, et al. (2024) A step towards a sustainable environment in top-10 nuclear energy consumer countries: The role of financial globalization and nuclear energy. Nuclear Engineering and Technology 103142: 103142.Arvanitidis AI, Agarwal V, Alamaniotis M (2023) Nuclear-driven integrated energy systems: A state-of-the-art review. Energies 16(11): 4293. Crossref. Web of Science.Asif M, Solomon B, Adulugba C (2024) Prospects of nuclear power in a sustainable energy transition. Arabian Journal for Science and Engineering: 1–11. Crossref. Web of Science.Aunedi M, Al Kindi AA, Pantaleo AM, et al. (2023) System-driven design of flexible nuclear power plant configurations with thermal energy storage. Energy Conversion and Management 291: 117257. Crossref. Web of Science.Bhattacharya S, Banerjee R, Ramadesigan V, et al. (2024) Bending the emission curve—The role of renewables and nuclear power in achieving a net-zero power system in India. Renewable and Sustainable Energy Reviews 189: 113954. Crossref. Web of Science.Bhattacharyya R, El-Emam RS, Khalid F (2023) Climate action for the shipping industry: Some perspectives on the role of nuclear power in maritime decarbonization. E-Prime-Advances in Electrical Engineering, Electronics and Energy 4(2023): 100132. Crossref.Bórawski P, Bełdycka-Bórawska A, Klepacki B, et al. (2024) Changes in gross nuclear electricity production in the European union. Energies 17(14): 3554. Crossref. Web of Science.Budnitz RJ, Rogner HH, Shihab-Eldin A (2018) Expansion of nuclear power technology to new countries–SMRs, safety culture issues, and the need for an improved international safety regime. Energy Policy 119: 535–544. Crossref. Web of Science.Caciuffo R, Fazio C, Guet C (2020) Generation-IV nuclear reactor systems. EPJ Web of Conferences 246: 00011. Crossref.Cai ZB, Li ZY, Yin MG, et al. (2020) A review of fretting study on nuclear power equipment. Tribology International 144: 106095. Crossref. Web of Science.Chapman NA (1992) Natural radioactivity and radioactive waste disposal. Journal of Volcanology and Geothermal Research 50(1–2): 197–206. Crossref. Web of Science.Chen CC (2024) Comparative impacts of energy sources on environmental quality: A five-decade analysis of Germany’s Energiewende. Energy Reports 11: 3550–3561. Crossref. Web of Science.Cramer C, Lacivita B, Laws J, et al. (2023) What will it take for nuclear power to meet the climate challenge? Columbus, Atlanta, Boston, Houston, Toronto: McKinsey & Company. https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/what-will-it-take-for-nuclear-power-to-meet-the-climate-challenge.Dafnomilis I, den Elzen M, Van Vuuren DP (2023) Achieving net-zero emissions targets: An analysis of long- term scenarios using an integrated assessment model. Annals of the New York Academy of Sciences 1522(1): 98–108. Crossref. PubMed. Web of Science.Decker D, Rauhut K (2021) Incentivizing good governance beyond regulatory minimums: The civil nuclear sector. Journal of Critical Infrastructure Policy 2(2): 19–43. Crossref.Deng D, Zhang L, Dong M, et al. (2020) Radioactive waste: A review. Water Environment Research: A Research Publication of the Water Environment Federation 92(10): 1818–1825. Crossref. PubMed. Web of Science.Denning R, Mubayi V (2016) Insights into the societal risk of nuclear power plant accidents. Risk Analysis 37(1): 160–172. Crossref. PubMed. Web of Science.Dixon B, Hoffman E, Feng B, et al. (2020) Reassessing methods to close the nuclear fuel cycle. Annals of Nuclear Energy 147: 107652. Crossref. Web of Science.Dungan K, Gregg RWH, Morris K, et al. (2021) Assessment of the disposability of radioactive waste inventories for a range of nuclear fuel cycles: Inventory and evolution over time. Energy 221: 119826. Crossref. Web of Science.El-Emam RS, Subki MH (2021) Small modular reactors for nuclear-renewable synergies: Prospects and impediments. International Journal of Energy Research 45(11): 16995–17004. Crossref. Web of Science.El Hafdaoui H, Khallaayoun A, Ouazzani K. (2024) Long-term low carbon strategy of Morocco: A review of future scenarios and energy measures. Results in Engineering 21: 101724. Crossref. Web of Science.Englert M, Pistner C (2023) Technological readiness of alternative reactor concepts. Safety of Nuclear Waste Disposal 2: 209–209. Crossref.Espín J, Estrada S, Benítez D, et al. (2023) A hybrid sliding mode controller approach for level control in the nuclear power plant steam generators. Alexandria Engineering Journal 64: 627–644. Crossref. Web of Science.European Economy Discussion Papers (EEDP) (2023) The development of renewable energy in the electricity market. Available at: https://economy-finance.ec.europa.eu/ecfin-publications_en.Fälth HE, Atsmon D, Reichenberg L, et al. (2021) MENA compared to Europe: The influence of land use, nuclear power, and transmission expansion on renewable electricity system costs. Energy Strategy Reviews 33: 100590. Crossref. Web of Science.Fernández-Arias P, Vergara D, Antón-Sancho Á (2023) Global review of international nuclear waste management. Energies 16(17): 6215. Crossref. Web of Science.Fragkos P, Van Soest HL, Schaeffer R, et al. (2021) Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States. Energy 216: 119385. Crossref. Web of Science.Frilingou N, Xexakis G, Koasidis K, et al. (2023) Navigating through an energy crisis: Challenges and progress towards electricity decarbonisation, reliability, and affordability in Italy. Energy Research & Social Science 96: 102934. Crossref. Web of Science.Grambow B (2022) Mini review of research requirements for radioactive waste management including disposal. Frontiers in Nuclear Engineering 1: 1052428. Crossref.Guidi G, Violante AC, De Iuliis S (2023) Environmental impact of electricity generation technologies: A comparison between conventional, nuclear, and renewable technologies. Energies 16(23): 7847. Crossref. PubMed. Web of Science.Gungor G, Sari R (2022) Nuclear power and climate policy integration in developed and developing countries. Renewable and Sustainable Energy Reviews 169: 112839. Crossref. Web of Science.Halkos G, Zisiadou A (2023) Energy crisis risk mitigation through nuclear power and RES as alternative solutions towards self-sufficiency. Journal of Risk and Financial Management 16(1): 45. Crossref. Web of Science.Haneklaus N, Qvist S, Gładysz P, et al. (2023) Why coal-fired power plants should get nuclear-ready. Energy 280: 128169. Crossref. Web of Science.Hickey SM, Malkawi S, Khalil A (2021) Nuclear power in the Middle East: Financing and geopolitics in the state nuclear power programs of Turkey, Egypt, Jordan and the United Arab Emirates. Energy Research & Social Science 74: 101961. Crossref. Web of Science.Ho M, Obbard E, Burr PA, et al. (2019) A review on the development of nuclear power reactors. Energy Procedia 160: 459–466. Crossref.Högberg L (2013) Root causes and impacts of severe accidents at large nuclear power plants. AMBIO 42(3): 267–284. Crossref. PubMed. Web of Science.Hunter CA, Penev MM, Reznicek EP, et al. (2021) Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids. Joule 5(8): 2077–2101. Crossref. Web of Science.Ichord RF Jr (2022) Nuclear energy and global energy security in the new tripolar world order. Available at: https://www.atlanticcouncil.org/blogs/energysource/nuclear-energy-and-global-energy-security-in-the-new-tripolar-world-order/.International Energy Agency (IEA) (2019) Nuclear power in a clean energy system, OECD Publishing, Paris. Available at: Crossref.International Energy Agency (IEA) (2022) Nuclear power and secure energy transitions, IEA, Paris. Available at: https://www.iea.org/reports/nuclearpower-and-secure-energy-transitions.Islam MM, Shahbaz M, Samargandi N (2024) The nexus between Russian uranium exports and US nuclear-energy consumption: Do the spillover effects of geopolitical risks matter? Energy 293: 130481. Crossref. Web of Science.Islam MS, Roy S, Alfee SL, et al. (2023) An empirical study of the risk-benefit perceptions between the nuclear and non-nuclear groups towards the nuclear power plant in Bangladesh. Nuclear Engineering and Technology 55(12): 4617–4627. Crossref. Web of Science.Jenkins JD, Zhou Z, Ponciroli R, et al. (2018) The benefits of nuclear flexibility in power system operations with renewable energy. Applied Energy 222: 872–884. Crossref. Web of Science.Jewell J, Ates SA (2015) Introducing nuclear power in Turkey: A historic state strategy and future prospects. Energy Research & Social Science 10: 273–282. Crossref. Web of Science.Jewell J, Vetier M, Garcia-Cabrera D (2019) The international technological nuclear cooperation landscape: A new dataset and network analysis. Energy Policy 128: 838–852. Crossref. Web of Science.Jin B, Bae Y (2023) Prospective research trend analysis on zero-energy building (ZEB): An artificial intelligence approach. Sustainability 15(18): 13577. Crossref. Web of Science.Kanugrahan SP, Hakam DF (2023) Long-term scenarios of Indonesia power sector to achieve nationally determined contribution (NDC) 2060. Energies 16(12): 4719. Crossref. Web of Science.Khaleel M, Yusupov Z, Guneser M, et al. (2024) Towards hydrogen sector investments for achieving sustainable electricity generation. Journal of Solar Energy and Sustainable Development 13(1): 71–96. Crossref.Khalid F, Bicer Y (2019) Energy and exergy analyses of a hybrid small modular reactor and wind turbine system for trigeneration. Energy Science & Engineering 7(6): 2336–2350. Crossref. Web of Science.Khan SU-D, Khan SU-D, Haider S, et al. (2017) Development and techno-economic analysis of small modular nuclear reactor and desalination system across Middle East and North Africa region. Desalination 406: 51–59. Crossref. Web of Science.Kharitonov VV, Semenova DY (2023) On the economic efficiency of nuclear power digitization under the conditions of global energy transition. Studies on Russian Economic Development 34(2): 221–230. Crossref.Kim P, Yasmine H, Yim MS, et al. (2024) Challenges in nuclear energy adoption: Why nuclear energy newcomer countries put nuclear power programs on hold? Nuclear Engineering and Technology 56(4): 1234–1243. Crossref. Web of Science.Kosai S, Unesaki H (2024) Nuclear power, resilience, and energy security under a vulnerability-based approach. Cleaner Energy Systems 7: 100107. Crossref.Kröger W, Sornette D, Ayoub A (2020) Towards safer and more sustainable ways for exploiting nuclear power. World Journal of Nuclear Science and Technology 10(3): 91–115. Crossref.Krūmiņš J, Kļaviņš M (2023) Investigating the potential of nuclear energy in achieving a carbon-free energy future. Energies 16(9): 3612. Crossref. Web of Science.Kwasi S, Cilliers J, Yeboua K, et al. (2025) A developing country’s perspective on race to sustainability: Sustainability for countries with weak economic performance—Case study: Egypt’s challenge and opportunities to 2050. In: The Sustainability Handbook, Volume 1. Elsevier, 511–569. Crossref.Kyne D, Bolin B (2016) Emerging environmental justice issues in nuclear power and radioactive contamination. International Journal of Environmental Research and Public Health 13: 00. Crossref. Web of Science.Lau HC, Tsai SC (2023) Global decarbonization: Current status and what it will take to achieve net zero by 2050. Energies 16(23): 7800. Crossref. Web of Science.Lee JI (2024) Review of small modular reactors: Challenges in safety and economy to success. Korean Journal of Chemical Engineering 41: 2761–2780. Crossref. Web of Science.Li N, Brossard D, Anderson AA, et al. (2016) How do policymakers and think tank stakeholders prioritize the risks of the nuclear fuel cycle? A semantic network analysis. Journal of Risk Research 21(5): 599–621. Crossref. Web of Science.Li N, Brossard D, Su LYF, et al. (2015) Policy decision-making, public involvement and nuclear energy: What do expert stakeholders think and why? Journal of Responsible Innovation 2(3): 266–279. Crossref.Lin B, Xie Y (2022) Analysis on operational efficiency and its influencing factors of China’s nuclear power plants. Energy 261: 125211. Crossref. Web of Science.Liu L, Guo H, Dai L, et al. (2023) The role of nuclear energy in the carbon neutrality goal. Progress in Nuclear Energy 162: 104772. Crossref. Web of Science.Makarov V, Kaplin M, Perov M, et al. (2023) Optimization of coal products supply for the power industry and the country’s economy. In: Studies in Systems, Decision and Control, Cham: Springer Nature Switzerland, pp.87–98.Markard J, Bento N, Kittner N, et al. (2020) Destined for decline? Examining nuclear energy from a technological innovation systems perspective Energy Research & Social Science 67: 101512. Crossref. Web of Science.Marzouk OA (2024) Expectations for the role of hydrogen and its derivatives in different sectors through analysis of the four energy scenarios: IEA-STEPS, IEA-NZE, IRENA- PES, and IRENA-1.5°C. Energies 17(3): 46. Crossref. Web of Science.Mason-Renton SA, Luginaah I (2019) Lasting impacts and perceived inequities: Community reappraisal of the siting of a regional biosolids processing facility in rural Ontario. Journal of Risk Research 22(8): 1044–1061. Crossref. Web of Science.Mathew MD (2022) Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy 143: 104080. Crossref. Web of Science.Mendelevitch R, Kemfert C, Oei PY, et al. (2018) The electricity mix in the European low-carbon transformation: Coal, nuclear, and renewables. In: Energiewende “Made in Germany”. Cham: Springer International Publishing, 241–282. Crossref.Moon HS, Song YH, Lee JW, et al. (2024) Implementation cost of net zero electricity system: Analysis based on Korean national target. Energy Policy 188: 114095. Crossref. Web of Science.Murphy C, Cole W, Bistline J, et al. (2023) Nuclear power’s future role in a decarbonized US electricity system (No. NREL/TP-6A20-84451). National Renewable Energy Laboratory (NREL), Golden, CO (United States).Nassar YF, El-Khozondar HJ, El-Osta W, et al. (2024) Carbon footprint and energy life cycle assessment of wind energy industry in Libya. Energy Conversion and Management 300: 117846. Crossref. Web of Science.Nian V, Hari MP (2017) Incentivizing the adoption of nuclear and renewable energy in Southeast Asia. Energy Procedia 105: 3683–3689. Crossref.Nicolau AS, Cabral Pinheiro VH, Schirru R, et al. (2023) Deep neural networks for estimation of temperature values for thermal ageing evaluation of nuclear power plant equipment. Progress in Nuclear Energy 156: 104542. Crossref. Web of Science.Nilsuwankosit S (2017) Report on feasibility study for radiation alarming data collection from containers at Laem Cha Bang International Sea Port, Thailand. Volume 4: Nuclear Safety, Security, Non-Proliferation and Cyber Security; Risk Management. American Society of Mechanical Engineers.Nkosi NP, Dikgang J (2021) South African attitudes about nuclear power: The case of the nuclear energy expansion. International Journal of Energy Economics and Policy 11(5): 138–146. Crossref.Nnabuife SG, Oko E, Kuang B, et al. (2023) The prospects of hydrogen in achieving net zero emissions by 2050: A critical review. Sustainable Chemistry for Climate Action 2: 100024. Crossref. Web of Science.Nuclear Energy Agency (NEA) (2015) Nuclear energy: Combating climate change. Available at: https://www.oecd-nea.org/jcms/pl_14914.Obekpa HO, Alola AA (2023) Asymmetric response of energy efficiency to research and development spending in renewables and nuclear energy usage in the United States. Progress in Nuclear Energy 156: 104522. Crossref. Web of Science.Orikpete OF, Ewim DRE (2024) Interplay of human factors and safety culture in nuclear safety for enhanced organisational and individual performance: A comprehensive review. Nuclear Engineering and Design 416: 112797. Crossref. Web of Science.Oxford Institute for Energy Studies (OIES) (2024) Nuclear energy in the global energy landscape: Advancing sustainability and ensuring energy security? Available at: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2024/02/OEF-139-.pdf.Pan B, Adebayo TS, Ibrahim RL, et al. (2023) Does nuclear energy consumption mitigate carbon emissions in leading countries by nuclear power consumption? Evidence from quantile causality approach Energy & Environment 34(7): 2521–2543. Crossref. Web of Science.Pinho BE, Oliva JDJR, Maia Y L (2024) An approach for evaluation of the spent nuclear fuel management strategy for Brazilian nuclear power plants based on multi-criteria decision-making methodology. Nuclear Engineering and Design 424: 113186. Crossref. Web of Science.Pioro I, Duffey RB, Kirillov PL, et al. (2019) Current status and future developments in nuclear-power industry of the world. Journal of Nuclear Engineering and Radiation Science 5(2): 024001. Crossref.Poinssot C, Bourg S, Boullis B (2016) Improving the nuclear energy sustainability by decreasing its environmental footprint. Guidelines from life cycle assessment simulations. Progress in Nuclear Energy 92: 234–241. Crossref. Web of Science.Price J, Keppo I, Dodds PE (2023) The role of new nuclear power in the UK’s net-zero emissions energy system. Energy 262: 125450. Crossref. Web of Science.Ragosa G, Watson J, Grubb M (2024) The political economy of electricity system resource adequacy and renewable energy integration: A comparative study of Britain, Italy and California. Energy Research & Social Science 107: 103335. Crossref. PubMed. Web of Science.Raj AX (2023) Human reliability design—an approach for nuclear power plants in India. In: Risk, Reliability and Safety Engineering. Singapore: Springer Nature Singapore, 167–186.Ram Mohan MP, Namboodhiry SK (2020) An exploration of public risk perception and governmental engagement of nuclear energy in India. Journal of Public Affairs 20(3): e2086. Crossref. Web of Science.Rekik S (2024) Optimizing green hydrogen strategies in Tunisia: A combined SWOT-MCDM approach. Scientific African 26: e02438. Crossref. Web of Science.Rekik S, El Alimi S (2023a) Land suitability mapping for large-scale solar PV farms in Tunisia using GIS-based MCDM approach. In: 2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE), pp.1–5: IEEE.Rekik S, El Alimi S (2023b) Wind site selection using GIS and MCDM approach under fuzzy environment: A case of Tunisia. In: 2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE), pp.1–5: IEEE.Rekik S, El Alimi S (2024a) Prioritizing sustainable renewable energy systems in Tunisia: An integrated approach using hybrid multi-criteria decision analysis. Energy Exploration & Exploitation 42(3): 1047–1076. Crossref. Web of Science.Rekik S, El Alimi S (2024b) Unlocking renewable energy potential: A case study of solar and wind site selection in the Kasserine region, central-western Tunisia. Energy Science & Engineering 12(3): 771–792. Crossref. Web of Science.Rekik S, El Alimi S (2024c) A spatial perspective on renewable energy optimization: Case study of southern Tunisia using GIS and multicriteria decision making. Energy Exploration & Exploitation 42(1): 265–291. Crossref. Web of Science.Rekik S, El Alimi S (2024d) A GIS based MCDM modelling approach for evaluating large-scale solar PV installation in Tunisia. Energy Reports 11: 580–596. Crossref. Web of Science.Rekik S, El Alimi S (2024e) A spatial ranking of optimal sites for solar-driven green hydrogen production using GIS and multi-criteria decision-making approach: A case of Tunisia. Energy Exploration & Exploitation 42(6): 2150–2190. Crossref. Web of Science.Ren Y, Li G, Wang H, et al. (2024) China’s zero-coal power system future. International Journal of Electrical Power & Energy Systems 156: 109748. Crossref. Web of Science.Ruhnau O, Stiewe C, Muessel J, et al. (2023) Natural gas savings in Germany during the 2022 energy crisis. Nature Energy 8(6): 621–628. Crossref. Web of Science.Sadiq M, Shinwari R, Wen F, et al. (2023) Do globalization and nuclear energy intensify the environmental costs in top nuclear energy-consuming countries? Progress in Nuclear Energy 156: 104533. Crossref. Web of Science.Sadiq M, Wen F, Dagestani AA (2022) Environmental footprint impacts of nuclear energy consumption: The role of environmental technology and globalization in ten largest ecological footprint countries. Nuclear Engineering and Technology 54(10): 3672–3681. Crossref. Web of Science.Salam MA, Khan SA (2018) Transition towards sustainable energy production – A review of the progress for solar energy in Saudi Arabia. Energy Exploration & Exploitation 36(1): 3–27. Crossref. Web of Science.Sančanin B, Penjišević A (2023) Safe management of medical radiological waste. MEDIS - International Journal of Medical Sciences and Research 2(2): 7–13. Crossref.Temiz M, Dincer I (2021) Enhancement of a nuclear power plant with a renewable based multigenerational energy system. International Journal of Energy Research 45(8): 12396–12412. Crossref. Web of Science.Therme C (2023) French nuclear policy towards Iran: From the Shah to the Islamic Republic. Diplomacy & Statecraft 34(1): 117–139. Crossref. Web of Science.Utami I, Riski MA, Hartanto DR (2022) Nuclear power plants technology to realize net zero emission 2060. International Journal of Business Management and Technology 6(1): 158–162.Vujić J, Bergmann RM, Škoda R, et al. (2012) Small modular reactors: Simpler, safer, cheaper? Energy 45(1): 288–295. Crossref. Web of Science.Wagner F (2021) CO2 Emissions of nuclear power and renewable energies: A statistical analysis of European and global data. The European Physical Journal Plus 136(5): 62. Crossref. Web of Science.Wang Z, He Y, Duan Z, et al. (2023) Experimental study on transient flow characteristics in an equal-height-difference passive heat removal system for ocean nuclear power plants. International Journal of Heat and Mass Transfer 208: 124043. Crossref. Web of Science.Wheatley S, Sovacool B, Sornette D (2016) Of disasters and dragon kings: A statistical analysis of nuclear power incidents and accidents. Risk Analysis 37(1): 99–115. Crossref. PubMed. Web of Science.Wisnubroto DS, Sunaryo GR, Susilo YSB, et al. (2023) Indonesia’s experimental power reactor program (RDE). Nuclear Engineering and Design 404: 112201. Crossref. Web of Science.Yamagata H (2024) Public opinion on nuclear power plants in Japan, the United Kingdom, and the United States of America: A prescription for peculiar Japan. Energy Policy 185: 113939. Crossref. Web of Science.Yang X, Xue Y, Cai B (2024) Pathway planning of nuclear power development incorporating assessment of nuclear event risk. Journal of Modern Power Systems and Clean Energy 12(2): 500–513. Crossref. Web of Science.Zhan L, Bo Y, Lin T, et al. (2021) Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews 34: 100630. Crossref. Web of Science.Zhang S, Liu J, Liu X (2022) Comparing the environmental impacts of nuclear and renewable energy in top 10 nuclear- generating countries: Evidence from STIRPAT model. Environmental Science and Pollution Research 30(11): 31791–31805. Crossref. Web of Science.Zheng S, Liu H, Guan W, et al. (2024) How do nuclear energy and stringent environmental policies contribute to achieving sustainable development targets? Nuclear Engineering and Technology 56(10): 3983–3992. Crossref. Web of Science.Zimmermann F, Keles D (2023) State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects. Energy Policy 173: 113403. Crossref. Web of Science.

