Subscribe to our weekly newsletters for free

Subscribe to an email

If you want to subscribe to World & New World Newsletter, please enter
your e-mail

Energy & Economics
To achieve sustainable environmental conservation, we must prioritize clean energy solutions to reduce our dependence on fossil fuels and promote a sustainable future for future generations.

Harnessing nuclear power for sustainable electricity generation and achieving zero emissions

by Mohamed Khaleel , Ziyodulla Yusupov , Sassi Rekik , Heybet Kılıç , Yasser F. Nassar , Hala J. El-Khozondar , Abdussalam Ali Ahmed

Note: some parts of the article have been excluded, if you want to go deep in the article please check  https://doi.org/10.1177/01445987251314504 for the complete version. Abstract Nuclear power plays a pivotal role in sustainable electricity generation and global net zero emissions, contributing significantly to this secure pathway. Nuclear power capacity is expected to double, escalating from 413 gigawatts (GW) in early 2022 to 812 GW by 2050 within the net zero emissions (NZE) paradigm. The global energy landscape is undergoing significant transformation as nations strive to transition to more sustainable energy systems. Amidst this shift, nuclear power has emerged as a crucial component in the pursuit of a sustainable energy transition. This study examines nuclear power's multifaceted role in shaping sustainable energy transition. It delves into nuclear energy's contributions toward decarbonization efforts, highlighting its capacity to provide low-carbon electricity and its potential role in mitigating climate change. Furthermore, the study explores the challenges and opportunities associated with integrating nuclear power into energy transition strategies, addressing issues such as safety, waste management, and public perception. In conclusion, the global nuclear power capacity is anticipated to reach approximately 530 GW by 2050, representing a substantial shortfall of 35% compared with the trajectory outlined in the NZE pathway. Under the NZE scenario, nuclear power demonstrates exceptional expansion, nearly doubling from 413 GW in early 2022 to 812 GW by 2050. Concurrently, the trajectory highlights a transformative shift in renewable energy investments, with annual expenditures surging from an average of US$325 billion during 2016–2020 to an impressive US$1.3 trillion between 2031 and 2035. These projections underscore the critical role of nuclear and renewable energy investments in achieving global sustainability and emission reduction goals. Introduction Global warming and greenhouse gas emissions pose some of the most pressing challenges of the 21st century. The combustion of fossil fuels for electricity generation is a major contributor to these issues, releasing billions of tons of carbon dioxide (CO2) into the atmosphere annually (Abbasi et al., 2020; Nassar et al., 2024; Rekik and El Alimi, 2024a). In this context, nuclear energy emerges as a critical component of the solution. Unlike fossil fuels, nuclear power generates electricity with minimal greenhouse gas emissions, offering a reliable and scalable alternative to bridge the gap between energy demand and decarbonization goals. It operates independently of weather conditions, providing consistent energy output and complementing the intermittency of renewable sources like wind and solar (Rekik and El Alimi, 2024b, 2024c). Furthermore, advancements in nuclear technologies, including small modular reactors (SMRs) and generation IV reactors, have addressed historical concerns related to safety, waste management, and cost-effectiveness (Lau and Tsai, 2023). In 2022, global investment in low-emission fuels will maintain a robust growth trajectory, reaching a sum of US$13 billion. A significant portion of this investment was allocated toward liquid biofuels, totaling US$9.4 billion, and biogas, amounting to US$2.7 billion. It is important to emphasize that liquid biofuels constituted approximately 80% of the overall investment surge observed in 2022, with investments in biogas contributing 4% of the total. The residual portion of the investment was directed toward low-emission hydrogen production, which attained a sum of US$1.2 billion in 2022, representing an almost fourfold increase compared to the figures recorded in 2021 (Khaleel et al., 2024).Nuclear power is a pivotal component of low-carbon energy, which significantly contributes to the realization of a low-carbon economy and establishment of a green energy grid (Arvanitidis et al., 2023; El Hafdaoui et al., 2024; Fragkos et al., 2021). According to current data, 442 nuclear power reactors are operational worldwide, collectively generating 393 gigawatts (GW) of electricity, thereby