Diplomacy
PSHS-ZRC 2nd Commencement Exercises (17)

An Australia stop in the Duterte Political Roadshow

by Ruby Rosselle “Ross” Tugade

Sara Duterte’s visit to Australia marks a bold attempt to internationalise her father’s legal battle with the ICC, using diaspora diplomacy to challenge human rights mechanisms. Her campaign raises serious questions about how states like Australia should respond when populist leaders seek to undermine international legal norms from foreign soil. In a near two-hour speech before a crowd of supporters in Melbourne, embattled Philippine Vice President Sara Duterte (herein Sara) called on the Filipino community to “convince” the Australian government to “look into the case” of her father, former President Rodrigo Duterte, before the International Criminal Court (ICC). During the rally, Sara publicly urged supporters to lobby the Australian government—a party to the Rome Statute. Mr Duterte is currently detained at The Hague for alleged crimes against humanity, perpetrated in the context of his bloody “War on Drugs.” Sara has seemingly embarked on a “global sympathy tour,” albeit tagged as a personal trip, to muster support for her father. At home, she fights off an impeachment trial, one which may plunge the Philippines into a constitutional crisis. The Duterte family is mobilising political resources and capital amid a crisis, with a strategy focused on building transnational support networks among loyal supporters to defend their violent legacy and deflect legal accountability. Australia is a critical stop in Sara’s roadshow. It was the first country explicitly named in news reports as a potential host for Mr Duterte as his defence team requests an interim release. Australia was her first stop after the defence made its request, prompting her to publicly deny that any formal approach had been made. Since Mr Duterte’s arrest in March, Sara has addressed overseas Filipinos in Qatar, Malaysia, and the Netherlands. There are key stakes that lie beyond Philippine domestic politics in every overseas trip she makes. In every visit, she stokes deeply emotional—and often inflammatory—appeals that challenge attitudes towards the rule of law. These may cause concern for public order, as Duterte supporters are known to be fiercely loyal, even engaging in politically trolling the ICC. Public assemblies organised around the trips have caused issues in other countries, resulting in investigations being made by host countries or the refusal of local institutions to associate with the pro-Duterte activities. Sara alluded to attempts at reaching out to Foreign Minister Penny Wong. She appealed for the fair application of rules to her father. These statements fit a pattern of invoking due process rhetoric when convenient, yet lacking genuine attempt at engaging official channels. For example, she called ICC lawyers “stupid” in attempts to undermine the investigation’s credibility, mirroring her father’s hostile attitude when he was in power. Filipino human rights defenders based in Australia have publicly condemned her visit as polarising. Domestic politics have deeply divided Filipinos back home. The visit drew prominent attention given Australia’s active role in the multilateral human rights system and adoption of a sanctions regime targeting rights violators. In urging migrant Filipinos to support her family, Sara’s speech brings to focus to an autocratic tendency in challenging human rights mechanisms. It also raises the question of whether states like Australia will be willing to act on political rhetoric from high-profile figures who undermine international norms and human rights. Observers also noted that Mr Duterte previously provoked tensions with Australia. He threatened to cut diplomatic ties in 2016 after criticism of his remarks about the rape and murder of an Australian missionary, and later ordered the deportation of Australian citizen Patricia Fox for opposing the War on Drugs. Australian officials have declined to engage Sara’s speech. Even so, her visit has roped Australia into the Dutertes’ impunity saga. The Dutertes’ recorded backlash against international legal norms—such as the former president’s withdrawal from the ICC, threatens to do the same with the UN Human Rights Council. Now, Sara’s public hostility towards the ICC prosecutor confronts the rules-based order that the Philippines and Australia commit to. Uncertainty in the international order affects Australia’s strategy on security, diplomacy, and international law, especially in light of recent strengthening of ties with the Philippines on security cooperation. Days after the visit, the ICC publicised the OTP’s opposition to Mr Duterte’s request for interim release. The OTP opposed the interim release due to flight risk. Sara’s political influence and vast network exacerbates the risk, and may help facilitate Mr Duterte’s evasion of justice. So far, Sara Duterte has made risky political moves: violent election rhetoric, assassination plots, attacking her impeachment, and evasion of congressional hearings. If she emerges unscathed, she could remain the frontrunner for the 2028 presidential race. The presidency would give her control over foreign policy. For states like Australia, ostensibly committed to the integrity of a rules-based international order, this raises questions about how they will respond to those who challenge international norms through provocative foreign engagements. This is not just about the ICC’s legitimacy or the Philippines’ politics—it is about whether international norms can withstand pressure from leaders who openly defy them.

Defense & Security
flag country Europe defense army

European Union Strategic Autonomy. Necessary but potentially problematic?

by Krzysztof Śliwiński

Abstract This paper examines the evolving concept of European Union Strategic Autonomy (EU-SA) within the context of contemporary geopolitical challenges, with a particular focus on EU-Russia and EU-China relations. EU-SA reflects the EU's aspiration to act independently in foreign policy, security, defence, and economic affairs, moving from a rule-taker to a rule-maker in global politics. The study outlines the historical development of EU-SA from 2013 to the present, highlighting key milestones such as the Strategic Compass and the impact of the Ukraine War, which accelerated efforts toward defence collaboration, energy independence, and economic resilience. It explores the transatlantic dynamics, noting growing uncertainties in the U.S. commitment to NATO and the resulting push for a more autonomous European defence posture. Additionally, it addresses the complex EU-China relationship, marked by both cooperation and competition, as well as the strained EU-Russia ties amid ongoing conflict. The paper concludes by questioning the economic feasibility and political risks of deeper EU strategic autonomy, especially regarding security centralisation and Germany's leadership role. Key Words: EU, Strategic Autonomy, Security, Geopolitics, U.S, China, Russia Introduction At the 2025 North Atlantic Treaty Organisation (NATO) Summit in The Hague, member states (Allies) committed to investing 5% of their Gross Domestic Product (GDP) annually in core defence requirements and defence- and security-related spending by 2035. They will allocate at least 3.5% of GDP annually, based on the agreed-upon definition of NATO defence expenditure, by 2035 to resource core defence requirements and meet the NATO Capability Targets. Allies agreed to submit annual plans that show a credible, incremental path to achieving this goal.[1] At the same time, Spain secured a special compromise, committing to meet core requirements with just 2.1% of GDP, making it the only exception to the broader 5% target. Previously, in 2014, NATO Heads of State and Government had agreed to commit 2% of their national GDP to defence spending, to help ensure the Alliance's continued military readiness. This decision was taken in response to Russia's illegal annexation of Crimea, and amid broader instability in the Middle East. The 2014 Defence Investment Pledge was built on an earlier commitment to meeting this 2% of GDP guideline, agreed in 2006 by NATO Defence Ministers. In light of the increase in defence spending, given that 23 out of 32 NATO Allies are EU member states, the idea of European Union strategic autonomy (EU-SA) comes to mind. This paper will explore the issue of EU-SA with a specific reference to EU-Russia and EU-China relations.[2] A Brief History of EU Strategic Autonomy European Union strategic autonomy is an evolving concept that reflects its ambition to act independently in strategically important policy areas, including foreign policy, security, defence, and economic relations. Strong strategic autonomy, according to Barbara Lippert, Nicolai von Ondarza and Volker Perthes, means being able to set, modify and enforce international rules, as opposed to (unwillingly) obeying rules set by others. The opposite of strategic autonomy is being a rule-taker, subject to strategic decisions made by others, such as the United States, China, or Russia.[3] The concept was first prominently discussed in the context of defence in 2013 and has since expanded to encompass a broader range of policy areas. Historically speaking, one can identify numerous phases during which EU-SA evolved. - 2013-2016: During this period, EU-SA focused on security and defence, with initiatives like the Permanent Structured Cooperation (PESCO) and the European Defence Fund, aiming to strengthen the EU's defence capabilities.[4]  - 2017-2019: During this period, the EU-SA shifted its focus to defending European interests in a hostile geopolitical environment, influenced by events such as Brexit, the Trump presidency, and China's growing assertiveness.- 2020: The COVID-19 pandemic highlighted economic vulnerabilities, prompting a focus on mitigating dependence on foreign supply chains, particularly in critical sectors like health and technology.- Since 2021: The scope widened to virtually all EU policy areas, including digital, energy, and values, with terminology evolving to include "open strategic autonomy," "strategic sovereignty," "capacity to act," and "resilience".- 2022: The Ukraine War and Accelerated Implementation. Russia's invasion of Ukraine catalysed concrete actions toward EU-SA, notably in defence, energy independence, and economic resilience. The European Council's Versailles Declaration (March 2022) expressed strong political will to increase EU-SA, calling for collaborative investments in defence, phasing out dependency on Russian energy, and reducing reliance on critical raw materials, semiconductors, health, digital technologies, and food imports.[5] - The Strategic Compass for security and defence policy (endorsed March 2022) outlines a roadmap to 2030, emphasising strengthened EU defence capacities. Among others, it includes: o   Establishment of a strong EU Rapid Deployment Capacity of up to 5000 troops for different types of crises.o   Ready to deploy 200 fully equipped Common Security and Defence Policy (CSDP) mission experts within 30 days, including in complex environments.[6]o   Conducting regular live exercises on land and at sea.o   Enhanced military mobility.o   Reinforcement of the EU's civilian and military CSDP missions and operations by promoting a rapid and more flexible decision-making process, acting more robustly and ensuring greater financial solidarity.o   Making full use of the European Peace Facility to support partners.[7] According to the EU itself, the EU-SA is not a zero-sum game, but rather a sliding scale between complete autonomy and full dependency, with different results for different policy areas. What is more, when compared to the famous Maslow's hierarchy of needs (European Parliament briefing's language), the EU is not only perceived as an economic power, but it is also seen as a normative power. Therefore, the EU is recognised for its core values of democracy, human rights and the rule of law. Ultimately, Maslow's “self-actualisation” could mean the achievement of an EU in which citizens recognise their European identity and which has realised its full autonomous policy potential.[8]   As if this is not enough, the same source introduces the concept of the 360° strategic autonomy wheel, which reportedly illustrates policy areas in which the EU aims for greater strategic autonomy, as well as the connections between them. Mutual influence between policy areas can happen across the wheel, but is particularly strong in adjacent areas. Military action, for example, can cause migration, health is linked to food quality, energy policy influences the climate, and misinformation undermines democracy. The wheel can help to understand links, set priorities and view potential conflicts. More autonomy in the digital green economy will, for example, require vast quantities of “rare earth” materials, making the EU more (instead of less) dependent on imports. Reductions in energy consumption achieved through the digitalisation of the economy (for example, by reducing transport) will be partly offset by the increase in energy consumption by electronic devices and data centres.   Global Context The significance of EU-SA lies in ensuring the EU's political survival and global influence in a multipolar world where its relative power is diminishing. The EU's long-term economic outlook is bleak: its share of global GDP, now at 17% (at current prices), could nearly halve by 2050. According to the World Economic Forum, this economic backsliding not only threatens Europe's ability to fund its social model but also risks weighing on the bloc's global influence, leaving it even more dependent on the U.S. and China.[9] Moreover, the COVID-19 pandemic highlighted the conflictual nature of economic interdependence, as reliance on foreign supply chains for critical goods exposed vulnerabilities. Soft power has become an instrument of hard power, necessitating autonomy in trade, finance, and investment.  The U.S.'s strategic pivot to Asia, the exclusion of Europe in conflicts like Nagorno-Karabakh, Libya, and Syria (termed Astanisation[10], which favours Russia and Turkey), the sidelining of the EU in EU-Russia negotiations regarding the war in Ukraine, and China's state-led economic model have all pushed the EU towards the sidelines. Transatlantic divide Security is a critical dimension, with significant uncertainty surrounding the U.S. commitment to NATO under the Trump administration. Reports indicate Trump has questioned NATO's Article 5 guarantees, with actions like withdrawing military personnel from a Ukraine aid hub in Poland on April 8, 2025, and proposing to stand down 10,000 light infantry troops in Poland, Romania, and the Baltic states by 2025.[11] This has led to fears of a "NATO-minus" scenario, where the EU must fill security gaps without full U.S. backing. In response, the EU is pushing for greater strategic autonomy in defence. Initiatives like ReArm EU are mentioned, with calls for the EU to develop a stand-alone, integrated military capacity to stabilise the global economy. As Jean-Pierre Maulny, Deputy Director of the French Institute for International and Strategic Affairs (IRIS), adequately observes "The risk is now clear: a form of bilateral agreement between the United States and Russia, benefiting the interests of both countries, could leave Ukraine severely weakened and an easy prey for Moscow, thereby weakening other European countries consequently. As a consolation prize, we will have to ensure Europe's conventional security, as U.S. Secretary of Defence Pete Hegseth announced to Europeans at the opening of the NATO ministerial meeting held in Brussels on 12–13 February 2025. This situation will place Europeans in a terrible dilemma: Either they do not wish to provide security guarantees to Ukraine and risk completely discrediting themselves in the eyes of powers such as the United States, Russia, and China, as Europeans will have demonstrated that they are unable to defend the continent, while also creating a significant long-term risk to Europe's security. Alternatively, they could provide security guarantees to Ukraine, accepting the financial burden that would impact the European Union's long-term competitiveness. In light of this situation, some advocate for the establishment of a European pillar within NATO. If one considers that the United States is negotiating peace in Europe without and against the Europeans, and that they no longer wish to defend Europe with conventional military means (will they respect the NATO Defence Planning Process?), Europeans should take on Europe's security fully. This would mean taking control of NATO. It will also be easier to make NATO and the European Union work together with a more Europeanised organisation".[12] Economically, there are several issues that contemporary demand addresses, but the most pressing is, of course, the Tariffs. The U.S. and European Union are running out of time to strike a deal on trade tariffs. Negotiations have been slow since both the U.S. and EU temporarily cut duties on each other until July 9. If an agreement is not achieved by then, full reciprocal import tariffs of 50% on EU goods, and the bloc's wide-spanning countermeasures are set to come into effect.[13] According to Almut Möller, Director for European and Global Affairs and head of the Europe in the World programme (European Policy Centre), "for the first time in decades, Europeans can no longer rely on a benign partner on the other side of the Atlantic, leaving them dangerously exposed and acutely vulnerable, including on the very foundations of liberal democracy. Until recently, the U.S. dominated a world order that provided a favourable environment for the EU to extend its membership, further develop, and leverage its strengths, particularly as a trading power, without having to worry much about geopolitics. Suddenly, liberal Europe looks very lonely, and is struggling to keep up with a world of change".[14] Other problems arguably include digital regulation and data protection, antitrust policy and digital taxation, fiscal policy and social protection, geopolitical rivalries, China's rise, and competition and trade policy. EU–China conundrum Both the EU and the U.S. are concerned about China's growing economic and technological influence, but they have differing approaches to addressing this challenge. The EU has sought to maintain a balance between cooperation and competition with China, while the U.S. has adopted a more confrontational approach.[15] These differences have led to tensions in areas such as trade policy and technology regulation. For example, the EU has been critical of the U.S.'s unilateral approach to addressing China's trade practices, while the U.S. has accused the EU of being too lenient towards China. These disagreements have made it difficult to achieve a coordinated transatlantic response to China's rise.[16] According to German experts, the balance of power between China and the EU and its member states is developing increasingly asymmetrically to Europe's disadvantage. Only in trade policy – and partially in investment – can the EU maintain its position in a manner respected by China.[17] Europe holds significant importance for China across various dimensions: economically, as its top supplier and second-largest export destination; technologically, as a source of advanced technology; institutionally, as a model to emulate; politically, to advance its objectives concerning other nations, particularly the United States; and selectively, as a collaborator in areas like global health and regional stabilisation. Unlike Russia and the United States, China perceives a vital interest in the EU's continued existence and unity within a multipolar world; yet, it employs a "divide and rule" strategy. China selectively rewards or penalises individual EU countries based on their political and economic significance and their compliance with China's expectations on key issues. These issues include arms sales to Taiwan, meetings with the Tibetan Dalai Lama, and positions on the Uighurs, human rights in China, and the South China Sea. China engages with Europe on multiple levels — political, economic, technological, cultural, and academic — using various political channels (such as strategic partnerships with the EU and individual EU member states), dialogue formats (like the 16+1 format with sixteen Central and Eastern European countries), and high-level bilateral intergovernmental consultations with Germany, France, and the United Kingdom. China's hopes that the European Union would emerge as an independent and comprehensive player in global politics, serving as a counterbalance to the United States, have diminished. However, China would be supportive of any European efforts towards achieving strategic autonomy, provided it does not translate into a confrontational approach towards China itself. In contrast, Europe's political priorities—such as ensuring peace and stability in East Asia, China's role in global stability, development, environmental issues, climate change, and non-proliferation, as well as improving human rights in China — are often considered secondary and are not actively pursued by all EU member states. Europe lacks a unified and assertive foreign policy stance regarding the geopolitical rivalry between the United States and China for dominance in the Asia-Pacific region. There is also an absence of a clear position on China's authoritarian vision of order. Even in trade and investment disputes, Europe struggles to establish a unified approach to resolving these issues. The EU member states are too diverse in terms of size, profiles, and interests in their dealings with China: Economically, there is a divide between countries that are appealing industrial and technological partners for China and those that compete for favour in Beijing. Some nations have a clear interest in global governance. Additionally, the United Kingdom and France maintain their respective military presences in the Asia region. In this context, ReArm EU and its financial instrument SAFE (analysed here https://worldnewworld.com/page/content.php?no=5384 ) have the potential to provide the EU with meaningful strategic autonomy and invite genuine geopolitical actorness. EU–Russia conundrum Since Donald Trump took office as the U.S. president, the coordination of transatlantic policies regarding Russia has largely disintegrated. The White House's openness to a comprehensive "deal" with Russian President Vladimir Putin contrasts with Congress's attempts to limit Trump's foreign policy options with Russia, resulting in the marginalisation of coordination with European allies. This situation is further complicated by Washington's increasing reliance on extraterritorial sanctions, a trend that began before Trump's presidency. Consequently, according to European foreign and security experts, Europe must achieve greater strategic autonomy in its dealings with Russia. However, this relationship is particularly strained by significant conflicts of interest. Russia's invasion of Ukraine significantly disrupted the previously peaceful and liberal democratic relations among European nations. Putin's "special military operation" compelled the EU to introduce seventeen (so far) escalating economic sanction packages aimed at undermining the Russian economy and ultimately limiting Russia's capacity to continue the war. In a gesture of solidarity with Ukraine, the EU has also allocated billions of euros to both EU member states and Ukraine to avert a humanitarian disaster and ensure the provision of essential needs for Ukrainians fleeing the conflict.[18] After three and a half years from the outset of the war, Russia continues to pose a complex challenge that the EU and European nations cannot address independently in the foreseeable future. If the U.S. security guarantee weakens before Europe can bolster its own capabilities, the EU could face new vulnerabilities that Russia might exploit along its external borders, such as in the Baltic states, and elsewhere. Currently, the EU and its member states lack sufficient means to deter Russia from pursuing its interests aggressively and recklessly in the shared neighbourhood.[19] Critics, on the other hand, argue that calls for EU strategic autonomy, particularly the creation of a European Army and a significant increase in military spending, are a double-edged sword. First, the primary official rationale is that the EU must prepare itself for a possible attack on EU member states by Russia. The legacy media are full of European leaders claiming that Russia will sooner or later attack Europe.[20] Yet, this claim is not substantiated with much evidence. The proponents of the European army completely disregard numerous doubts surrounding the 2013/2014 "Euromaidan" and the role of the CIA in the events.[21] Second, according to the Office of the High Commissioner for Human Rights (OHCHR) 's estimations, the total number of conflict-related casualties in Ukraine from April 14, 2014, to December 31, 2021, stood at 51,000 – 54,000. These numbers are broken down as follows: 14,200 - 14,400 killed (at least 3,404 civilians, estimated 4,400 Ukrainian forces, and estimated 6,500 members of armed groups), and 37,000 - 39,000 injured (7,000 – 9,000 civilians, 13,800 – 14,200 Ukrainian forces and 15,800 - 16,200 members of armed groups).[22] In short, the situation was chaotic, with many casualties among civilians. Third, it was allegedly Europeans who torpedoed a first chance of peace negotiations as early as April 2014 in Istanbul.[23] Fourth, many European leaders seem to be utterly oblivious to the fact that the prolongation of the war adds to the destruction of Ukraine and Ukrainian society, deaths and emigration. Last but not least, given the fact that it is Germany that calls for both the European Army and the federalisation of Europe (with some assistance from France), one should be extra careful given the role of Germans during the WWII and the fact that neither has there been any official peace treaty with Germany nor have they recompensated countries such as Poland. Conclusion Strategic autonomy may be a necessity for Europe, given the dynamics of transatlantic relationships. The questions, however, that have to be pondered (and it does not seem that anyone in the legacy media or mainstream academia is ready to ask them) are numerous. Who will pay for that? Can Europeans afford such expenses under the current economic circumstances, and even worse economic prospects? Is the centralisation of security and military a Pandora's box? Should Europeans allow Germany (of all EU member states) to take special responsibility for this project? Isn't the pro-war rhetoric of Western political leaders making relations with Russia even more tense and dangerous, in other words, leading to escalation? History has solemnly proven that when left to their own devices, the Europeans inevitably create disastrous conflicts that have lasting consequences for generations. The American pivot to Asia and the consequent withdrawal from Europe may therefore have tragic ramifications for the European continent. References[1] Defence expenditures and NATO’s 5% commitment. (2025, June 27). North Atlantic Treaty Organization. https://www.nato.int/cps/en/natohq/topics_49198.htm[2] NATO and the EU have 23 members in common: Belgium, Bulgaria, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain and Sweden. See more at: https://www.consilium.europa.eu/en/policies/eu-nato-cooperation/#0[3] Lippert, B., von Ondarza, N., & Perthes, V. (2019, March). European Strategic Autonomy. Actors, Issues, Conflicts of Interests. Stiftung Wissenschaft Un Politic. Deutches Institut für Politik Und Sicherheit. https://www.swp-berlin.org/ doi:10.18449/2019RP04/#hd-d14204e263[4] Damen, M. (2022, July). EU strategic autonomy 2013-2023: From concept to capacity (EU Strategic Autonomy Monitor). European Parliamentary Research Service. https://www.eprs.ep.parl.union.eu[5] Informal meeting of the Heads of State or Government Versailles Declaration. (2022, March 10–11). Stiftung Wissenschaft Un Politic. Deutches Institut Fur Politik Und Sicherheit. https://www.consilium.europa.eu/media/54773/20220311-versailles-declaration-en.pdf[6] See more at: https://www.eeas.europa.eu/eeas/csdp-structure-instruments-and-agencies_en[7] See more at: https://fpi.ec.europa.eu/what-we-do/european-peace-facility_en[8] Damen, M. (2022, July). EU strategic autonomy 2013-2023: From concept to capacity (EU Strategic Autonomy Monitor). European Parliamentary Research Service. https://www.eprs.ep.parl.union.eu[9] Open but Secure:  Europe’s Path to Strategic Interdependence. INSIGHT REPORT. (2025). World Economic Forum. https://reports.weforum.org/docs/WEF_Open_but_Secure_Europe%E2%80%99s_Path_to_Strategic_Interdependence_2025.pdf[10] In reference to the Astana format on Syria) which leads to the exclusion of Europe from the settlement of regional conflicts in favour of Russia and Turkey. See more: https://www.eeas.europa.eu/eeas/why-european-strategic-autonomy-matters_en[11] Tilles, D. (2025, April 8). US to withdraw military from Ukraine aid hub in Poland. Notes from Poland. https://notesfrompoland.com/2025/04/08/us-to-withdraw-military-from-ukraine-aid-hub-in-poland/[12] Maulny, J.-P. (2025, February 13). United States – Europe: Our Paths Are Splitting. The French Institute for International and Strategic Affairs (IRIS). https://www.iris-france.org/en/united-states-europe-our-paths-are-splitting/[13] Kiderlin, S. (2025, June 18). These are the sticking points holding up a U.S.-EU trade deal. CNBC. https://www.cnbc.com/2025/06/18/these-are-the-sticking-points-holding-up-a-us-eu-trade-deal.html#:~:text=The%20EU%20and%20US%20flags,Poland%20on%20March%206%2C%202025.&text=Afp%20%7C%20Getty%20Images-,The%20U.S.%20and%20European%20Union%20are%20running%20out%20of%20time,($1.93%20trillion)%20in%202024?[14] Möller, A. (2025, February 26). Europe in the World in 2025: Navigating a perilous world with realism and ambition. European Policy Centre. https://www.epc.eu/publication/Europe-in-the-World-in-2025-Navigating-a-perilous-world-with-realism-625da4/#:~:text=2025%20will%20be%20a%20year,with%20a%20world%20of%20change[15] Bradford, A. (2023). When Rights, Markets, and Security Collide (pp. 221–254). Oxford University Press. https://doi.org/10.1093/oso/9780197649268.003.0007[16] Portanskiy, A. (2023). UE - US: new barriers to trade. Современная Европа. https://doi.org/10.31857/s020170832304006x[17] Lippert, B., von Ondarza, N., & Perthes, V. (2019, March). European Strategic Autonomy. Actors, Issues, Conflicts of Interests. Stiftung Wissenschaft Un Politic. Deutches Institut für Politik Und Sicherheit. https://www.swp-berlin.org/ doi:10.18449/2019RP04/#hd-d14204e263 [18] Klüver, L. (2025, April 18). Putin’s War on Ukraine: What can the EU actually do? European Careers Association. https://ecamaastricht.org/blueandyellow-knowyourunion/putins-war-on-ukraine-what-can-the-eu-actually-do#:~:text=Similarly%2C%20the%20Strategic%20Compass%2C%20the%20most%20recent,its%20interests%20and%20promote%20its%20values%20internationally.[19] Lippert, B., von Ondarza, N., & Perthes, V. (2019, March). European Strategic Autonomy. Actors, Issues, Conflicts of Interests. Stiftung Wissenschaft Un Politic. Deutches Institut für Politik Und Sicherheit. https://www.swp-berlin.org/ doi:10.18449/2019RP04/#hd-d14204e263 [20] ochecová, K. (2025, February 11). Russia could start a major war in Europe within 5 years, Danish intelligence warns. Politico. https://www.politico.eu/article/russia-war-threat-europe-within-5-years-danish-intelligence-ddis-warns/[21] Katchanovski, I. (2024). The Maidan Massacre in Ukraine The Mass Killing that Changed the World. Palgrave Macmillan. https://doi.org/https://doi.org/10.1007/978-3-031-67121-0[22] Office of the United Nations High Commissioner for Human Rights. (2022, January 27). Conflict-related civilian casualties in Ukraine: December 2021 update. United Nations Human Rights Monitoring Mission in Ukraine. https://ohchr.org[23] Johnson, J. (2022, May 6). Boris Johnson Pressured Zelenskyy to Ditch Peace Talks With Russia: Ukrainian Paper. Common Dreams. https://www.commondreams.org/news/2022/05/06/boris-johnson-pressured-zelenskyy-ditch-peace-talks-russia-ukrainian-paper

Diplomacy
Bangkok, Thailand-December 6, 2022: Paetongtarn Shinawatra cheers with supporters during a Pheu Thai party general assembly meeting.

Thailand in a political and diplomatic crisis

by Alexandra Colombier

Thai Prime Minister Paetongtarn Shinawatra has been suspended following the leaking of a recording of a conversation she had with former Cambodian leader Hun Sen. The conversation was seen as a serious breach of ethics, even an act of treason, against a backdrop of tensions with Phnom Penh. The affair rekindled border tensions and exacerbated clan rivalries within the Thai government. On 2 June 2025, Thailand's Constitutional Court voted unanimously (9-0) to examine a petition filed by thirty-six senators calling for the impeachment of Prime Minister Paetongtarn Shinawatra. On 1 July, the court ordered her immediate suspension by seven votes to two, pending a final verdict. The leader now has 15 days to prepare her defence. Deputy Prime Minister Phumtham Wechayachai is now acting Prime Minister, while Paetongtarn herself has been given the portfolio of Culture, following an express reshuffle of the government. Paradoxically, this reshuffle, approved by the King, leaves the country without a Defence Minister, in the midst of a diplomatic crisis with Cambodia. The official reason for Paetongtarn's suspension? A ‘serious breach of ethics,’ following the leak of an audio recording of a private conversation between Paetongtarn and Hun Sen, Cambodia's former strongman. This diplomatic scandal is exacerbating Thailand's political crisis. It reveals the underlying tensions of a fragile system, marked by dynastic alliances, the judicialization of politics, military rivalries, and a polarized society. A leaked audio recording at the heart of the scandal Since May 2025, tensions between Thailand and Cambodia have been rising steadily, fueled by ancient border disputes inherited from the French colonial period. On 18 June, a 17-minute audio recording was made public; its broadcast appears to have been orchestrated from Phnom Penh, although it is not clear by whom. It shows the Prime Minister talking to Hun Sen, President of the Cambodian Senate and father of the current Prime Minister Hun Manet. The subject of the discussion is the sovereignty of three temples on the Thai-Cambodian border, which has been a theatre of tension for decades. Paetongtarn adopts an informal and conciliatory tone. At one point she says: ‘Uncle, please be lenient with your niece’. A little later, she adds: ‘Your Excellency Hun Sen, whatever you want, I will take care of it.’ In the call, she also criticizes the commander of Thailand's second military region, Lieutenant-General Boonsin Padklang, who is in charge of the border sector, describing him as a member of the ‘opposing camp.’ This is a worrying sign of institutional cohesion, in the context of historic mistrust between the Shinawatra clan and the military establishment. Since the recording was leaked, Paetongtarn has apologized to General Boonsin and publicly expressed her regrets to the Thai people - not for her remarks to Hun Sen, but for the leak itself, which she describes as regrettable. She justified the tone of the conversation by referring to a negotiating technique on her part. Hun Sen claims that he only shared the recording with around eighty colleagues to ‘inform’ them, without being able to identify the person who orchestrated the leak. Not a very convincing line of defence, especially as he then threatened to divulge further compromising information about Paetongtarn and his father Thaksin (former prime minister of Thailand from 2001 to 2006). The effect was immediate: a national outcry, accusations of treason and a government in crisis. The People's Party, the main opposition party and offshoot of the Move Forward Party, which was dissolved in 2024, demanded the dissolution of parliament and an early general election. The Bhumjaithai, a conservative party with its base in the Buriram region (Isan), and the second largest force in the government coalition behind the Prime Minister's Pheu Thai, announced its withdrawal from the government on 19 June - officially, in the name of national sovereignty in the face of a head of government judged incapable of responding to threats from Cambodia; unofficially, it is seeking to dissociate itself from a weakened government, in a context of rivalry over control of the strategic Ministry of the Interior. It was against this backdrop that a group of senators close to the Bhumjaithai party - nicknamed the ‘dark blues’ (the color of the Bhumjaithai party) because of their partisan allegiance - appealed to the Constitutional Court, accusing Paetongtarn of a ‘serious breach of ethics.’ In their petition, they formally called for her dismissal, arguing that her behaviour had breached the standards of probity expected of a head of government. A risky response and a threatened majority In this climate of hostility, Paetongtarn has a way out: to resign before the Constitutional Court's decision, as many politicians and analysts have urged her to do. This strategy would enable her to preserve her political future and stand for re-election at a later date. This choice is not without precedent in the Shinawatra dynasty. In 2006, her father Thaksin dissolved parliament in an attempt to defuse a political crisis but was overthrown shortly afterwards in a military coup. In 2014, her aunt Yingluck, prime minister from 2011 to 2014, adopted the same strategy: she dissolved the National Assembly before being impeached by the Constitutional Court, then overthrown in her turn by the army. These precedents partly explain why Paetongtarn seems to have ruled out this option: in the Thai political system, dissolving Parliament offers no guarantee of survival. She therefore prefers to face the verdict of a Constitutional Court perceived to be close to the royalist and military establishment, which has historically been hostile to the Shinawatras, despite the risk of political banishment. Politically, her position has become untenable. The Pheu Thai party, which she leads, has just 141 seats out of 495. Her new majority is based on a fragile coalition of around 260 seats, threatened at any time by internal divisions and power struggles. Around twenty MPs originally elected in opposition - nicknamed the ‘Cobra MPs’ for having switched sides in return for financial compensation - could provide occasional support to the government, but without guaranteeing its stability. In this context, the cabinet reshuffle is a tactical maneuver: it aims not only to reassure public opinion, but also to broaden the parliamentary base by integrating or rewarding small parties likely to join or support the coalition. And yet, neither the dissolution of the Assembly nor the holding of early elections are on the agenda. Pheu Thai hopes to have its budget adopted before October, and to avoid an electoral confrontation with the opposition represented by the People's Party, credited with 46% of voting intentions according to a NIDA poll on 29 June, compared with just 11.5% for Pheu Thai. In addition, the National Anti-Corruption Commission (NACC) is investigating several cases involving Paetongtarn: her alleged illegal ownership of shares in a luxury resort; a 2016 family transaction in which she allegedly used undated promissory notes to ‘pay’ 4.4 billion baht (around $135 million) in shares, thereby avoiding nearly 218 million baht in taxes; and her controversial handling of the 28 May border crisis, which resulted in the death of a Cambodian soldier. Added to this are the court cases against his father, which could weaken the whole family, at a time when the compromises made between Pheu Thai and its former conservative adversaries seem increasingly fragile. Thaksin is on trial for the crime of lèse-majesté, following an interview he gave to a South Korean media outlet nine years ago. He is also on trial for his controversial return to Thailand in 2023: although officially sentenced to one year in prison after a royal pardon, he did not spend a single day behind bars, having been transferred to the police hospital on the first night for health reasons. This prolonged stay in a VIP room provoked considerable controversy, which was rekindled in June 2025 when a judicial enquiry was opened and several doctors were suspended by the Medical Council, against a backdrop of political pressure. History repeats itself: a court at the heart of power games Paetongtarn's suspension is one in a long series of politically biased judicial decisions. In 2024, his predecessor Srettha Thavisin, a member of Pheu Thai, was dismissed for ethical breaches after appointing a minister who had served time in prison. At the same time, as we mentioned earlier, the Move Forward Party was dissolved and its leaders banned political life for campaigning in favor of reforming the lèse-majesté law. In 2022, the Court suspended Prime Minister Prayuth Chan-o-cha for exceeding his legal term of office, before concluding in a controversial decision that his term of office had only really begun with the adoption of the new Constitution in 2017, even though he had already been leading the military government since 2014. This trend is not neutral. Judicial institutions, in particular the Constitutional Court, are regularly mobilized to neutralize figures perceived as hostile to the established order (monarchy, army, high bureaucracy). Once again, the procedure follows a well-worn pattern: acceptance of the complaint, investigation against the accused, then removal from office. It should be noted that the Bhumjaithai party was also the subject of a complaint for its alleged involvement in fraud during the 2024 senatorial elections. It was accused of having illegally financed certain candidates. The Constitutional Court unanimously rejected the application, ruling that there were no grounds for prosecution. This decision contrasts with the acceptance of the complaint against Paetongtarn, and fuels suspicions of differential treatment. Bhumjaithai is increasingly establishing itself as the new political pillar of the conservative forces. Regional maneuvers, national protests The current crisis goes well beyond the parliamentary framework. On 28 June, thousands of demonstrators gathered in Bangkok under the banner of the ‘United Front for the Defence of Thai Sovereignty’. They were led by Sondhi Limthongkul, a central figure in the Yellow Shirts movement, a royalist and ultranationalist group opposed to Shinawatra governments and one of the architects of Thaksin's overthrow in 2006. Alongside the traditional figures of the conservative right wing, there were also former allies of Thaksin who have now broken away, including Jatuporn Prompan, one of the leaders of the Red Shirts, a popular movement born in reaction to the 2006 coup. Another demonstration is scheduled for mid-August when the Constitutional Court is due to deliver its verdict. The speeches vary, but all converge on a moral formal accusation: the Prime Minister is said to have traded national interests for family benefits. While the majority are calling for change through parliamentary channels, some zealous conservatives are raising the spectre of a coup d'état. The patriotic music, the protest scarves, the whistles: everything was reminiscent of the mobilizations that preceded the most recent coup, in 2014. In the background, relations between Thailand and Cambodia are worsening, against a backdrop of territorial rivalries and political reshuffling. Officially, Phnom Penh is considering taking a border dispute over Kood Island, potentially rich in oil and gas resources, to the International Court of Justice. But many analysts see this move as part of a wider strategy to weaken the Thai government by fueling controversy over the parallel diplomacy between Thaksin Shinawatra and Hun Sen. The joint development project in this area, long discussed between the two men, now symbolizes an informal alignment that is disturbing Bangkok. It is in this context that the audio leak is a deliberate maneuver: Hun Sen is seeking to expose these links publicly, to divert attention from the internal tensions in Cambodia, and to influence the Thai political balance. This offensive can also be explained by more immediate economic interests: the legalization of casinos, promoted by Paetongtarn, and her policy of fighting cross-border criminal networks, directly threaten the Cambodian casino industry and the income of Cambodian elites based along the border. These attacks are reigniting old suspicions about the links between the Shinawatra family and Cambodia. Thaksin and Hun Sen have enjoyed a close relationship for decades, based on shared economic interests and a form of political pragmatism. When Thaksin and former prime minister Yingluck fled Thailand after the coups of 2006 and 2014, it was Hun Sen who offered them asylum. In 2008 and 2011, border tensions - particularly around the Preah Vihear temple - had already been used to portray the Shinawatras as traitors to the nation. Now, with Paetongtarn in power and Thaksin back in the fold, these accusations are resurfacing. Chronic instability and a locked political scene Paetongtarn's removal from office seems increasing but the succession options remain unclear. Her designated replacement within Pheu Thai, Chaikasem Nitisiri, is attracting reservations due to his state of health and his past stance in favor of reforming the crime of lèse-majesté. Within the coalition, other leading figures such as Pirapan and Jurin lack political clout or have been weakened by the controversy. At present, the only candidate with sufficient parliamentary clout and a degree of legitimacy seems to be Anutin Charnvirakul. But in the event of a parliamentary deadlock, former prime minister Prayut Chan-o-cha could emerge as a ‘wild card’ candidate, although he would only be able to hold the post for two more years before reaching the maximum number of years allowed by the Constitution. Paetongtarn's downfall, if confirmed, will be part of a familiar cycle: leaders emerging from the ballot box are discredited by institutional mechanisms, conservative elites reorganize, the streets fill up, and the army prepares in the background. Behind the image of a generational or female revival, Paetongtarn's power rested on an architecture inherited from her father that she neither reformed nor challenged. But by seeking to navigate this system while re-imposing the influence of her family, she has rekindled tensions with the conservative elites who had done everything to exclude the Shinawatras. The challenge is less institutional than political, but she may have underestimated the resilience of the existing system. In the short term, everything depends on the decision of the Constitutional Court, expected in one- or two-months’ time. But as always in Thailand, the real negotiations do not take place in Parliament or in the public square; they take place behind the scenes, between families, factions, and interlocking interests, with the King at the head of state.