furnishing a consistent and dependable source of low-carbon power (Mathew, 2022). Nuclear electricity constitutes approximately 11% of the total global electricity generation, representing a substantial portion of the global low-carbon electricity production (Alam et al., 2019). Recent advancements have enhanced the affordability and appeal of nuclear power as an alternative source of energy. These advancements encompass progress in large reactor technologies, the emergence of novel approaches such as advanced fuel utilization and SMRs, engineering breakthroughs facilitating the extension of operational lifespans for existing reactors, and innovations in materials science and improved waste management practices (Kröger et al., 2020; Zhan et al., 2021). Fast breeder reactor technology has transitioned into a commercial realm, offering benefits beyond electricity generation by enabling the production of surplus fuel and enhancing the efficiency of nuclear waste incineration, surpassing the capabilities of existing commercial reactor technologies (Lau and Tsai, 2023). Nuclear power plays a substantial role within a secure global trajectory toward achieving net zero emissions (NZE) (Addo et al., 2023; Dafnomilis et al., 2023). Nuclear power capacity experiences a twofold increase, progressing from 413 GW at the outset of 2022 to 812 GW by 2050 within the NZE paradigm. It is apparent that the annual additions to nuclear capacity peaked at 27 GW per year during the 2030s, surpassing the levels observed in the preceding decade. Despite these advancements, the global proportion of nuclear power within the overall electricity generation portfolio has experienced a marginal decline, settling at 8% (Murphy et al., 2023; Ruhnau et al., 2023). Emerging and developing economies (EMDEs) substantially dominate global growth, constituting over 90% of the aggregate, with China poised to ascend as a preeminent nuclear power producer prior to 2030. Concurrently, advanced economies collectively witness a 10% augmentation in nuclear power capacity as retirements are counterbalanced by the commissioning of new facilities, predominantly observed in nations such as the United States, France, the United Kingdom, and Canada (Bórawski et al., 2024). Furthermore, annual global investment in nuclear power has experienced a notable escalation, soaring from US$30 billion throughout the 2010s to surpass US$100 billion by 2030, maintaining a robust trajectory above US$80 billion by 2050 (IEA, 2022). In 2022, global nuclear power capacity experienced a modest increase of approximately 1.5 GW, reflecting a marginal year-on-year growth of 0.3%. This expansion was primarily driven by new capacity additions that surpassed the retirement of an over 6 GW of existing capacity (Fernández-Arias et al., 2023; Mendelevitch et al., 2018). EMDEs accounted for approximately 60% of the new capacity additions, underscoring their increasing significance in the global nuclear energy landscape. Conversely, more than half of the retirements were observed in advanced economies, including Belgium, the United Kingdom, and the United States. Table 1 shows the nuclear power capacity by region in the NZE from 2018 to 2030.   In alignment with the Net Zero Scenario, it is imperative for the global nuclear capacity to undergo an expansion averaging approximately 15 GW per annum, constituting a growth rate slightly exceeding 3% annually, until 2030. This strategic augmentation is crucial for sustaining the contribution of the nuclear sector to electricity generation, maintaining its share at approximately 10% (Liu et al., 2023). Such an expansion necessitates concerted efforts in both advanced economies and EMDEs. Furthermore, prioritizing the extension of operational lifetimes of existing nuclear facilities within G7 member states would not only fortify the existing low-emission infrastructure, but also facilitate the integration of new nuclear capacity, thereby augmenting the overall nuclear energy portfolio. [...] The significant contribution of nuclear power to sustainable energy transitions is underscored by its multifaceted role in addressing the pressing challenges of climate change and energy security (Asif et al., 2024). As nations worldwide endeavor to shift toward greener energy systems, nuclear power has emerged as a critical pillar of the decarbonization journey. Its ability to provide low-carbon electricity, mitigate climate change impacts by 2050, and enhance energy security highlights its pivotal importance in the broader context of sustainable energy transitions (Bhattacharyya et al., 2023; NEA, 2015). Thus, to fully realize its potential, challenges such as safety, waste management, and public perception must be addressed effectively. By