Energy & Economics
Xi Jinping and Vladmir Putin at welcoming ceremony (2024)

Russia and China in the Era of Trade Wars and Sanctions

by Ivan Timofeev

Economic relations between Russia and China remain high. Beijing has become Moscow's most important trading partner, and in the context of Western sanctions, it has also become an alternative source of industrial and consumer goods, as well as the largest market for Russian energy and other raw materials. At the same time, external political factors may have a growing influence on Russian-Chinese economic relations. These include the trade war between China and the United States, a possible escalation of US sanctions against Russia, and the expansion of secondary sanctions by the European Union against Chinese companies. The trade war, in the form of increased import duties on imported goods, has become one of the calling cards of Donald Trump's second term in office. The executive order he issued on April 2, 2025, provided a detailed conceptual justification for such a policy. The main goal is the reindustrialisation of the United States through the return or transfer of industrial production to the territory of the US, as well as an equalization of the trade balance with foreign countries. The basic part of Trump's order concerned all countries throughout the world and assumes a tariff increase of 10%. It goes on to determine individual duties on the goods of more than 70 countries, with its own sets for each. China became one of the few countries which decided to mirror the tariff increases. This led to a short-lived and explosive exchange of increases in duties. While it was suspended by negotiations between the two countries in Geneva, it was not removed from the agenda. In the US trade war “against the whole world”, China remains a key target. This is determined by the high level of the US trade deficit in relations with China, which has persisted for more than 40 years. Apparently, it remained comfortable for the US until China made a noticeable leap in the field of industrial and technological development. Such a leap allowed China to gradually overcome its peripheral place in the global economy, displace American and other foreign goods from the domestic market, and occupy niches in foreign markets. Despite the critically important role of American components, patents and technological solutions in a number of industries, China has managed to reduce its dependence on them. The growing industrial and technological power of the PRC is becoming a a political problem for the US. It was clearly identified during the first term of Trump's presidency. Even then, the US pursued a course toward the technological containment of China. Despite the temporary respite in the trade war, US pressure on China will remain. The tariff policy may be supplemented by restrictive new measures (sanctions) in the field of telecommunications and other industries. During the new term of Donald Trump's presidency, the politicisation of issues that the Biden administration avoided putting at the forefront of US-Chinese relations began again. These include the problem of Hong Kong autonomy and the issue of ethnic minorities in the Xinjiang Uyghur Autonomous Region of China. Both issues received a high level of politicisation during Trump's first term. The US-China trade war has so far had little effect on Russian-Chinese relations. The increase in US tariffs has had virtually no effect on Russia. Russia is already facing a significant number of restrictive measures, and the volume of trade with the United States has been reduced to near zero since the start of Moscow’s Special Military Operation in 2022. However, Russia may feel the effects of the trade war. For example, the United States may require China to purchase American energy resources as a measure to correct the trade balance. Obviously, such a measure is unlikely to solve the imbalance. However, it has the potential to affect the volume of Russian oil supplies to China in one way or another. In addition, the trade war as a whole may affect oil prices downwards, which is also disadvantageous for Russia. On the other hand, Russia is a reliable supplier of energy resources for China, which will not politicise them. Even in the context of new aggravations of the trade war, China is unlikely to refuse Russian supplies. Another factor is US sanctions against Russia. After the start of Russian-American negotiations on Ukraine in 2025, Washington avoided using new sanctions, although all previously adopted restrictive measures and their legal mechanisms are in force. However, Donald Trump failed to carry out a diplomatic blitzkrieg and achieve a quick settlement. The negotiations have dragged on and may continue for a long time. If they fail, the United States is ready to escalate sanctions again. Existing legal mechanisms allow, for example, for an increase in the list of blocked persons, including in relation to Chinese companies cooperating with Russia. This practice was widely used by the Biden administration. It was Chinese companies that became the key target of US secondary sanctions targeting Russia. They fell under blocking financial sanctions for deliveries of industrial goods, electronics and other equipment to Russia. However, there was not a single large company among them. We were talking about small manufacturing companies or intermediary firms. At the same time, the Biden administration managed to significantly complicate payments between Russia and China through the threat of secondary sanctions. US Presidential Executive Order 14114 of December 22, 2023 threatened blocking sanctions against foreign financial institutions carrying out transactions in favour of the Russian military-industrial complex. In practice, such sanctions against Chinese financial institutions were practically not applied, except for the blocking of several Chinese payment agents in January 2025. However, the very threat of secondary sanctions forced Chinese banks to exercise a high level of caution in transactions with Russia. This problem has not yet been fully resolved. New legal mechanisms in the field of sanctions, which are being worked on in the United States, may also affect Russian-Chinese relations. We are talking about the bill introduced by US Senator Lindsey Graham and several other senators and members of congress. Their bill assumes that in the event of failure of negotiations with Russia on Ukraine, the US executive branch will receive the authority to impose 500% duties on countries purchasing Russian raw materials, including oil. China may be among them. This threat should hardly be exaggerated for now. The passage of the bill is not predetermined. Even if it is signed into law, the application of 500% tariffs against China will be an extremely difficult matter. Recent rounds of the trade war have shown that China is ready for retaliatory measures. However, the emergence of such a norm will in any case increase the risks for business and may negatively affect Russian suppliers of raw materials. Another factor is EU sanctions policy. Unlike the US, the EU continues to escalate sanctions against Russia despite the negotiations on Ukraine. Brussels is expanding the practice of secondary sanctions, which also affect Chinese companies. In the context of a deepening economic partnership between China and the EU, this factor seems significant. However, in reality, it will play a peripheral role. The EU's practice of secondary sanctions is still significantly more limited than the American one. It does not affect any significant Chinese companies. Problems may be created by the expansion of EU bans on the provision of financial messaging services for Russian banks—this will affect their relations with Chinese counterparties. But such bans stimulate the acceleration of the use of the Chinese CIPS payment system by Russians, which has the functionality of transmitting financial messages. Compared to the US, the EU policy factor remains secondary. First published in the Valdai Discussion Club.

Diplomacy
China flag painted on a clenched fist. Strength, Power, Protest concept

The international reconfiguration's process towards multipolarity. The role of China as an emerging power

by Rachel Lorenzo Llanes

Abstract The international system is currently undergoing a process of reconfiguration that is having an impact on all areas of global development. In this process of reordering power relations, there is a tendency to move towards multipolarity, leaving behind the unipolar coalition established after the Second World War. In this context, several emerging powers are gaining increasing international power, which has led to changes in the hierarchy of power on the international geopolitical chessboard. Such is the case of the People's Republic of China, which has established itself not only as a power of great impact and relevance in the Asian region, but also in the entire international system. Namely, the management of the government and the Party in terms of innovation, industrialization, informatization, productivity, expansion and internationalization of its economic model, positions this country as the most dynamic center of the international economy. Evidencing that alternative models to the capitalist system are possible and viable, which strengthens the trend towards a systemic transition and multipolarity in the International System Introduction In the last two decades, a set of geopolitical and geoeconomic tensions and conflicts have become evident, with significant implications extending throughout the International System. As a result, we are currently experiencing a convulsion of the established order, giving way to a process of new global reconfigurations. In this context, several researchers and academics such as Jorge Casals, Leyde Rodríguez, Juan Sebastián Schulz, among others, have noted that these conditions have led to a crisis and hegemonic transition process, with a trend toward multipolarity in which the Asia-Pacific region is gaining increasing relevance. This article, titled "The International Reconfiguration’s Process Towards Multipolarity: The Role of China as an Emerging Power," is dedicated to analyzing the position of this country within the current international reconfiguration of power. Accordingly, the first section will systematize some essential guidelines to understand the current crisis and the decline of the hegemonic order established in the post-World War II period. The second section will address China's positioning amid the international reconfiguration of power. In this regard, it is important to note that China's rapid rise highlights how development management aligned with the Sustainable Development Goals can lead to a shift in the paradigm of international relations, as well as power reconfigurations that challenge the current balance of forces. Thus, it can be affirmed that China's rise constitutes a decisive element within the current trend toward multipolarity. DevelopmentNew International Order: Approaches to the Multipolar Reconfiguration of the International System The current international context is marked by a process of crisis. This crisis reflects the fact that the world order no longer aligns with the correlation of forces that gave rise to it during the post-World War II period. It is not a circumstantial crisis, but rather the interlinking of various interconnected crises that span across all sectors of life. That is to say, the effects of one crisis often become the causes of another, involving economic, political, social, cultural, ethical, moral, technological, commercial, and environmental components. In other words, it is a structural and systemic crisis—one that cannot be resolved unless a similarly systemic transformation occurs. To gain greater clarity, it is important to consider that the consolidation of the capitalist system brought about the process of globalization. This, in turn, introduced large-scale production and technological development capable of increasing output. This process, along with other characteristics of the system, has exponentially accelerated social inequalities between developed and developing countries. It has also led to strategic tensions over the control of resources, raw materials, and inputs, resulting in geopolitical conflicts. Furthermore, the capitalist system has imposed an extremely high environmental cost, demonstrating that it is exceeding both its own limits and those of the planet. Specifically, in its constant pursuit of profit and maximization of gains, negative environmental impacts are not factored into cost-benefit analyses, leading to widespread environmental degradation. Among other harms caused by the system, we observe a decline in investment rates, an increase in public debt, loss of autonomy in monetary policy, rising unemployment levels, reductions in real wages, and growing inequality, among others. In short, capitalism has become an unsustainable system whose primary concern is profit generation—something that is currently entirely incompatible with environmental preservation and the responsible use of natural resources. Therefore, it can be affirmed that some of its most alarming effects include: vast amounts of currency without backing, increasingly concentrated in fewer hands; acceleration of capital concentration in the West; rising military expenditures; and environmental pollution and destruction (Casals, J., 2023). On the other hand, it is necessary to clarify that, for a particular state to be considered hegemonic, it must not only exert its influence predominantly within the system of international relations; its hegemonic role must also be linked to the founding and establishment of a universally accepted concept of world order. That is, the majority of other states must recognize it as such and identify with the model promoted by the hegemon. Therefore, it is not merely a matter of a hierarchical order among states, but rather the adoption of a dominant model of production that involves those states. As a result, certain mechanisms or general rules of conduct are established for the participating states. For this reason, a hegemonic crisis involving the dominant actor in the system of international relations leads to a crisis in the social, economic, political, and institutional structures upon which that actor’s dominance was built. In light of these elements, we currently observe a set of powers within the International System that are vying to establish a new distribution of power—one that moves away from the unipolar coalition led by the United States following World War II. From this perspective, Juan Sebastián Schulz asserts: “A hegemonic crisis occurs when the existing hegemonic state lacks either the means or the will to continue steering the interstate system in a direction broadly perceived as favorable—not only for its own power, but also for the collective power of the dominant groups within the system.” (Schulz, J. S., 2022) As a result, strategic alliances have been formed and new power groups have emerged that influence international relations.These blocs are precisely what the new polarity is forming around, increasingly reinforcing the trend toward multipolarity. This is a system in which hegemonic influence is not determined by a single power, but by two, three, or more. In this regard, Juan Sebastián Schulz further notes that a process of insubordination is becoming evident, particularly in the Western peripheries. As a consequence, several countries have begun to criticize the configuration of the contemporary world order, initiating efforts to organize and propose alternative models (Schulz, J. S., 2022). This reveals the emergence of a new kind of power hierarchy, generating a global order in which a diversity of forces and actors prevails. In this context, China has experienced rapid growth, thereby contributing to the trend toward multipolarity. While this does not imply that the United States will cease to be one of the central powers in the system of international relations—given its considerable global influence—it is evident that there is a noticeable decline in the dominance it held during the unipolar era that emerged after the collapse of the USSR in 1991. This process of intersystemic transition unfolds in various phases. First, there is an observable economic transition marked by a shift in the center of gravity of the global economy toward emerging and developing economies. This shift is accompanied by a necessary technological transition, characterized by a new struggle—this time to lead the technological revolution. These changes, in turn, must be supported by a political transition. Currently, countries from the Global South have gained increasing prominence on the international stage [1]. From this foundation, a geopolitical transition is also underway, where the center of gravity and decision-making—once concentrated in the Anglo-Saxon West—is shifting toward the Asia-Pacific region. Finally, a cultural or civilizational transition is taking place, wherein the previously dominant value system is giving way to the rise of a new worldview. Based on this, the phases of the transition process can be outlined as follows: Existence of a stable order that brings together the majority of nation-states in the International System. - A crisis of legitimacy begins to affect the established global order. - A deconcentration and delegitimization of power emerges, impacting the hegemonic power. - An arms race and formation of alliances ensue in an attempt to preserve the hierarchical order by any means. This leads to a widespread crisis and the rise and emergence of new actors. - A necessary resolution of the international crisis. - Renewal of the system. (Schulz, J. S., 2022) In light of the above, it can be stated that a “new international order” is taking shape. Its manifestations are multifaceted, such as: - The rise of movements and associations of states that serve as alternatives to the neoliberal order. - Emerging powers like China and Russia are gaining strength in various sectors of the international geopolitical arena. - Russia's confrontation with NATO in the context of the conflict with Ukraine. - Sanctions imposed by the United States on various NATO and European Union countries have strengthened the BRICS nations. - The incorporation of new members into BRICS can be seen as an attempt to counterbalance the economic and political dominance of the United States and the European Union. - The expansion of anti-imperialist and anti-neoliberal integration mechanisms that promote South-South cooperation, such as the G-77 + China group. - The financial sanctions imposed by the West on Russia in the context of the Ukraine conflict have sparked a debate about the viability of the international monetary system and the role of the U.S. dollar as a reserve currency. - China and Russia conduct transactions in yuan and sell oil in this currency to Iran, Venezuela, and Gulf countries. China has increased its economic and political influence in the world, which can be seen as a challenge to U.S. hegemony. Its leadership within BRICS and its growing role in the global economy may be indicators of a shift in the balance of power. All these developments reflect a growing awareness within the International System of States regarding the importance of international cooperation to address global challenges such as the climate crisis, pandemics, and food security. They also serve as indicators that a transformation is underway in the way countries interact with each other, resulting in a shift in the economic, political, and strategic center of gravity. In this context, the United States has unleashed a global hybrid war as a desperate attempt to defend and maintain its hegemonic position, which once appeared unshakable in the postwar world. To this end, it has targeted China, as the latter represents its main threat in the economic and scientific-technological order. From this perspective, tensions between the United States and China have significantly deteriorated since the Republican administration of President Donald Trump. Beginning in 2017, his policy took on an aggressive stance toward China, manifesting through a trade war and economic attacks aimed at preserving U.S. global hegemony. This demonstrates that, in response to a process of decline already underway, nationalist and protectionist efforts intensified in the U.S., with policies targeting some of the emerging pillars of the crisis-ridden world order—China being a primary example. Under the administration of Joseph Biden, the focus shifted toward competition, emphasizing the commitment to protect U.S. sovereignty from potential Chinese threats. A significant shift in U.S. foreign policy toward Taiwan became evident with the approval of arms sales to Taiwan in August 2023, which escalated tensions in the region (Collective of Authors). Furthermore, in recent years, the United States has increasingly worked to generate geopolitical and geoeconomic motivations aimed at fostering tensions between China and Russia, potentially sparking conflict between the two. It has strengthened alliances with neighboring countries of these powers—most notably Taiwan and Ukraine—which has triggered concerns and tensions in both nations. A containment policy has also been deployed, including the imposition of trade barriers and tariffs on Chinese products; restricting Chinese companies’ access to U.S. technology and markets; and promoting the diversification of supply chains to reduce dependence on China. Nevertheless, the ongoing sanctions and restrictions have only served to reaffirm the shared survival interests of both powers, strengthening corporate ties and relations between them. These actions also reflect the growing concern among U.S. power groups over the decline of their hegemonic dominance. The Emergence of China and Its Role in the Transition Toward Multipolarity In a previous article titled "The Synergy Between Economy and Environment in China Through the Achievement of the Sustainable Development Goals," (‘La sinergia entre economía y medio ambiente en China mediante la consecución de los Objetivos de Desarrollo Sostenible’) the process of socioeconomic transformations experienced in the People's Republic of China over the past decade was discussed. These transformations have been primarily aimed at revitalizing the nation in preparation for its centenary in 2049. This strategy is rooted in aligning the Centenary Goals with the Sustainable Development Goals (SDGs) set for 2030, under the leadership of the Communist Party and the momentum driven by President Xi Jinping. The results of this strategy have had an impact not only on the Asian Giant itself—now a decisive actor in the Asian region—but also on the international order as a whole. As a result, China has emerged as a powerful rising power, with promising prospects for further elevating its development standards. This is backed by sustained GDP growth, averaging between 6% and 8% annually, indicating a robust economy. In addition, China holds vast foreign exchange reserves, granting it economic stability and the capacity to withstand potential external shocks. It also invests heavily in modern infrastructure and cutting-edge sectors such as artificial intelligence, 5G technology, and renewable energy—all of which enhance its competitiveness and lay the groundwork for long-term sustainable growth (Lagarde, CH). Nonetheless, China has also had to confront significant challenges in its gradual and progressive approach to the desired development model. Among these is the environmental cost associated with its rapid economic growth. For instance, China still experiences high levels of greenhouse gas (GHG) emissions, along with air, water, and soil pollution. In response, measures have been implemented such as the establishment of a national monitoring network and the replacement of coal heating systems in Beijing. Efforts have also been made to purify water resources polluted by industrial processes, and imports of solid waste have been reduced to help decontaminate soils affected by industrial and agricultural activities (González, R., 2023). In general, the development of renewable energy and a circular economy model is being promoted to enable a gradual transition toward a green economy, grounded in the concept of an ecological civilization. For this reason, China’s new era is committed to scientific and technological innovation as a means of driving economic growth that is both sustainable and capable of ensuring a higher quality of life for its population. This, in turn, leads gradually toward a new model of political leadership and economic management. In this regard, Jin Keyu, Professor of Economics at the London School of Economics and Political Science (LSE), has stated that “trillions of dollars of investment are needed for the global green transition, and China is going to play an essential role in that transformation” (Feingold, S., 2024). Based on the aforementioned elements, various authors such as Dr. C. Charles Pennaforte, Dr. C. Juan Sebastián Schulz, Dr. C. Eduardo Regalado Florido, among others, have indicated that the millenary nation represents a threat to the hegemony held by the United States since World War II. Consequently, it is recognized that a process of hegemonic crisis and transition is currently underway, with the Asia-Pacific region emerging as the center of gravity of the global power, thereby contributing to the multipolar transformation of the International System. The authors of “Is China Changing the World?” argue that “market socialism with “Chinese characteristics” must gradually and more clearly diverge from capitalism if it is to embody a genuinely alternative path for all of humanity.” In pursuit of this goal, China bases its policy of peaceful coexistence on five fundamental principles:Respect for sovereignty and territorial integrity, regardless of a country's size, power, or wealth. Mutual non-aggression Non-interference in the internal affairs of other countries, acknowledging that each nation has the right to freely choose its own social system and path of development. Equality and mutual benefit Peaceful coexistence. (Herrera, R.; Long, Z.; and Andréani, T., 2023) The rise of China as a major international power under these principles has been consolidating since 2012 under the leadership of Xi Jinping and the Communist Party of China (CPC), gaining particular momentum from 2020 to the present. Thus, China has not only become the leading power within the Asian regional balance but has also expanded its presence across Europe, Africa, and Latin America—primarily through loans, investments, and multilateral cooperation initiatives such as the Forum on China-Africa Cooperation (FOCAC) in Africa and the China-CELAC Forum in Latin America. In addition, China has positioned itself as a leader in several sectors, and it is projected that its economy may surpass that of the United States, increasing its Gross Domestic Product (Rodríguez, L., 2022). It has also undergone a process of opening up, energizing both its international trade and its overall foreign relations, all under the control of the Government and the Party. This, combined with its rise and development initiatives, has made China a focal point of interest for many countries within the International System seeking to jointly advance projects based on cooperation, the principle of shared advantage, and multilateralism. In this regard, the white paper "China and the World in the New Era," published by the Central Committee of the Communist Party of China in 2019, states: “The world is moving rapidly toward multipolarity, diverse models of modern development, and collaboration in global governance. It is now impossible for a single country or bloc of countries to dominate world affairs. Stability, peace, and development have become the common aspirations of the international community.” (People’s Republic of China, 2019. Quoted in Schulz, J. S., 2022) Undoubtedly, this rise has become a source of concern for U.S. power groups, which have increasingly applied geostrategic pressure. Notably, the United States has strengthened military alliances with India, Japan, and Australia in an effort to encircle China and attempt to control or obstruct its maritime routes—this also being a manifestation of the intensification of the imperialist arms race. Nonetheless, China has maintained its development strategy and, as part of it, has strengthened its diplomatic network and its relations with multiple countries across all world regions. For all these reasons, China has become the most dynamic center of the global economy. Notably, it went from representing 4% of global GDP in 1960 to 16% in 2020—undeniable evidence of rapid economic growth. Moreover, it has become the world’s largest exporter of goods and also the leading importer, establishing itself as a major industrial power. In this regard, United Nations data reveal that China leads global industrial production, accounting for 30% of the total. This figure surpasses other industrial powers such as the United States (16%), Japan (7%), Germany (5.7%), and South Korea (3.2%) (Schulz, J. S., 2022). In addition, China has remained the world’s leading manufacturing power for approximately 15 consecutive years, according to statements from the Ministry of Industry and Information Technology at the beginning of this year. This sector alone has contributed over 40% to overall growth. Likewise, in 2024, China experienced a significant increase in foreign investment, reflecting its interest in strengthening international cooperation for development. Efforts are also underway for urban renewal in 2024, with around 60,000 projects being implemented across various cities. These initiatives are primarily aimed at transforming underdeveloped neighborhoods and creating smarter urban areas (Embassy of the Republic of Cuba in the People's Republic of China, 2025). In this regard, the following graphs illustrate the value of China’s international trade during the 2016–2024 period, highlighting a strong presence of exports compared to imports. A second chart shows China's global export share, where it holds a dominant position.   Thus, China has risen as a center of power in the international system, with leadership not only in the economic domain but also in science and technology. At the same time, it has promoted a series of investments and a process of internationalizing its national currency. Accordingly, the Asian Giant offers an alternative model of development—one that is more comprehensive and sustainable—allowing it to propel the new phase of Chinese development. This phase aims not only to fulfill the dream of national rejuvenation but also to ensure the survival of its unique political, economic, and social model. Nevertheless, the significant challenges of sustaining growth cannot be overlooked. From this perspective, experts believe that new avenues of growth will be necessary for China to maintain the trajectory it has been experiencing. Specifically, the country must continue expanding its industrial sector while strengthening areas such as artificial intelligence, digital financial services, and green technologies (Feingold, S., 2024). It is also important to highlight the projected continuity and leadership of the Chinese government, with Xi Jinping identified as a key figure in the implementation of the Sustainable Development Goals (SDGs) in China, in conjunction with the socioeconomic transformation strategy toward the 2049 centenary. This has been pursued through the defense of multilateralism, economic openness, and international integration and cooperation in support of global development. Conclusions In light of the above, a decline in U.S. hegemony can be observed, even though this process is not linear—nor is it certain whether any single power or coalition has come to occupy a hegemonic position. What is clear, however, is the existence of a trend toward multipolarity, driven by emerging powers and the strategic ties they are establishing. This is giving rise to a non-hegemonic reconfiguration of power blocs, which are building a multilateral and multipolar institutional framework. It can also be affirmed that China has become the most dynamic center of the global economy. This has been supported by its growth strategy focused on industrialization, digitalization, innovation, productivity, expansion, and internationalization of its development model—while maintaining a strong emphasis on environmental sustainability. A range of key initiatives and development projects have been implemented to support the country's rise, consolidating its role in the multipolar reconfiguration of the International System. All of this has been essential in driving China’s new phase of development and contributing to the broader process of multipolar transformation. Undoubtedly, China’s rapid ascent represents a significant challenge to the International System, as it reflects a shift in international relations and a transformation in the distribution and hierarchy of global power. Notes [1] It is important to clarify that the so-called Global South should not be equated with the Third World, as the distinction between the First and Third Worlds is primarily based on economic and technological differences, which do not align with the current circumstances of the International System of States. In contrast, the term Global South emerges from a new geopolitical perspective that arose in the post–Cold War context, driven by the need to promote South-South cooperation. Moreover, it does not refer to a geographically defined region, as it includes nations from Latin America, the Caribbean, Africa, and the Asia-Pacific.Revista Política Internacional | Volumen VII Nro. 2 abril-junio de 2025. https://doi.org/10.5281/zenodo.15103898This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). The opinions and contents of the published documents are solely the responsibility of their authors.ReferencesCasals, J. (2023). “El Nuevo orden global: amenazas y oportunidades”. Cuadernos de Nuestra América. Nueva época. No.5. RNPS: 2529.Colectivo de autores. “Crisis de hegemonía y ascenso de China. Seis tendencias para una transición”. Tricontinental. Instituto Tricontinental de Investigacion social. Buenoos Aires. Libro digital, PDF, Archivo Digital: descarga y online.Embajada de la República de Cuba en la República Popular China. (2025). Boletín informativo China-22 de enero de 2025. Oficina de Información y Análisis. Embajada de Cuba en República Popular China. Redacción y envío desde info3@embacuba.cn.Feingold, S. (2024). "¿Hacia dónde va la economía china?". World Economic Forum. Recuperado de: https://es.weforum.org/stories/2024/07/hacia-dondeva-la-economia-de-china/García-Herrero, A. (2024). "10 puntos y 18 gráficos sobre la política económica de Xi Jinping tras el tercer pleno". El Grand Continent. Recuperado de: https:// legrandcontinent.eu/es/2024/09/19/esta-china-estancada-10-puntos-y-18-graficos-sobre-la-politicaeconomica-de-xi-jinping-tras-el-tercer-pleno/González, R. (2023). " Medio ambiente en China: Impactos y respuestas del Partido y el Gobierno". CIPI. Recuperado de: www.cipi.cu/medio-ambiente- en-china-impactos-y-respuestas-del-partido-y-gobierno/Lagarde, CH. "Impulsar el crecimiento económico y adaptarse al cambio". Fondo Monetario Internacional. Discursos. Recuperado de: https://www.imf.org/ es/News/Articles/2016/09/27/AM16-SP09282016- Boosting-Growth-Adjusting-to-ChangePereira, CM (2022): “La reemergencia de China frente a la globalización neoliberal y el desafío de la conformación de un mundo multipolar”. Cuadernos de Nuestra America. Nueva Época. No. 05. RNPS: 2529.Schulz, J S. (2022). “Crisis sistémica del orden mundial, transición hegemónica y nuevos actores en el escenario global”. Cuadernos de Nuestra América. Nueva Época. No.03. RNPS: 2529. Bibliografía consultadaAmbrós, I. (2021). “ El Partido Comunista y los desafíos internos de China en el siglo XX”. Recuperado de: https://www.ieee.es/Galerias/fichero/cuadernos/ CE_212/Cap_1_El_Partido_C omunista_y_los_desafios_internos.pdfBanco Mundial (BM). (2023). Recuperado de: https:// datos.bancomundial.org/indicator/NY.GDP.PCAP. KD?locations=CNBBC News Mundo. (2021). "Cómo consiguió China erradicar la pobreza extrema (y las dudas que despierta ese triunfal anuncio del gobierno de Xi". Recuperado de: https://www.bbc.com/mundo/noticias-internacional-56205219Boy, M. (2020). “ Crisis económica y medio ambiente: ¿cómo promover un desarrollo sustentable?”. Recuperado de: https://culturacolectiva.com/opinion/crisis-economica-y-medio-ambiente- mariana-boy-columna-opinion/García, A. (2021). “La globalización neoliberal en crisis”. Recuperado de http://www.cubadebate.cu/opinion/2021/08/30/la-globalizacion-neoliberal-en- crisisGonzález, R. (2020). “El Quinto Pleno del XIX Comité Central del Partido Comunista abre una nueva etapa para China” en “Transiciones del Siglo XXI y China: China y perspectivas post pandemia II”. Libro digital.Herrera, R; Long, Z y Andréani, T. (2023). “¿Está China transformando el mundo?”. Revista Política Internacional. Volumen V. Nro. 1 enero-marzo de 2023.ISSN 2707-7330.Liu, X. y González G. (2021) “El XIV Plan Quinquenal 2021- 2025: reto para el nuevo modelo de desarrollo económico de China”. México y la Cuenca del Pacífico. Vol 10, núm. 30. Recuperado de https://www.scielo.org. mx/pdf/mcp/v10n30/2007-5308-mcp-10-30-57.pdfOtero, M (2022). “La prosperidad común y la circulación dual: el nuevo modelo de desarrollo de China”. Recuperado de: https://www.realinstitutoelcano.org/analisis/la-prosperidad-comun-y-lacirculacion-dual-el-nuevo-modelo-de-desarrollo-de-china/Regalado, E. y Molina, E. (Coord.) (2021). “China y sus relaciones internacionales”. Asociación Venezolana de Estudios sobre China (AVECH) / CEAA / ULA – Centro de Investigaciones de Política Internacional (CIPI, Cuba), Libro digital.Rodríguez, L. (2022). “Configuración multipolar del sistema internacional del siglo XXI”. Revista Política Internacional. Volumen IV Nro. 1 enero-marzo de 2022. ISSN 2707-7330.Weiss, A. (2024). "La frágil fortaleza económica de Estados Unidos". The Economist. Recuperado de: https:// www.lavanguardia.com/dinero/20240212/9516764/ economia-eeuu- fortaleza-fragil-ia-bolsa-mercados. htmlYang, W. (2015). "La Planificación y Recomendaciones del XIII Plan Quinquenal". Recuperado de: https:// politica-china.org/wp- content/uploads/6sei-yangweimin-ES.pdf .

Energy & Economics
Alternative or renewable energy financing program, financial concept : Green eco-friendly or sustainable energy symbols atop five coin stacks e.g a light bulb, a rechargeable battery, solar cell panel

The Success of Climate Change Performance Index in the Development of Environmental Investments: E-7 Countries