leveraging robust policy frameworks, technological advancements, and international collaboration, nuclear power is poised to play a vital role in shaping the future of sustainable energy transitions on a global scale. Furthermore, the dynamic landscape of nuclear power development is evident in the significant influence exerted by EMDEs, particularly China, which is expected to emerge as a leading nuclear power producer by 2030 (Fälth et al., 2021; Nkosi and Dikgang, 2021). Concurrently, advanced economies are witnessing notable expansions in nuclear power capacity driven by the commissioning of new facilities to offset retirements (Budnitz et al., 2018). This trend is further reinforced by a notable surge in annual global investment in nuclear power, underscoring the sustained commitment to nuclear energy's pivotal role in sustainable energy transitions in the foreseeable future (IEA, 2019). The primary objective of this article is to explore the strategic role of nuclear power in advancing global sustainability goals and achieving zero emissions. The objective is structured around the following key agendas: •Nuclear power: prominence and green electricity source•Nuclear's role in achieving net zero by 2050•Nuclear power's significance in power system adequacySpecific technologies for sustainability in nuclear energy production•Investment in nuclear power•Addressing policy implications This comprehensive analysis aims to provide actionable insights into harnessing nuclear power for sustainable electricity generation and its pivotal role in achieving global zero-emission targets. Data and methodology This article conducts an in-depth analysis of the role of nuclear power in achieving sustainable electricity generation and supporting NZE targets. The article also addresses the potential of nuclear energy as a prominent and environmentally favorable electricity source, examining nuclear power's contribution toward the net zero by 2050 goal, its critical importance in ensuring power system adequacy, investment imperatives, and the broader policy implications.  [...] Nuclear power: prominence and green electricity source In 2020, nuclear power will constitute approximately 10% of the global electricity generation portfolio. This proportion, which had previously stood at 18% during the late 1990s, has experienced a decline; nonetheless, nuclear energy retains its status as the second-largest provider of low-emission electricity, trailing only hydroelectricity, and serves as the primary source within advanced economies. Despite the substantial proliferation of wind and solar PV technologies, nuclear electricity production in 2020 surpassed the aggregate output of these renewable sources. As of 2021, the global cumulative installed nuclear capacity has reached 413 GW, with 270 GW of this total being installed in advanced economies (Guidi et al., 2023; Halkos and Zisiadou, 2023; Pan et al., 2023; Zhang et al., 2022). Nuclear power generation during this period amounted to 2653 TWh, positioning it as the second largest source of electricity generation after hydropower, which generated 4275 TWh, as depicted in Figure 1.   In addition to its significant role in power generation, nuclear energy plays a crucial role in mitigating carbon dioxide (CO2) emissions. Since the 1970s, nuclear power has helped avoid the global release of approximately 66 gigatons (Gt) of CO2 globally, as shown in Figure 2.   Without the contribution of nuclear power, cumulative emissions from electricity generation would have increased by approximately 20%, whereas total energy-related emissions would have increased by 6% over this period (Wagner, 2021). Advanced economies accounted for more than 85% of these avoided emissions, with the European Union accounting for 20 Gt and the United States for 24 Gt, representing over 40% and 25% of total electricity generation emissions, respectively. In the absence of nuclear power, Japan would have experienced an estimated 25% increase in emissions from electricity generation, whereas Korea and Canada would have seen an increase of approximately 50%. Nuclear's role in achieving net zero by 2050 Nuclear energy has emerged as a pivotal low-emission technology within the trajectory toward achieving NZE (Pioro et al., 2019). In addition, it serves as a complementary force, bolstering the accelerated expansion of renewables, thereby facilitating the reduction of emissions from the global electricity sector to net zero by 2040 (Krūmiņš and Kļaviņš, 2023; Islam et al., 2024). Beyond its intrinsic contribution to fostering a low-emission electricity supply, nuclear power is significant as a dispatchable generating asset, fortifying supply security through its provision of system adequacy and