by Başak Özarslan Doğan

Abstract Climate change is considered to be one of the biggest problems acknowledged globally today. Therefore, the causes of climate change and solutions to this problem are frequently investigated. For this reason, the purpose of this study is to empirically examine whether the ‘Climate Change Performance Index’ (CCPI) is successful in increasing environmental investments for E-7 countries with the data for the period of 2008–2023. To achieve this aim, the Parks-Kmenta estimator was used as the econometric method in the study. The study findings provide strong evidence that increases in the climate change performance support environmental investments. High climate change performance directs governments and investors toward investing in this area; therefore, environmental investments tend to increase. The study also examined the effects of population growth, real GDP and inflation on environmental investments. Accordingly, it has been concluded that population growth and inflation negatively affect environmental investments, while GDP positively affects environmental investments. 1. Introduction There is a broad consensus that the main cause of climate change is human-based greenhouse gas emissions from non-renewable (i.e., fossil) fuels and improper land use. Accordingly, climate change may have serious negative consequences as well as significant macroeconomic outcomes. For example, an upward trend of temperatures, the rising sea levels, and extreme weather conditions can seriously disrupt the output and productivity (IMF, 2008a; Eyraud et al., 2013). Due to the global climate change, many countries today see environmental investments, especially renewable energy investments, as an important part of their growth strategies. Until recent years, the most important priority of many countries was an improvement in the economic growth figures. Still, the global climate change and the emergence of many related problems are now directing countries toward implementing policies which would be more sensitive to the environment and would ensure sustainable growth rather than just increase the growth figures. (Baştürk, 2024: 327). The orientation of various countries to these policies has led to an increase in environmental investments on a global scale. A relative rise of the share of environmental investments worldwide is not only a medium-term climate goal. It also brings many new concepts to the agenda, such as an increasing energy security, reduction of the negative impact of air pollution on health, and the possibility of finding new growth resources (Accenture, 2011; McKinsey, 2009; (OECD), 2011; PriceWaterhouseCoopers, 2008; Eyraud et al., 2013). Today, environmental investments have a significant share in energy and electricity production. According to the World Energy Outlook (2023), investments in environmentally friendly energies have increased by approximately 40% since 2020. The effort to reduce emissions is the key reason for this increase, but it is not the only reason. Economic reasons are also quite strong in preferring environmental energy technologies. For example, energy security is also fundamentally important in the increase in environmental investments. Especially in fuel-importing countries, industrial plans and the necessity to spread clean (i.e., renewable) energy jobs throughout the country are important factors (IEA WEO, 2023).  In economic literature, environmental investments are generally represented by renewable energy investments. Accordingly, Figure 1 below presents global renewable energy electricity production for 2000–2020. According to the data obtained from IRENA (2024) and Figure 1, the total electricity production has increased by approximately 2.4% since 2011, with renewable energy sources contributing 6.1% to this rate, while non-renewable energy sources contributed 1.3%. In 2022 alone, renewable electricity grew by 7.2% compared to 2021. Solar and wind energy provided the largest growth in renewable electricity since 2010, which reached 11.7% of the global electricity mix in 2022.   Figure 2 below presents renewable energy investments by technology between 2013 and 2022. As shown in Figure 2, photovoltaic solar. and terrestrial wind categories are dominating, accounting for 46% and 32% of the global renewable energy investment, respectively, during 2013–2022.   Economic growth supported by environmental investments is impacted by the type and number of energy used to increase the national output. Thus, both the environmental friendliness of the energy used and the rise in energy efficiency is bound to reduce carbon emissions related to energy use and encourage economic growth (Hussain and Dogan, 2021). In this context, in order to minimize emissions and ensure sustainable economic growth, renewable energy sources should be used instead of fossil resources in energy use. Increasing environmental investments on a global scale, especially a boost in renewable energy investments, is seen as a more comprehensive solution to the current global growth-development and environmental degradation balance. In this context, as a result of the latest Conference of the Parties held in Paris, namely, COP21, it was envisaged to make an agreement covering the processes after 2020, which is accepted as the end year of the Kyoto Protocol. On December 12, 2015, the Paris Agreement was adopted unanimously by the countries that are parties to the UN Framework Convention on Climate Change (Kaya, 2020). As a result of the Paris Agreement and the reports delivered by the Intergovernmental Climate Change Panels, international efforts to adapt to the action to combat climate change and global warming have increased, and awareness has been raised in this area (Irfan et al., 2021; Feng et al., 2022; Anser et al., 2020; Zhang et al., 2021; Huang et al., 2021; Fang, 2023). The rise in the demand for low-carbon energy sources in economies has been caused by environmental investments such as renewable energy investments. The countries that are party to the Paris Agreement, commit to the way to achieve efficient energy systems through the spread of renewable energy technologies throughout the country (Bashir et al., 2021; Fang, 2023). This study empirically examines the impact of the climate change performance on increasing environmental investments for E-7 countries. The climate change performance is expressed by the ‘Climate Change Performance Index’ (CCPI) developed by the German environmental and developmental organization Germanwatch. The index evaluates the climate protection performance of 63 developed and developing countries and the EU annually, and compares the data. Within this framework, CCPI seeks to increase clarity in international climate policies and practices, and enables a comparison of the progress achieved by various countries in their climate protection struggle. CCPI evaluates the performance of each country in four main categories: GHG Emissions (40% overall ranking), Renewable Energy (20%), Energy Use (20%), and Climate Policy (20%). In calculating this index, each category of GHG emissions, renewable energy, and energy use is measured by using four indicators. These are the Current Level, the Past Trend, the Current Level Well Below 2°C Compliance, and the Countries’ Well Below 2°C Compliance with the 2030 Target. The climate policy category is evaluated annually with a comprehensive survey in two ways: as the National Climate Policy and the International Climate Policy (https://ccpi.org/methodology/).  Figure 3 below shows the world map presenting the total results of the countries evaluated in CCPI 2025 and their overall performance, including the four main categories outlined above.   As it can be seen from Figure 3, no country appears strong enough to receive a ‘very high’ score across all categories. Moreover, although Denmark continues to be the highest-ranking country in the index, but it still does not perform well enough to receive a ‘very high’ score overall. On the other hand, India, Germany, the EU, and the G20 countries/regions will be among the highest-performing countries/regions in the 2024 index. When we look at Canada, South Korea, and Saudi Arabia, they are the worst-performing countries in the G20. On the other hand, it can be said that Türkiye, Poland, the USA, and Japan are the worst-performing countries in the overall ranking. The climate change performance index is an important criterion because it indicates whether the change and progress in combating climate change is occurring across all countries at an important level. The index is important in answering various questions for countries under discussion. These questions are expressed below:  • In which stage are the countries in the categories in which the index is calculated?• What policies should countries follow after seeing the stages in which they are in each category? • Which countries are setting an example by truly combating climate change? These questions also constitute the motivation for this study. The sample group for the study was selected as E-7 countries, which are called the Emerging Economies; this list consists of Türkiye, China, India, Russia, Brazil, Mexico, and Indonesia. The reason for selecting these particular countries is that they are undergoing a rapid development and transformation process, and are also believed to be influential in the future with their increasing share in the world trade volume, huge populations, and advances in technology. Besides that, when the relevant literature has been examined, studies that empirically address the relative ranking of the climate change performance appear to be quite limited. In particular, there are almost no studies evaluating the climate change performance index for the sample group considered. Therefore, it is thought that this study will be of great importance in filling this gap in the literature. The following section of the study, which aims to empirically examine whether the climate change performance is effective in developing environmental investments in E-7 countries, includes national and international selected literature review on the subject. Then, the model of the study and the variables chosen in this model are introduced. Then, the findings obtained in the study are shared, and the study ends with discussion and policy proposal. 2. Literature Review 2.1. Studies on environmental investment  The excessive use of fossil-based energy sources, considered non-renewable and dirty energy, along with industrialization, constitutes a large part of carbon emissions and is regarded as the main reason of climate change. Thus, countries have turned to renewable energy investments with the objective to minimize the reaction of climate change and global warming, by introducing technologies which are considered more environmentally friendly and cleaner. Global energy investments are estimated to exceed 3 trillion US dollars by the end of 2024, and 2 trillion US dollars of this amount will go to clean and environmentally friendly energy base technologies and infrastructure. Investment in environmentally friendly energy has been gaining speed since 2020, and the total expense on renewable energy, networks, and storage now represents a higher figure than the total spending on oil, gas, and coal (IEA, 2024). When the energy economics literature is examined, since environmental investments are mostly represented by renewable energy investments, renewable energy investments studies and studies in related fields shall be discussed in this study section. One of the important studies in this field is the work of Eyraud et al. (2013). In the study, the authors analyzed the determinants of environmental and green (clean) investments for 35 developed and developing countries. Accordingly, they stated in the study that environmental investment has become the main driving force of the energy sector, and China has generally driven its rapid growth in recent years. In addition, in terms of the econometric results of the study, it has been found that environmental investments are supported by economic growth, a solid financial system suitable for lower interest rates, and higher fuel prices. Fang (2023) examined the relationship between investments in the renewable energy sector, the economic complexity index, green technological innovation, industrial structure growth, and carbon emissions in 32 provinces in China for the period of 2005–2019 by using the GMM method. Based on the study results, the economic complexity index causes an increase in China’s carbon dioxide levels. On the contrary, all of the following – the square of the economic complexity index, investments in clean energy, green technical innovation, and the industrial structure – were found to help decrease carbon dioxide emissions. Another important study in this field is the work of Masini and Menichetti (2013). The authors examined the non-financial sources of renewable energy investments in their study. Accordingly, the study results show that knowledge and confidence in technological competence positively impact renewable energy investments. In addition, trust in policy measures only impacts PV (Photovoltaic) and hydropower investments, whereas institutional pressure negatively impacts renewable energy investments. Finally, the study stated that experienced investors are more likely to fund innovations in renewable energy. One of the important studies on renewable energy investments is the work of Ozorhon et al. (2018). To support and facilitate the decision-making process in renewable energy investments, the authors determined the main criteria affecting investors’ decisions by reviewing the literature and examining sector-level practices. According to the findings, economic criteria, like policies and regulations, funds availability, and investment costs were the most important factors in the decision-making process for renewable energy investments. Xu et al. (2024) examined the relationship between the renewable energy investments and the renewable energy development with a threshold value analysis for China. According to the results, impact of the clean (renewable) energy investment on renewable energy development has a significant threshold value, and the general relation between them is a ‘V’ type non-linear relation. At this point, the study suggests that the state should keep spending in the segment of investments in clean energy, increase the financial proficiency, and ensure an efficient financial infrastructure for clean energy in China. 2.2. Studies on Climate Change and their Impact on Economic Variables  The widespread use of fossil-based energy sources, considered dirty energy, continues to create a negative externality in carbon emissions despite the globally implemented policies like the Kyoto Protocol and the Paris Agreement (Rezai et al., 2021). The economic literature on climate change focuses particularly on the adverse effect of climate change on the economy. One of the important studies in this field is the study of Fan et al. (2019). In their study, the authors focused on the impact of climate change on the energy sector for 30 provinces in China and conducted their research with the help of a fixed-effect regression feedback model. As a result of the study, it was found that hot and low-temperature days positively affected the electricity demand. On the other hand, Singh et al. (2022) examined the effects of climate change on agricultural sustainability in India with data from 1990–2017. On the grounds of the study, it was found that India’s agricultural sector was negatively impacted by the climate change. In this regard, it is stated that India needs to take powerful climate policy action so that to reduce the adverse effect of the climate change and increase its sustainable agricultural development. One of the important studies in this field is the study of Gallego-Alvarez et al. (2013). This study investigated how the climate change affects the financial performance with a sample of 855 international companies operating in sectors with high greenhouse gas/ CO2 emissions from 2006–2009. The results reveal that the relationship between the environmental and financial performance is higher in times of economic crisis triggered by climate crisis. In other words, these results show that companies should continue investing in sustainable projects in order to achieve higher profits. Kahn et al. (2021) examined the long-term macroeconomic impact of the climate change by using a panel data set consisting of 174 countries between 1960 and 2014. According to the findings, the amount of output per capita is negatively affected by temperature changes, but no statistically significant effect is observed for changes in precipitation. In addition, according to the study’s results, the main effects of temperature shocks also vary across income groups. Alagidede et al. (2015) examined the effect of climate change on sustainable economic growth in the Sub-Saharan Africa region in their study. The study stated that the relationship between the real GDP and the climate change is not linear. In addition, Milliner and Dietz (2011) investigated the long-term economic consequences of the climate change. Accordingly, as the economy develops over time, and as progress is achieved, this situation will automatically be less affected by the adverse impact of the climate change. Structural changes made with economic development will make sectors more sensitive to the climate change, such as the agricultural sector, which would become stronger and less dependent. Dell et al. (2008) examined the effect of climate change on economic activity. The study’s main results are as follows: an increase of temperatures significantly decreases economic growth in low-income countries. Furthermore, increasing temperature does not affect economic growth in high-income countries. On the other hand, when examining the effects of climate change on the economy, the study of Zhou et al. (2023) is also fundamentally important. Zhou et al. (2023) examined the literature on the effects of climate change risks on the financial sector. In the studies examined, it is generally understood that natural disasters and climate change reduce bank stability, credit supply, stock and bond market returns, and foreign direct investment inflows. In their study for Sri Lanka, Abeysekara et al. (2023) created a study using the general equilibrium model ORANI-G-SL with the objective to investigate the economic impacts of the climate change on agricultural production. The study findings suggest that reductions in the production of many agricultural products will lead to increases in consumer prices for these agricultural commodities, resulting in a decrease in the overall household consumption. The projected decrease in crop production and increases in food prices will increase the potential for food insecurity Another important document in this field is the study by Caruso et al. (2024) examining the relationship between the climate change and human capital. The study findings reveal a two-way result regarding the effects of the climate change damages and the effects of climate change mitigation and adaptation on the human capital. Accordingly, the climate change has direct effects on health, nutrition and welfare, while changes in markets and damage to the infrastructure are expressed as indirect effects. In addition to these studies, the uncertainty of the climate change policies also exerts an impact on economic factors. Studies conducted in this context in recent years have also enriched the literature on the climate change. For example, Çelik and Özarslan Doğan (2024) examined the effects of uncertainty of the climate change policies on economic growth for the USA by using the ARDL bounds test. Their results confirmed the existence of a positive and statistically significant relationship between the climate policy uncertainty and economic growth in the USA. 3. Model Specification  This study empirically examines whether the climate change performance index successfully develops environmental investments in E-7 countries. For further details related to the mathematical model check https://doi.org/10.15388/Ekon.2025.104.2.6 4. Conclusion and Policy Implications  Today, many national and international initiatives are within the scope of combating global warming and climate change. In addition, many developed and developing countries are differentiating their growth and development policies with the objective to prevent these disasters. Although they vary from country to country, as well as from region to region, these policies mostly represent those policies which reduce carbon emissions and ensure energy efficiency. At this point, the key factor is renewable energy investments, which represent environmentally friendly investments. However, according to Abban and Hasan (2021), the amount of environmentally friendly investments is not the same in every country. This is because the determinants of environmentally friendly investments vary from country to country. While financial and economic factors are more encouraging in increasing these investments in some countries, international sanctions are the driving force in this regard in some other countries as well. This study aims to empirically examine whether CCPI is effective in the success of environmental investments in the E-7 countries in the period of 2008–2023 with the help of the Parks-Kmenta estimator. In this direction, the study’s dependent variable is environmental investments, represented by renewable energy investments. On the other hand, the climate change performance is represented by the ‘Climate Change Performance Index’ calculated by Germanwatch, which constitutes the main independent variable of the study. Other control variables considered in the study are the population growth, the real GDP per capita, and inflation. The study findings provide strong evidence that increases in the climate change performance support environmental investments. High-rate climate change performance drives governments and investors toward investing in this area; thus, environmental investments tend to increase. These results are consistent with the study results of Raza et al. (2021). As a result of their study, Raza et al. (2021) stated that the climate change performance is an important channel for the general environmental change, and that renewable energy has a very important role in this regard.  In addition, the study concludes that population growth and inflation negatively affect environmental investments. These results are consistent with Suhrab et al. (2023), but not with Yang et al. (2016). While Suhrab et al. (2023) obtained results regarding the negative effects of inflation on green investments, Yang et al. (2016) focused on the positive effect of population on renewable energy. Finally, the effect of the real GDP per capita on environmental investments has been found to be positive. These results are also consistent with Tudor and Sova (2021). The authors found that Real GDP encourages green investments. This study offers policymakers a number of policy recommendations. These are presented below. • One of the important factors affecting the climate change performance is the raising of awareness of the populations in these countries at this point, and providing them with the knowledge to demand clean energy. In this way, consumers, would demand environmental energy, and investors would invest more in this area. This is of great importance in increasing environmental investments. • The climate change performance also shows how transparent the energy policies implemented by countries are. Therefore, the more achievable and explanatory are the goals of policy makers in this regard, the more climate change performance will increase, which will strengthen environmental investments. • Moreover, the initial installation costs are the most important obstacles on the way toward developing environmental investments. At this point, the country needs to develop support mechanisms that would encourage investors to invest more. • Environmental investments, similar to other types of physical investments, are greatly affected by the country’s macroeconomic indicators. At this point, a stable and foresighted economic policy will encourage an increase in such investments. The countries in the sample group represent developing countries. Therefore, in many countries in this category, the savings rates within the country are insufficient to make investments. At this point, the financial system that will bring together those who supply funds and those who demand funds in the country; this system needs to be developed further. In addition, more extensive use of new and various financial instruments should be encouraged with the objective to collect the capital required for environmental investments. References Abban, A. R., & Hasan, M. Z. (2021). Revisiting the determinants of renewable energy investment-New evidence from political and government ideology. Energy Policy, 151, 112184. https://doi.org/10.1016/j. enpol.2021.112184 (missing in the following “Access date:dd.mm.20yy”) Abeysekara, W. C. S. M., Siriwardana, M., & Meng, S. (2023). Economic consequences of climate change impacts on the agricultural sector of South Asia: A case study of Sri Lanka. Economic Analysis and Policy, 77, 435-450. https://doi.org/10.1016/j.eap.2022.12.003 (missing in the following “Access date:dd.mm.20yy”) Accenture, 2011, New Waves of Growth: Unlocking Opportunity in the Multi-Polar World, Worldwide, Oxford. McKinsey & Company, 2009. Pathways to a Low-Carbon Economy, New York. Anser, M. K., Iqbal, W., Ahmad, U. S., Fatima, A., & Chaudhry, I. S. (2020). Environmental efficiency and the role of energy innovation in emissions reduction. Environmental Science and Pollution Research, 27, 29451-29463. https://doi.org/10.1007/s11356-020-09129-w (missing in the following “Access date:dd. mm.20yy”) etc .... Bashir, M. F., Ma, B., Bashir, M. A., Radulescu, M., & Shahzad, U. (2022). Investigating the role of environmental taxes and regulations for renewable energy consumption: evidence from developed economies. Economic Research-Ekonomska Istraživanja, 35(1), 1262-1284. https://doi.org/10.1080/1331677X.2021.1962383Baştürk, M. F. (2024) Yeşil Tahviller ve Yenilenebilir Enerji Üretimi İlişkisi: AB Örneği. Verimlilik Dergisi, 58(3), 325-336. https://doi.org/10.51551/verimlilik.1443364 Caruso, G., de Marcos, I., & Noy, I. (2024). Climate changes affect human capital. Economics of Disasters and Climate Change, 8(1), 157-196. https://doi.org/10.1007/s41885-023-00140-2 Climate Change Performance Index, 2024. (https://ccpi.org/wp-content/uploads/CCPI-2024-Results.pdf) Çelik, B. S., & Doğan, B. Ö. (2024). Does Uncertainty in Climate Policy Affect Economic growth? Empirical Evidence from the US. Ekonomika, 103(1), 44-55. https://doi.org/10.15388/Ekon.2024.103.1.3 Dell M, Jones BF, Olken BA (2008) Climate change and economic growth: evidence from the last half century, NBER Working Paper Series, No. 14132 Eyraud, L., Clements, B., & Wane, A. (2013). Green investment: Trends and determinants. Energy policy, 60, 852-865. https://doi.org/10.1016/j.enpol.2013.04.039 Fan, J. L., Hu, J. W., & Zhang, X. (2019). Impacts of climate change on electricity demand in China: An empirical estimation based on panel data. Energy, 170, 880-888. https://doi.org/10.1016/j.energy.2018.12.044 Fang, Z. (2023). Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China. Renewable Energy, 205, 772-782. https://doi.org/10.1016/j.renene.2023.01.014 Feng, H., Liu, Z., Wu, J., Iqbal, W., Ahmad, W., & Marie, M. (2022). Nexus between government spending’s and green economic performance: role of green finance and structure effect. Environmental Technology & Innovation, 27, 102461. https://doi.org/10.1016/j.eti.2022.102461 Gallego‐Álvarez, I., García‐Sánchez, I. M., & da Silva Vieira, C. (2014). Climate change and financial performance in times of crisis. Business Strategy and the Environment, 23(6), 361-374. https://doi.org/10.1002/ bse.1786 Germanwatch, 2024 (https://www.germanwatch.org/en/indices?pk_campaign=20733850518&pk_content=155627208696&pk_kwd=climate%20change&pk_source=g&pk_cid=679389546151&mtm_placement=&gad_source=1&gclid=Cj0KCQjwwuG1BhCnARIsAFWBUC2ChKtgVoXt2XG7BKUJ_FRK90m86VeI6oRnpIDCPSnDTpZthsvvaQcaAnmjEALw_wcB) Access date:11.08.2024). Huang, H., Chau, K. Y., Iqbal, W., & Fatima, A. (2022). Assessing the role of financing in sustainable business environment. Environmental Science and Pollution Research, 1-18. https://doi.org/10.1007/s11356-021- 16118-0 IEA, 2024 (https://www.iea.org/reports/world-energy-investment-2024/overview-and-key-findings) . International Energy Agency (IEA, 2023, World Energy Outlook 2023, Paris.https://www.iea.org/reports/ world-energy-outlook-2023/overview-and-key-findings International Monetary Fund, 2008a, Climate Change and the Global Economy, World Economic Outlook, Washington. IRENA (2015), Renewable capacity statistics 2015, International Renewable Energy Agency, Abu Dhabi. IRENA (2024), Renewable capacity statistics 2024, International Renewable Energy Agency, Abu Dhabi. IRENA (2024). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Jul/Renewable_energy_highlights_FINAL_July_2024.pdf?rev=469292ef67144702b515ecb20575ec7d Irfan, M., Zhao, Z. Y., Li, H., & Rehman, A. (2020). The influence of consumers’ intention factors on willingness to pay for renewable energy: a structural equation modeling approach. Environmental Science and Pollution Research, 27, 21747-21761. https://doi.org/10.1007/s11356-020-08592-9 Kaya, H. E. (2020). Kyoto’dan Paris’e Küresel İklim Politikaları. Meriç Uluslararası Sosyal ve Stratejik Araştırmalar Dergisi, 4(10), 165-191. Kahn, M. E., Mohaddes, K., Ng, R. N., Pesaran, M. H., Raissi, M., & Yang, J. C. (2021). Long-term macroeconomic effects of climate change: A cross-country analysis. Energy Economics, 104, 105624. https:// doi.org/10.1016/j.eneco.2021.105624 Karaçor, Z., Özer, H., Saraç, T.B. (2011). Enflasyon ve ekonomik büyüme ilişkisi: Türkiye ekonomisi üzerine ekonometrik bir uygulama (1988-2007). Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 4(2), 29-44.Masini, A., & Menichetti, E. (2013). Investment decisions in the renewable energy sector: An analysis of non-financial drivers. Technological Forecasting and Social Change, 80(3), 510-524. https://doi.org/10.1016/j. techfore.2012.08.003 Milliner A, Dietz S (2011) Adaptation to climate change and economic growth in developing countries, Centre for Climate Change Economics and Policy, Working Paper, No. 69 Organization of Economic Cooperation and Development (OECD), 2011. Towards Green Growth, Paris. Ozorhon, B., Batmaz, A., & Caglayan, S. (2018). Generating a framework to facilitate decision making in renewable energy investments. Renewable and Sustainable Energy Reviews, 95, 217-226. https://doi. org/10.1016/j.rser.2018.07.035 PriceWaterhouseCoopers, 2008. Going Green: Sustainable Growth Strategies, New York. Raza, A., Sui, H., Jermsittiparsert, K., Żukiewicz-Sobczak, W., & Sobczak, P. (2021). Trade liberalization and environmental performance index: Mediation role of climate change performance and greenfield investment. Sustainability, 13(17), 9734. https://doi.org/10.3390/su13179734 Rezai, A., Foley, D. K., & Taylor, L. (2012). Global warming and economic externalities. Economic theory, 49, 329-351. https://doi.org/10.1007/s00199-010-0592-4 Shrimali, G., & Kniefel, J. (2011). Are government policies effective in promoting deployment of renewable electricity resources?. Energy Policy, 39(9), 4726-4741. https://doi.org/10.1016/j.enpol.2011.06.055 Singh, A. K., Kumar, S., & Jyoti, B. (2022). Influence of climate change on agricultural sustainability in India: A state-wise panel data analysis. Asian Journal of Agriculture, 6(1). https://doi.org/10.13057/asianjagric/ g060103 Suhrab, M., Ullah, A., Pinglu, C. et al. Boosting green energy: impact of financial development, foreign direct investment, and inflation on sustainable energy productivity in China–Pakistan economic corridor (CPEC) countries. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04093-0 Tudor, C., & Sova, R. (2021). On the impact of gdp per capita, carbon intensity and innovation for renewable energy consumption: worldwide evidence. Energies, 14(19), 6254. https://doi.org/10.3390/en14196254 Yang, J., Zhang, W., & Zhang, Z. (2016). Impacts of urbanization on renewable energy consumption in China. Journal of Cleaner Production, 114, 443-451. https://doi.org/10.1016/j.jclepro.2015.07.158 Xu, G., Yang, M., Li, S., Jiang, M., & Rehman, H. (2024). Evaluating the effect of renewable energy investment on renewable energy development in China with panel threshold model. Energy Policy, 187, 114029. https://doi.org/10.1016/j.enpol.2024.114029 Zhang, Y., Abbas, M., Koura, Y. H., Su, Y., & Iqbal, W. (2021). The impact trilemma of energy prices, taxation, and population on industrial and residential greenhouse gas emissions in Europe. Environmental Science and Pollution Research, 28, 6913-6928. https://doi.org/10.1007/s11356-020-10618-1 Zhou, F., Endendijk, T., & Botzen, W. W. (2023). A review of the financial sector impacts of risks associated with climate change. Annual Review of Resource Economics, 15(1), 233-256. https://doi.org/10.1146/ annurev-resource-101822-105702 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Contents lists available at Vilnius University Press

Defense & Security
Chess made from flags of Ukraine, US, EU, China and Russia

The new global chessboard: Europe, America, Russia and China in the Ukraine war

by Bruno Lété

Abstract The Ukraine war has reshaped the global geopolitical landscape, positioning Europe, America, Russia and China as key players on a new global chessboard. Europe is grappling with the dual challenge of ensuring regional security and managing the economic fallout from the conflict. America’s evolving global relationships are marked by a burden-shift with Europe, diplomatic efforts to further deter Russian aggression and a strategic rivalry with China. For Russia, the invasion of Ukraine is a bid to reassert its influence, but it faces severe international sanctions and military setbacks, constraining its strategic ambitions. And China is navigating a complex balancing act between supporting Russia and maintaining its economic ties with the West. This complex interplay of alliances and rivalries underscores the shifting dynamics of global power and the urgent need for diplomatic solutions to ensure stability and peace. Introduction On 27 March 2025 a Summit on Peace and Security for Ukraine was organised by President Emmanuel Macron in cooperation with British Prime Minister Keir Starmer. It was held in Paris. This summit was part of an ongoing series of political and operational meetings that the UK and France have been organising alternately over several weeks, aimed at contributing to a sustainable and just peace in Ukraine. This particular summit saw the participation of 31 countries, including non-EU nations such as the UK, Norway, Canada and Iceland, as well as high-profile figures such as the NATO secretary general, the president of the European Commission and the president of the European Council. Ukrainian President Volodymyr Zelensky also attended. The increased frequency of meetings among this wide-ranging ‘coalition of the willing’ is recognition, in Europe’s eyes, of the immediate need to establish and permanently guarantee security and peace in the long term for Ukraine. It is evident that the unconditional ceasefire that Ukraine had declared its readiness to enter into on 11 March in Saudi Arabia has since evolved into a proposal for a limited ceasefire with additional conditions and demands from Russia. Moscow is employing delaying tactics, and there is a growing realisation, even within the US, that Russia is not genuinely interested in ending the war. Europe’s novel security approach: ‘Peace through strength’ This fear of a prolonged conflict in Ukraine, and the perceived risk of war between Europe and Russia, has pushed the European Commission to propose a way forward in its Joint White Paper for European Defence Readiness 2030 (European Commission 2025), which can be encapsulated by the motto ‘peace through strength’. This approach entails rapidly increasing military support for Ukraine, including the provision of more ammunition, artillery, air defence systems, drones and training. Additionally, it involves enhancing the capabilities of European countries by them investing more in their own defence, simplifying administrative processes and fostering better industrial cooperation, including with the Ukrainian defence industry. The European Commission has also outlined the financial instruments that have been established in record time to address these specific challenges. The primary objective of these financial instruments is to bolster European defence spending, with the EU targeting a total of €800 billion. This includes €150 billion in loans available to member states through a new Security Action for Europe (SAFE) instrument and up to €650 billion from national defence budgets, corresponding to an expenditure of 1.5% of GDP that can be excluded from national budgets by activating the ‘national escape clause’ of the EU’s Stability and Growth Pact. Additionally, private financing and funds from the European Investment Bank will be mobilised for investments in priority capabilities. Furthermore, the EU has identified several priority capabilities for investment. In the short term, joint EU purchases should focus on missiles and artillery systems. In the medium term, the goal is to develop large-scale EU systems in integrated air and missile defence, military mobility and strategic enablers. NATO standards will continue to serve as the foundation, and it is crucial that these standards are shared with the EU. Finally, ‘peace through strength’ also includes the further European integration of Ukraine, with Brussels clearly considering Ukraine the EU’s first line of defence. The Commission’s Joint White Paper and a parallel initiative launched by High Representative Kaja Kallas both aim to bolster military support for Kyiv and stress the importance of defence procurement both with and within Ukraine. Despite the commendable pace and scope of the numerous recent initiatives undertaken by the EU, it is imperative to recognise that these commitments must still be translated into tangible actions. The European Commission remains hopeful that the proposals delineated in the Joint White Paper can be actualised during the Polish Presidency, with the aim of reaching concrete decisions by the European Council meeting scheduled for 26–7 June. However, considering the ongoing deterioration of the European security landscape, it could be argued that this deadline lacks the requisite sense of urgency needed to address the pressing challenges ahead. European peace through strength—but not without the US While Europe is building its rise as a security, defence and military actor, there is a consensus among most EU member states that these efforts should not happen to the detriment of NATO and that there is a need to maintain solid US involvement in European security. Strength is not merely a matter of political initiatives but also of demonstrating a clear readiness to engage militarily. There must be a deterrent effect from military power, particularly in anticipation of potential new Russian offensives once Moscow rebuilds its troops and supplies during a future ceasefire or peace deal. And military power is exactly where Europe—willing or not—will still need to rely on the transatlantic partnership for a foreseeable while, due to its current overreliance on strategic US military and intelligence assets. Moreover, the new administration in Washington has manoeuvred fast to have a clear say on the future of European security. It is the US—not Europe—that is leading the diplomacy on a ceasefire or peace deal in Ukraine. And while Europe, in reaction, is focusing on shaping future security guarantees for Ukraine—or even pushing for boots on the ground through a ‘coalition of the willing’—both of these European endeavours hinge, first, on the success of US diplomacy to reach a deal with Russia; and second, on US logistical and intelligence support for the proposed troops on the ground. Without these, most of the ‘willing nations’ may withdraw their commitments. The situation is further complicated by the shortage of operational European troops: for instance, the UK has an expeditionary force, but relies heavily on its air and naval power; France has some units, but in insufficient numbers; and Germany’s contribution remains uncertain. In this context, a European plan to help Ukraine win and maintain peace should not compromise NATO’s resilience and should therefore be developed in close coordination with the alliance, particularly in terms of planning and interoperability. And as Europe is now spending on defence, it should do so while ensuring that its expenditures align with NATO capability objectives. Moreover, military strength is not the only domain in which Europe should continue to keep an eye on the US. Europe notably believes that it is imperative to increase pressure on Russia through sanctions. The EU is unequivocally clear that there can be no consideration of easing sanctions; on the contrary, some member states even advocate for intensifying them. The challenge for Europe, however, remains to emphatically convey this message to the Americans, as any decision by the US to ease sanctions—as requested by Russia—would undermine the most critical form of pressure against Russia. Some EU member states have already raised concerns about the future of European sanctions policy, highlighting the need for new methods to enforce sanctions, particularly if certain EU member states more friendly to Russia decide to obstruct them in the future. Putin’s patient game of chess Meanwhile, President Vladimir Putin has clearly asserted a degree of dominance in the ongoing diplomatic negotiations. He has set preliminary conditions for a ceasefire, made a limited commitment regarding energy infrastructure and subsequently undermined the credibility of his own commitment with new attacks on Ukraine. Despite this, Putin’s demands concerning Western military supplies and intelligence-sharing reveal that Ukrainian attacks on Russian critical infrastructure are causing significant damage and irking the Russian president. Putin’s demands, including the reduction of Ukraine’s military capabilities, the transfer of entire Ukrainian regions to Russian control and the replacement of President Zelensky, are, naturally, unacceptable to Ukraine. These demands also pose the most significant risk to the West: if Russia were to succeed in installing a pro-Russian leader in Kyiv and controlling the Ukrainian military, it would alter the entire power and military balance in Eastern Europe. Should President Trump agree to this, it would likely cause a further deterioration in US–EU relations too. Achieving a middle-ground in any US–Russia agreement for Ukraine currently still poses a formidable challenge. Moscow therefore perceives that it has the momentum in its favour, despite Russia’s inability to achieve any strategic breakthroughs in Ukraine. The financial and human costs of this conflict for Moscow are substantial, while it is making minimal territorial gains. However, while Ukraine has successfully liberated 50% of the territory that was previously occupied by Russia, the Kremlin nevertheless still occupies approximately 20% of Ukrainian territory. Moscow has also likely observed in the US a desire to shift towards finding a consensus and a willingness to negotiate in a transactional manner. Moreover, the recent suspension of US intelligence and military support has already had immediate repercussions on Ukraine’s strength. It has weakened Ukraine’s ability to bring this war to a conclusion and could potentially lead to a temporary ceasefire that would de facto result in the creation of a ‘frozen conflict’—an outcome which Russia would not necessarily view unfavourably. A friendly US visit to Europe . . . On 3 and 4 April 2025, US Secretary of State Marco Rubio participated for the first time in a NATO foreign ministerial meeting. Rubio’s visit to NATO headquarters was notably smoother and more amicable than the visit of his colleague at the Department of Defense, Pete Hegseth, for the defence ministerial meeting in February 2025. Rubio, a seasoned diplomat, adroitly conveyed the message that European allies must significantly increase their defence spending, advocating for allocations of up to 5% of their GDP. He acknowledged the difficulty of this demand but emphasised that it could be achieved incrementally, provided the allies concerned showed a clear and consistent direction of progress. In a similar vein, Rubio addressed the situation in Ukraine, commending the resilience and fighting spirit of the Ukrainian people. He articulated President Trump’s recognition that a military solution in Ukraine is unattainable for both Ukraine and Russia, necessitating a negotiated settlement. Rubio underscored that peace negotiations inherently require compromises from all parties involved. He acknowledged that Ukraine has already made significant concessions, whereas Russia has yet to reciprocate. According to Rubio, Russia is testing President Trump’s resolve, but he also acknowledged that Putin faces severe consequences if he does not promptly agree to a ceasefire, indicating that the timeline for such an agreement is measured in weeks, not months. Rubio concluded by asserting that a peace agreement would be unattainable without European involvement. Rubio also expressed broad support for the EU’s defence initiatives, including the EU Joint White Paper and the ReArm programme. He praised the EU’s efforts to encourage its member states to meet their NATO commitments and to strengthen the industrial base, provided that the non-EU defence industry, particularly American firms, is not unduly excluded. Despite the positive reception of Rubio’s visit to Europe and NATO, there remains an underlying uncertainty about whether other influential figures within President Trump’s Make America Great Again movement share Rubio’s views. The path to achieving a cohesive and effective alliance strategy is fraught with challenges, and it remains uncertain whether NATO will navigate these obstacles successfully and emerge intact. . . . but Washington’s priority is the Asia–Pacific region Above all, the NATO foreign ministerial meeting of early April showed again that the US felt fundamentally displeased with the Western approach to China over the past several decades. The prevailing assumption—that a capitalist and economically prosperous China would inevitably evolve to resemble Western democratic nations—was a misguided and overly optimistic expectation. This erroneous belief has permitted Beijing to engage in deceptive trade and military practices for the past 30 years without facing significant repercussions. Today the US is clearly concerned about the way China has strategically weaponised its industrial capabilities by seamlessly integrating its civilian and military sectors through a dual-use strategy that is particularly evident in critical economic and high-tech domains, such as artificial intelligence. By blurring the lines between civilian and military applications, China has been able to enhance its technological and industrial base, thereby posing a multifaceted challenge to global security. Moreover, for the US, the presence of North Korean soldiers in Ukraine serves as a stark indicator of the interconnected nature of the threats emanating from the Indo-Pacific and European regions. For Washington, the collaborative efforts of adversarial states such as China, Russia, Iran and North Korea in Ukraine and other geopolitical theatres necessitate a similarly unified and strategic approach from democratic like-minded nations to strengthening their alliances and enhancing their collective security measures in response to the evolving geopolitical landscape. Interconnected theatres of confrontation China’s alleged support for the Russian war effort in Ukraine and the military cooperation between Russia and North Korea, and Russia and Iran, clearly illustrate the interconnectedness of security dynamics between Europe, the Asia–Pacific region and the Middle East. The ongoing conflict in Ukraine represents a pivotal moment for the stability of the international system, impacting not only Europe but also other parts of the world. Contrary to the characterisation of the conflict in Ukraine as merely a ‘European war’ a few years ago, the war there is now considered by the West to be a globalised conflict with profound international implications. This perspective is widely accepted among the NATO allies, which recognise the growing interconnection between the three theatres of conflict. This attitude is also increasingly reflected in the enhanced dialogue between NATO and the Indo–Pacific Four partners—Australia, New Zealand, Japan and the Republic of Korea. This cooperation is today seen by allies as mutually beneficial and necessary. Beyond exchanges of intelligence, particularly on the challenges posed by China, support for Ukraine dominates the partnership, alongside the joint battle against hybrid threats, progress on cybersecurity and the strengthening of maritime security. It is widely expected that NATO allies will seek to further strengthen this cooperation at the 2025 NATO summit in The Hague. Among NATO members there is, furthermore, a growing consensus on the need to be firm with China. Allies agree on the necessity of sending a stronger message and taking determined and united actions in terms of deterrence, including at the hybrid and cyber levels, as well as on imposing sanctions against Chinese economic operators involved in China–Russia cooperation in Ukraine. While Russia remains the primary long-term threat to the NATO realm, there is recognition that China poses a significant problem that must be addressed in its full magnitude, particularly in the context of China–Russia cooperation. It is essential to act firmly and in a united way to increase the costs of cooperation with Moscow for Beijing while keeping open the necessary avenues of engagement. Any dissonance between Europe and the US on this issue might otherwise become the root cause of the next big crisis of trust in the transatlantic relationship. China versus a Russian–American rapprochement Russia is not fighting its Ukraine war alone. It is receiving help from allies including China, Iran and North Korea. Moreover, the war in Ukraine is not just about Ukraine’s future. It is also part of a larger global struggle, with Russia seeking position alongside China in a reconfigured world order that is more multipolar and less centred on the US. In this respect, China may be inclined to silently assist Russia in opposing a proposed ceasefire or peace plan for Ukraine put forward by President Trump. Beijing likely recognises that by resolving the conflict in Ukraine and fostering better relations with Russia, Trump’s ultimate objective is to reallocate US diplomatic, military and economic resources to address the growing global influence of China and its impact on US national interests. In this respect Putin appears keen to keep President Xi Jinping informed about American attempts at rapprochement and ongoing negotiations concerning Ukraine. Historically, the ‘good relations’ between China and Russia are relatively recent; the stability of this relationship is attributed to the resolution of their border disputes, their complementary economies and their non-interference in each other’s ideological systems. But Moscow treads carefully as it knows it is the junior partner in the relationship. Moreover, the prospect of an American–Russian rapprochement is not viewed by either Moscow or Beijing with any real sense of threat. Ultimately Russia’s offerings to the US are limited; it has also been asserted that any rapprochement would not have an effect on Moscow–Beijing relations, as Sino-Russian ties are not dependent on any third party. Furthermore, regarding the Ukraine war, China maintains that it is ‘not a party’ to the conflict (DPA 2024). China upholds the principles of the sovereignty and territorial integrity of Ukraine while acknowledging Russia’s legitimate security concerns. In the eyes of Beijing, these principles must be reconciled to end the war. Additionally, China opposes unilateral sanctions on Russia but, due to its significant trade ties with the EU and the US, it accepts the Russian sanctions and their secondary effects on the Chinese economy. The ongoing negotiations on Ukraine are perceived by China as creating crucial momentum for achieving peace through dialogue, which should not be an opportunity missed. The American initiative is seen as a continuation of previous efforts, including the Chinese Peace Plan for Ukraine of 2023, the Ukraine Peace Summit 2024 in Switzerland and the Sino-Brazilian Six-Point Plan, also in 2024 (Gov.br 2024). China calls for non-escalation and direct negotiations, noting the signs of the exhaustion of manpower and resources on both the Russian and the Ukrainian sides. Despite China’s apparently laconic stance vis-à-vis the relationship, an American–Russian rapprochement could cause some concerns for Beijing. Economically, Moscow is less relevant to Beijing than Washington or Brussels. However, Russia holds fundamental strategic value due to its extensive land border with China. In the event of an American–Chinese rivalry escalating into direct conflict, Russia could become a lifeline for Beijing, especially if accompanied by a successful American blockade. These potential risks and scenarios, which seem increasingly likely over time, may serve as a significant incentive for China to obstruct the warming of relations between Moscow and Washington. References DPA (2024). China is not a party to Ukraine war, Xi tells Scholz in Beijing. aNews, 16 April. https://www.anews.com.tr/world/2024/04/16/china-is-not-a-party-to-ukraine-war-xi-tells-scholz-in-beijing. Accessed 15 April 2025. European Commission. (2025). Joint White Paper for European defence readiness 2030. JOIN (2025) 120 final (19 March). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52025JC0120. Accessed 15 April 2025. Gov.br. (2024). Brazil and China present joint proposal for peace negotiations with the participation of Russia and Ukraine. 23 May. https://www.gov.br/planalto/en/latest-news/2024/05/brazil-and-china-present-joint-proposal-for-peace-negotiations-with-the-participation-of-russia-and-ukraine. Accessed 15 April 2025. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)

Defense & Security
Virtual creative lock symbol and microcircuit illustration on flag of China and blurry cityscape background. Protection and firewall concept. Multiexposure