flexibility. Furthermore, it is instrumental in furnishing heat for district heating networks and in selecting industrial facilities. Despite this, the prospective role of nuclear energy hinges significantly on the deliberations and determinations of policymakers and industry stakeholders concerning the pace of new reactor construction initiatives and the continued operational lifespan of existing nuclear facilities (Li et al., 2016; Li et al., 2015).In terms of the NZE trajectory, the global nuclear power capacity exhibits a remarkable surge, nearly doubling from 413 GW at the onset of 2022 to 812 GW by 2050 (Price et al., 2023; Utami et al., 2022). This augmentation primarily stems from the vigorous initiation of new construction endeavors, which effectively counterbalance the gradual decommissioning of numerous extant plants. Such an escalation constitutes a pronounced acceleration in comparison to the preceding three decades, characterized by a mere 15% increment in capacity, equivalent to approximately 60 GW (Haneklaus et al., 2023; Obekpa and Alola, 2023; Sadiq et al., 2023). Figure 3 demonstrates the nuclear power capacity within each country/region under the NZE by 2050 scenario.   The expected growth in nuclear power capacity far exceeds the path outlined by the current policies and legal frameworks. According to the Stated Policies Scenario (STEPS), the nuclear capacity is projected to reach approximately 530 GW by 2050, which is 35% lower than that of the NZE pathway (Espín et al., 2023; Nicolau et al., 2023; Nnabuife et al., 2023; Wang et al., 2023). Without a significant shift from recent nuclear power development trends, achieving NZE would require a limited reliance on a smaller range of low-emission technologies. This could compromise energy security and lead to higher total investment costs, resulting in increased electricity prices for consumers. Table 2 shows the average annual capacity addition for global nuclear power in NZE from 1981 to 2030.   In 2022, the global deployment of new nuclear power capacity witnessed a notable upsurge, with 7.9 GW added, representing a substantial 40% increase compared to the preceding year (Ho et al., 2019). It is worth bearing in mind that China spearheaded this expansion by completing the construction of two reactors, maintaining its streak for consecutive years as the leading contributor to global nuclear power capacity augmentation. It is noteworthy that the projects were successfully completed in various other nations, including Finland, Korea, Pakistan, and the United Arab Emirates. Additionally, significant strides were made in the initiation of new construction endeavors, with the commencement of construction activities on five reactors in China, two reactors in Egypt, and one reactor in Turkey (Hickey et al., 2021). Nuclear power's significance in power system adequacy Nuclear power facilities have persistently underpinned the dependability of power systems, thereby bolstering the adequacy of the system. Across diverse national contexts, nuclear power plants have historically maintained operational readiness, manifesting availability rates consistently exceeding 90%, thereby demonstrating their reliability in power generation. Given that a substantial proportion of nuclear power capacity directly contributes to system adequacy metrics, its significance in fortifying system reliability and adequacy significantly outweighs its proportional contribution to the total power capacity (Orikpete and Ewim, 2024; Frilingou et al., 2023; Raj, 2023; Ragosa et al., 2024). The contribution of nuclear power to system adequacy is demonstrated by the consistent trajectory of its share within the aggregate dispatchable power capacity, hovering at around 8% between 2021 and 2050 within the NZE framework (IEA, 2022; OIES, 2024). Dispatchable electricity sources have historically constituted the primary mechanism for ensuring system adequacy, a trend that endures within the NZE paradigm, especially as electricity systems undergo evolution marked by an escalating reliance on variable solar photovoltaic (PV) and wind energy sources (Marzouk, 2024; Moon et al., 2024; Wisnubroto et al., 2023). It is indisputable that unabated fossil fuel resources predominantly dominate dispatchable capacity; however, their prominence clearly diminishes, declining by a quarter by 2030 within the NZE framework and experiencing a precipitous decline thereafter. Unabated coal-fired power, currently the most substantial dispatchable source, anticipates a decline exceeding 40% in operational capacity by 2030 and approaches a state of negligible contribution by the early 2040s. Conversely, the unabated natural gas-fired power capacity exhibits a sustained level of stability until 2030, primarily driven by the necessity to offset the diminishing role of coal; nonetheless, it subsequently undergoes a rapid descent throughout the 2030s. Oil, constituting a comparatively minor contributor, experiences rapid phasing out across most regions, except for remote locales, within the delineated scenario (Makarov et al., 2023; Ren et al., 2024). Figure 4 highlights the global capacity of dispatchable power categorized by category in the scenario of achieving NZE by 2050.   