The triple dimension of Chinese cyberspace: defense, science and technology

by Elio Perera Pena

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском Abstract Cyberspace has become a crucial area for the governance and sovereignty of states, especially in the case of China which has developed a comprehensive digital governance strategy. The Chinese government prioritized the construction of a technological infrastructure including Artificial Intelligence and Cloud Computing to strengthen its control over Cyberspace and ensure National Security. Introduction The term cyberspace was coined by writer William Gibson in his science fiction novel “Neuromancer” (1984), in which he described it as a consensual virtual reality. Since then, the concept has transcended fiction to become a tangible domain. Cyberspace can be defined as a digital environment created by the global interconnection of computer systems, networks, and devices, where information flows and human interactions take place virtually. It has undergone significant evolution since its inception. In the 1980s and 1990s, it was mainly limited to academic and military networks in the United States, such as ARPANET. With the arrival of the Internet, cyberspace expanded rapidly, incorporating millions of users and giving rise to new forms of communication such as email and online forums. The gradual proliferation of mobile devices and social networks has transformed cyberspace into an omnipresent and integral part of everyday life. In terms of communication and connectivity, it revolutionized the way people communicate by eliminating geographical and temporal barriers. Cryptocurrencies and Fintech [1] are examples of how cyberspace has transformed the economy, creating new opportunities. Regarding its interconnection with culture and entertainment, the digitalization of culture has given rise to new forms of creation and consumption such as music and video streaming, online gaming, and digital art. Cyberspace: A Strategic Domain Cyberspace has become a strategic battlefield for the hemisphere. In China, cyberspace is seen as an essential component of national security and economic development. The Chinese government has implemented strict policies to regulate cyberspace, including the Great Firewall of China, which controls the flow of information and protects digital infrastructure. In the 10th Five-Year Plan (2001–2005), promoting the information technology sector, increasing internet accessibility, and encouraging the use of digital technologies were established as national priorities. At the Chinese Communist Party Congress in 2002, information was recognized as essential for the growth of comprehensive national power; consequently, in 2005, the National Strategy 2006–2020 for Information Development was published. Regarding the treatment, study, and control of cyberspace, the People’s Liberation Army has always granted crucial importance to information and its technical infrastructure for collection, protection, and distribution, given its duty to safeguard national interests. This is demonstrated by an article written by then-Colonel Wang Baocun in the “PLA Daily” in April 1998: “The opportunity created by the new military revolution is once-in-a-lifetime. Our army enjoys many favorable conditions for informatization. Our country has achieved rapid informatization and has the potential energy to extend this work to the military. An important feature of the current Military Revolution is that local informatization begins earlier and develops faster than in the armed forces and is more technologically advanced. After generating sufficient potential energy, the work will extend to the military and trigger a massive military transformation.” (Expósito, 2022) While for most of the so-called West, and thus also for the United States, there are five domains — land, sea, air, space, and cyberspace — Chinese specialists conceive of cyberspace as the interaction of two distinct realms: the electromagnetic spectrum and informatization. In recent decades, China has emerged as a global power in the scientific and technological sphere, consolidating its position through a comprehensive strategy that links the development of science with the expansion of cyberspace. Since the implementation of the "Made in China 2025" Plan, the government has prioritized technological innovation as the engine of development, focusing on areas such as AI, big data, and cybersecurity, positioning China as a leader in the Fourth Industrial Revolution. Launched in 2015, this is an industrial strategy that aims to transform China into a high-tech manufacturing power. The goal is to reduce dependency on foreign technologies and promote local innovation in key sectors such as robotics, AI, electric vehicles, and biotechnology. The Internet of Things (IoT) is an essential component that complements it, enabling the creation of smart factories and more efficient supply chains. “Internet Plus”, also launched in 2015, promotes the integration of the internet with traditional sectors such as agriculture, logistics, and financial services. It seeks to drive the digitalization of the economy and promote the use of emerging technologies like IoT, big data, and cloud computing. The Internet of Things (IoT) is fundamental to Internet Plus, as it facilitates connectivity between devices and systems, enabling the creation of interconnected digital ecosystems. The proliferation of connected devices allows the IoT to support the development of advanced communication platforms such as WeChat and Alipay, which integrate multiple services into a single application. The relationship between these initiatives lies in the fact that IoT acts as a bridge between “Made in China 2025” and “Internet Plus”, enabling the convergence of advanced manufacturing and the digitalization of the economy. On one hand, “Made in China 2025” uses the Internet of Things to modernize industry and improve productivity. On the other hand, “Internet Plus” leverages IoT to create new data-driven services and business models. This synergy has allowed China to position itself as a global leader in technological innovation. The relationship between science and cyberspace has been strengthened thanks to massive investment in research and development (R&D). The country has allocated significant resources to training talent in STEM disciplines (science, technology, engineering, and mathematics) and has established centers of excellence in technological innovation, which have enabled the development of AI algorithms applied in sectors such as medicine, logistics, and defense. On the international stage, the People’s Republic of China has adopted a cooperative approach, actively participating in international cybersecurity organizations and promoting initiatives such as the Digital Silk Road, which aims to foster technological development in other nations. The future of the relationship between science and Chinese cyberspace is marked by emerging trends that promise to further transform society. The adoption of technologies such as 5G and Blockchain [2] is redefining how people interact with the digital world. At the same time, as the Asian nation faces the challenge of balancing technological growth with sustainability and social equity, it is developing cyber power strategy as one of the fundamental pillars of its government policy. This strategy is understood as the need to build a robust digital infrastructure that advances quantum technology, A), and their derivatives, aiming for the greatest possible development of all areas involved in the defense of cyberspace. China has positioned itself as a global leader in AI, with companies like Baidu, Alibaba, and Tencent at the forefront of research. In the field of big data, it has leveraged its vast population and the proliferation of connected devices to collect and analyze massive amounts of information, improving efficiency in sectors such as transportation and urban planning. Cyberspace is vulnerable to threats such as cyberattacks, digital espionage, and cyber warfare. In response to these risks, quantum computing offers tools to strengthen cybersecurity. In today’s digital era, quantum computing and cyberspace have become two foundational pillars for technological development and national security. China, as one of the global powers in technological innovation, has invested significantly in both areas, recognizing their potential to transform the economy, defense, and society. Quantum Computing: A New Technological Paradigm Quantum computing represents a revolutionary leap in information processing capabilities. Unlike classical computers, which use bits to represent data as 0 or 1, quantum computers employ qubits, which can exist in multiple states simultaneously thanks to the phenomenon of quantum superposition. This allows for solving complex problems in a very short time, unlike traditional computers, which would require much longer periods. China is increasing its role as a global leader in the research and development of quantum computing. In 2020, the country achieved a historic milestone by demonstrating quantum supremacy with its Jiuzhang computer, capable of performing calculations in minutes that would take the most advanced supercomputers thousands of years. Not only China has placed itself at the forefront of quantum technology, but it also has carried deep implications for cyberspace. Regarding its advancements in this area, China has achieved significant milestones, such as the development of long-distance communication networks — one example being the Beijing–Shanghai backbone network [3]. The link between these elements is manifested in several key areas: 1. Quantum Cryptography and Cybersecurity One of the most significant impacts of quantum computing on cyberspace is its ability to revolutionize cryptography. Quantum algorithms have the potential to break current encryption systems, which form the basis of online security. This poses a threat to critical infrastructure, financial transactions, and secure communications. In response to this challenge, China has invested in the development of quantum cryptography, particularly in Quantum Key Distribution (QKD). In 2016, China launched the world’s first quantum satellite, “Micius”, which demonstrated the feasibility of secure long-distance quantum communication. This advancement lays the foundation for a global communication network immune to traditional cyberattacks. 2. Artificial Intelligence and Data Analysis Quantum computing has the potential to accelerate the development of AI and the analysis of large volumes of data. In cyberspace, this translates to greater capacity to detect patterns, predict threats, and optimize networks. The People’s Republic of China, already a leader in AI, has the potential to use quantum computing to strengthen its dominance in cyberspace, both nationally and internationally. Quantum networks enable the transmission of information with unprecedented security levels, reinforcing China’s leadership by strengthening its position in cyberspace and promoting its technological standards internationally. Quantum computing also offers strategic advantages. It could be used to develop more sophisticated cyberweapons capable of disabling enemy systems. It also holds the potential to enhance cyber defense, protecting critical infrastructure from attacks. China has integrated quantum computing into its national defense strategy, recognizing its importance in maintaining superiority in cyberspace. 3. Challenges and Ethical Considerations The global technological race among powers such as the United States is one of the key variables in this challenge and could exacerbate geopolitical tensions. There are ethical concerns about the use of quantum computing in cyberspace. The power of this technology has already been used for malicious purposes such as espionage, cyberattacks, or information manipulation, especially by powers adverse to China. As quantum technology advances, there is growing integration between its components and cyberspace, driving innovation in fields such as secure communication, artificial intelligence, and national defense. China's success in these areas will have global implications, redefining the future of technology and security in this century, toward essential economic, political, and social development goals. China has recognized the importance of cyberspace as a modern battlefield and has developed regulations and strategies to protect its interests in this domain, establishing laws that require companies and organizations to implement strong security measures and report cybersecurity incidents. In this regard, the transformative potential of quantum computing for national defense and security is acknowledged. Quantum technology has been applied to conflict simulation and the analysis of complex scenarios in the military sphere. The rapid development of the IoT presents challenges. The interconnection of devices creates vulnerabilities that can be exploited through cyberattacks on power grids, transportation systems, and more, which could have devastating consequences. China recognized these risks and implemented measures to strengthen cybersecurity. In 2017, the government enacted the Cybersecurity Law, which establishes strict requirements for data protection and network security. On the communication front, authorities have made efforts to promote not only the country’s technological capabilities, but also elements of Chinese culture. Platforms such as TikTok (known domestically as Douyin) have gained global popularity, becoming vehicles to counter negative narratives in Western media. This approach has resonated in other countries, especially in the so-called Global South, with which China has established strategic technological partnerships. 4. Cyberspace and Chinese Cyber Sovereignty Cyber sovereignty refers to the notion that each nation has the right and responsibility to exercise control over its cyberspace, protecting its digital infrastructure, regulating the flow of information, and defending its national interests in the digital realm. For China, this concept is fundamental to its Internet governance approach and aligns with a vision of a regulated and secure Internet. In summary, cyber sovereignty is defined as a condition in which the state has authority over cyberspace within its borders, including the ability to regulate Internet access, control online content, and protect digital infrastructure. It is based on the premise that cyberspace is a strategic domain that must be managed to ensure national security, social stability, and economic development. Its key principles include: State control: The Chinese government exercises strict control over Internet infrastructure and online content.National security: The protection of cyberspace is considered an extension of national defense.Content regulation: Measures are implemented to filter information deemed harmful or contrary to state interests.Technological autonomy: China seeks to reduce dependence on foreign technologies and promote the development of local solutions. Legal and Political Framework The Cybersecurity Law (2017) establishes regulations for data protection, infrastructure security, and online content regulation. Regarding the practical applications of China’s cyber sovereignty, one key element is the ability to exercise surveillance, i.e., the use of advanced technologies to monitor and control the flow of information. Promotion of local platforms: Encouragement of Chinese alternatives to global services (e.g., WeChat instead of WhatsApp, Baidu instead of Google).Development of technological standards: Creation of domestic standards for technologies like 5G and the Internet of Things, aiming to reduce dependence on international norms. International Implications Alternative governance model: China promotes its cyber sovereignty approach as an alternative to the Western model of an open and free Internet.Global influence: Through initiatives like the Digital Silk Road, China offers other countries the opportunity to adopt its model of digital governance and technologies.International tensions: Disputes with other countries over the control of critical technologies and influence in global cyberspace.Balance between security and innovation: Strict control may limit creativity and entrepreneurship in the tech sector. Cyber sovereignty is a key link in China’s digital strategy, reflecting its state control and national security approach to cyberspace. This concept has enabled the Asian nation to develop a unique model of digital governance, characterized by regulation, promotion of local technologies, and projection of global influence. Internet Governance China has adopted a unique approach to Internet governance, based on the principle of national sovereignty. Unlike the open Internet model promoted by the United States, the Asian country advocates a model in which each nation has the right to regulate and control its own Internet infrastructure. This approach is reflected, among other aspects, in the adoption of policies that restrict access to foreign websites, to protect content aligned with national interests. China has also promoted international initiatives to establish digital governance norms that support its vision of cyber sovereignty. One example is the “Code of Conduct for International Information Security”, presented to the United Nations (UN), which advocates for the respect of national sovereignty in cyberspace and non-interference in the internal affairs of other countries. In response to perceived threats from the United States and other powers, China has strengthened its cyber defense capabilities. One of the most significant initiatives has been the creation of a unit within the People’s Liberation Army specializing in cyber operations. China has denounced the surveillance activities of the United States National Security Agency (NSA). The rivalry driven by the U.S. stems from China’s accelerated development in network technologies and the rise of companies like Huawei, global leaders in technology. The Asian country has sought to counter U.S. influence in cyberspace through strategic alliances with other nations while pursuing diplomatic and technological balance. It has collaborated with Russia on joint cybersecurity policies and has promoted its vision of Internet governance in international forums such as the Shanghai Cooperation Organization (SCO). The U.S. aggressiveness in the digital realm, aimed at countering China’s rise, could lead to a fragmentation of information technology, particularly in terms of data transmission, where different regions might adopt contradictory standards and regulations. This scenario, known as the “Balkanization of the Internet,” would bring negative consequences for innovation and international cooperation. For this reason, China strives — through its domestic policies and within international forums — to maintain a balance in the use of global cyberspace and in the effective approach to managing digital technologies. While some politicians and academics (Friedberg, Pillsbury) argue that China’s economic and military power will lead to an irrational use of cyberspace, others (Shambaugh, Steinfeld) maintain that China is increasingly integrated into international institutions and the global economy. They also emphasize the Chinese government's growing and sustained concern for international stability. Chinese authorities have had the opportunity to assert that, aside from the United States' aggressive stance, there are common interests between both nations regarding the defense of cyberspace and cybersecurity. For both countries, maintaining cybersecurity is vital for stability and social development. Their strategic approaches are based on serving their national interests, which is why both governments present their respective cyberspace strategies as models to emulate. Both, China and the United States, consider that strategic information must be handled with great care to ensure the proper functioning of public administration and national security. China supports the U.S. perspective on a cybersecurity governance model based on a multistakeholder approach, involving government, private, civil, and military actors in the implementation and execution of responsibilities. Certain reactionary sectors in the United States have worked to prevent possibilities for mutual understanding. In 2018, the U.S. Department of Justice launched the “China Initiative”, aimed at countering what was perceived as economic espionage and intellectual property theft, allegedly carried out primarily by U.S. citizens of Chinese descent. This initiative had several geopolitical consequences: Tension in U.S.–China relations: Considered a discriminatory measure, seen as an attempt solely to contain China's economic and technological rise.Impact on bilateral cooperation: It increased distrust, negatively affecting areas of collaboration such as trade, investment, and joint work in science and technology.Concerns about civil rights: It was criticized by human rights groups and academics for targeting Americans of Chinese descent, creating an atmosphere of fear and self-censorship among Chinese-origin researchers and scholars. In some cases, this led to the loss of international collaborations. In 2021, President Joe Biden’s administration announced the end of the initiative, acknowledging its inappropriateness and the criticism it had drawn. However, in 2023, new accusations emerged involving Chinese nationals, allegedly responsible for flying "spy balloons" over U.S. military installations. A defamatory campaign sought to fuel Sinophobia, and media outlets once again contributed to this narrative. While the Chinese Ministry of Foreign Affairs denied involvement, in the United States, the president convened the Chairman of the Joint Chiefs of Staff and mobilized several strategic components, including the U.S. Cyber Command (US CyberCom). Several U.S. intelligence analysts, including Christopher Johnson, admitted that the United States conducts espionage against China. The wave of Sinophobia was intended to justify to the public the U.S. efforts to obtain vital information about China’s strategic interests, especially those linked to digital transformation and cyberspace. In 2024, the U.S. government announced that by 2025 it would double tariffs on Chinese semiconductors, while continuing to accuse Beijing of forcing technology transfers and stealing intellectual property. Final Considerations Cyberspace and digital governance are part of a broader war rooted in the cultural dimension of contemporary hegemonic power, which is heightened by the existing links between media and culture and their influence on relationships of domination. A Cold War persists in the form of a battle for individuals' minds, underscoring its ideological nature (Expósito, 2022). With the advance in science, psychological warfare has evolved, largely due to the development of new information and communication technologies. Faced with strong U.S. interference, psychological warfare is closely linked to the justification for dominating cyberspace, interpreted also as political warfare — understood as crisis diplomacy, war of nerves, or dramatic intimidation diplomacy. Through these strategies, the United States seeks to counter China’s remarkable progress in commercial economic development, particularly in the technological sphere. To support these efforts, the U.S. intelligence directorate hires public relations consultants responsible for conducting complex psychological operations in the informational and media domain. One of their main tasks is to validate and frame information production for propaganda purposes, where military communication strategies and tactics are intertwined with and become part of media operations, in which media outlets function as oligopolistic enterprises. According to U.S. intelligence agencies, information is treated as a content-seeking tool used to persuade public opinion, regardless of its truthfulness (for example, the repeated accusations of alleged Chinese spies operating within the United States). Communication is viewed as a vehicle for promoting the communicator’s interests — in other words, an effective way to ensure that a message, with a purely propagandistic purpose, aligns with political interests, serving the agenda of the executive branch and transnational media corporations in the United States, while also considering the specific interests of the State Department and the Department of Defense. With a “prepackaged” message, cyberspace — a concept not yet fully understood by the average citizen — is presented as a stimulus for the development of various cyberspace-related programs in the U.S., such as Cicada, Tripwire, among others. As a result, the People’s Republic of China becomes the subject of a U.S. social experiment, through which this subject — often portrayed through manipulated or falsified narratives — facilitates the enrichment of the aforementioned large transnational media corporations, one of the methods employed by the United States to maintain its hegemony. U.S. authorities, working in tandem with the corporate sector, continue to advocate — so far without the expected success — for the transition of network informatization to the multi-domain sphere, extending from Earth to space and cyberspace. This transition requires a close interconnection of all elements involved, and corresponding training of technical and logistical personnel. The restrictions imposed by the United States on China’s semiconductor industry are clearly aimed at obstructing China’s technological development, as the Asian nation still depends, to some extent, on certain components manufactured in the U.S. or by its allies. Accordingly, the restrictions enforced through the 2022 CHIPS and Science Act limit China’s access to advanced chip manufacturing technologies, such as Extreme Ultraviolet Lithography (EUVL) equipment, essential for producing next-generation semiconductors. It is important to note that chips and Chinese cyberspace are closely interrelated, as chips are fundamental components of the technological infrastructure that sustains cyberspace. In short, they are the technological foundation that enables the operation, expansion, and security of Chinese cyberspace, and their development is strategic for China’s autonomy and competitiveness in the global digital arena. The link between the communication sphere and cyberspace in the People’s Republic of China reflects its development model and its governance vision, aimed at promoting social cohesion. Through the use of advanced technologies and the implementation of policies, China has managed to maintain a high level of control over its digital environment, thereby promoting its national interests. China’s security and defense strategy in relation to cyberspace reflects its aspiration to become a global digital power. By adopting an approach based on national sovereignty, China seeks to protect its interests and counter threats posed by the United States and other powers. In an increasingly interconnected world, it is essential that nations find ways to cooperate in the field of cybersecurity, by establishing standards and norms that promote stability and trust in cyberspace. As one of the leading digital powers, China maintains its commitment to playing a crucial role in balancing the international order. The relationship between quantum computing, cyberspace, and China’s military security and defense regulations is complex and multifaceted. Quantum computing has the potential to revolutionize how information is processed and how security is ensured. China has been a pioneer in integrating quantum computing into its security and defense strategies, which has important implications for global security. The “Internet Plus” initiative served as a key catalyst for China's digital transformation, positioning the country as a global leader in technological innovation. By highlighting the close interdependence between cyberspace and quantum computing, it becomes evident how emerging technologies are transforming the world. China has demonstrated a strong commitment to the development of quantum computing, recognizing its potential to strengthen its position in cyberspace and its global implications that will reshape the future of technology and security in the 21st century. For years now, cyberspace has become part of the obscure content used in propaganda spread by what is referred to as the mainstream press. It is used not only as a critical domain to be protected for the sake of national sovereignty and security, but also as a media spectacle, a staged platform in which the press is employed to convey messages desired by the political and economic executives of countries such as the United States. In such cases, in addition to the legitimate need to protect cyberspace as an intrinsic component of political and social stability, it is also used as a justification for massive financial allocations, supposedly in the name of national integrity, which in reality flow into the coffers of the Military-Industrial Complex. Notes [1] A company that uses technology to offer financial services in an innovative, efficient, and accessible way. The term comes from the combination of the words “finance” and “technology.”[2] Blockchain is a distributed ledger technology that allows information to be stored securely, transparently, and in a decentralized manner. It consists of a chain of blocks linked together, where each block contains a set of verified transactions or data. These blocks are connected through cryptographic techniques.[3] An important high-speed rail line in China that connects the cities of Beijing and Shanghai. Known as the High-Speed Railway, it is one of the busiest and most strategic routes. It was inaugurated on June 30, 2011 and covers an approximate distance of 1,318 km. References Expósito, J. (2022, enero 19). China en el ciberespacio. Revista Ejércitos. http://www.ejercitos.comFriedberg, A. L. (2011). A Contest for Supremacy: China, America and the Struggle for Mastery in Asia. Nueva York: W.W. Norton.Lewis, J. A. (2022). Chinas Cyber Strategy: A Comprehensive Analysis. Center for Strategic and International Studies. En www.centerforstrategicstudiesMinisterio de Defensa Nacional de la República Popular China (2023). Libro Blanco de Defensa Nacional. Beijing: Editorial del Pueblo.Patiño Orozco, G. A. (2021). Una comparativa de los esquemas de ciberseguridad de China y Estados Unidos. OASIS, 34, pp. 107-126. https://doi.org/10.18601/16577558.n34.07Perera Pena, E. “El llamado globo chino y algunas de sus derivaciones estratégicas”. En Revista Cuadernos de Nuestra América. CIPI. La Habana. Cuba. ISSN: 2959-9849.Pillsbury, M. (2015). The Hundred Year Marathon. Chinas Secret Strategy to Replace Americas as the Global Superpower. Nueva York: Henry Holt.Segal, A. (2020). The Hacked World Order: How Nations Fight, Trade, Manueuver, and Manipulate in the Digital Age. New York. Public Affairs.Shambaugh, D. (2013). China Goes Global. The Partial Power. Nueva York: Columbia University Press.Spanish.news.cn 16.3.2023. Libro Blanco. China explora activamente nuevos modelos de “ciberjusticia”. En: www.spanish.xinhunet.comSteinfeld, E. S. (2017). Teams of Rivals: China, the United States, and the Race to Develop Technologies for a Sustainable Future. In J. DeLisle, and A. Goldstein, Chinas Global Engagement: Cooperation, Competition, and Influence in the 21st Century (pp.91-121). Washington: Brookings Institution Press.Zhang, L. (2021). Chinas Quantum Supremacy. Beijing: Tsinghua University Press. Cuadernos de Nuestra América. No. 014 | Nueva Época 2025, Centro de Investigaciones de Política Internacional (CIPI). Under CC BY-NC 4.0