In this context, fossil fuels equipped with Carbon Capture, Utilization, and Storage (CCUS) technology have emerged as notable contributors to bolstering system adequacy. Yet, nuclear power remains a steady contributor to the power system flexibility. In advanced economies, the proportion of hour-to-hour flexibility is projected to increase from approximately 2% to 5% by 2050. Similarly, in EMDEs, this ratio is anticipated to increase from 1% to 3% over the same temporal span (Jenkins et al., 2018). It is worth highlighting that in France, where nuclear power fulfills the lion's share of electricity generation requisites, flexibility has been ingrained within reactor designs (Ho et al., 2019). This feature enables certain plants to swiftly modulate their output to align with the fluctuating electricity supply and demand, operating in a load-following mode (Chen, 2024; Jin and Bae, 2023; Kanugrahan and Hakam, 2023). Although many nations have not habitually engaged nuclear power in such operational dynamics, a considerable number of reactors are capable of performing load-following operations with minimal or no requisite technical adaptations (Caciuffo et al., 2020). Figure 5 demonstrates the hour-to-hour power system flexibility based on the source and regional grouping in the NZE by the 2050 scenario.   Innovation holds promise in enhancing the flexibility of nuclear power. Advanced technological advancements, such as SMRs, can facilitate nuclear reactors to adjust their electricity output with greater ease, as illustrated in Figure 6 (Ho et al., 2019; Lee, 2024; Wisnubroto et al., 2023). Moreover, these technologies offer the prospect of enabling reactors to transition toward generating heat or producing hydrogen either independently or concurrently with electricity generation. Initiatives are underway to disseminate information to policymakers and planners regarding the potential cost advantages associated with enhancing nuclear power flexibility.  Figure 6 demonstrates the nuclear system augmented by wind turbines for trigeneration.   Investment in nuclear power The renaissance of nuclear power within the NZE trajectory necessitates a substantial surge in investment in the coming decades. This surge is envisaged to encompass the construction of new nuclear reactors and extension of operational lifespans for existing facilities. Within this scenario, annual global investment in nuclear power is poised to escalate to exceed US$100 billion during the initial half of the 2030s within the NZE framework, surpassing the threefold average investment level of US$30 billion recorded during the 2010s (IEA, 2022). Subsequently, investment levels are expected to gradually decline as the imperative for dispatchable low emissions generating capacity diminishes, tapering to approximately US$70 billion by the latter half of the 2040s (Kharitonov and Semenova, 2023; Zimmermann and Keles, 2023). Over the period spanning from 2021 to 2050, the allocation of investment toward nuclear power constitutes a fraction representing less than 10% of the aggregate investment dedicated to low-emission sources of electricity (IEA, 2022). By comparison, within this framework, the annual investment in renewable energy experiences a notable escalation, escalating from an average of US$325 billion during the interval from 2016 to 2020 to US$1.3 trillion during the period 2031–2035 (EEDP, 2023; Rekik and El Alimi, 2024d). It is worth noting that the latter consideration elucidates the rationale behind the disproportionate allocation of investment toward advanced economies in later decades. China, for instance, requires an annual expenditure averaging close to US$20 billion on nuclear infrastructure by 2050, representing a nearly twofold increase compared to the average observed during the 2010s (Aghahosseini et al., 2023; Vujić et al., 2012). Conversely, other EMDEs witness a tripling of investment, reaching approximately US$25 billion per year, on average. In contrast to advanced economies, the imperative for investment in these nations is more pronounced in the period leading up to 2035 (Bhattacharyya et al., 2023; Khaleel et al., 2024). Thus, nuclear energy, despite its advantages as a low-carbon energy source, faces notable challenges. High capital costs and long deployment timelines, driven by complex construction and regulatory requirements, often hinder its adoption. The management of radioactive waste remains a costly and contentious issue, while safety concerns, shaped by historical incidents, continue to influence public perception. Additionally, reliance on uranium, with its geographically concentrated supply, raises geopolitical and environmental concerns. Nuclear power also competes with the rapidly advancing and cost-effective renewable energy sector, while decommissioning aging plants poses long-term financial and logistical burdens. Addressing these limitations through advanced technologies, public engagement, and international collaboration is crucial for enhancing nuclear energy's role in sustainable energy transitions. Technologies for sustainability in nuclear energy production The pursuit of sustainability in nuclear energy production has been supported by advancements in innovative technologies that enhance efficiency, safety, and environmental compatibility (Aktekin et al., 2024; Ali et al., 2024; Zheng et al., 2024; Khan et al., 2017). These technologies are crucial for positioning nuclear power as a key contributor to clean and sustainable energy transitions. Below are some of the most impactful technologies in this domain: Advanced nuclear reactors: Small modular reactors (SMRs): SMRs are compact, scalable, and safer than traditional large-scale reactors. Their modular design allows for deployment in remote locations, making them suitable for decentralized energy systems. Generation IV reactors: These reactors incorporate advanced cooling systems and fuel cycles to improve efficiency, safety, and waste reduction. Examples include sodium-cooled fast reactors and gas-cooled fast reactors. Thorium-based reactors: Thorium fuel cycle reactors use thorium-232 as an alternative to uranium, offering a more abundant and sustainable fuel source. Thorium reactors produce less nuclear waste and have a lower risk of proliferation. Fusion energy: Although still in the experimental stage, nuclear fusion promises to be a game-changing technology. Fusion produces minimal radioactive waste and harnesses abundant fuel sources like deuterium and tritium, making it a virtually limitless and clean energy solution. Molten salt reactors (MSRs): MSRs use liquid fuels or coolants, such as molten salts, which operate at lower pressures and higher temperatures. These reactors are inherently safer and have the capability to utilize a variety of fuel types, including spent nuclear fuel and thorium. Reactor safety enhancements: Passive safety systems: These systems enhance reactor safety by using natural forces like gravity, natural convection, or condensation to cool the reactor core without human intervention. Digital twin technologies: Digital simulations and monitoring of reactor systems allow for predictive maintenance and real-time safety management. Nuclear waste management technologies Fast reactors: These reactors can recycle spent fuel, reducing the volume and radioactivity of nuclear waste. Deep geological repositories: Advances in geotechnical engineering have improved the safety of long-term waste storage in deep geological formations. Hybrid nuclear-renewable systems: Combining nuclear power with renewable energy sources like wind and solar can optimize energy production and grid stability. Hybrid systems leverage the reliability of nuclear energy with the intermittency of renewables for a balanced, low-carbon energy mix. Artificial intelligence (AI) and machine learning: AI and machine learning technologies are being deployed to enhance reactor performance, optimize fuel usage, and improve operational safety. Predictive analytics also play a critical role in maintenance and risk assessment. Fuel advancements: High-assay low-enriched uranium (HALEU): HALEU fuels enable reactors to operate more efficiently and reduce waste. Accident-tolerant fuels (ATFs): These are designed to withstand extreme conditions, reducing the likelihood of core damage during accidents. Integrated energy systems: Nuclear reactors are increasingly being used for purposes beyond electricity generation, such as hydrogen production, district heating, and desalination. The integration of digital technologies, including AI and machine learning, coupled with fuel advancements like HALEU and accident-tolerant fuels, highlights the continuous evolution of the nuclear sector. These innovations not only enhance efficiency and safety but also expand the applications of nuclear energy beyond electricity generation to include hydrogen production, desalination, and district heating. Despite these technological advancements, the sustainable deployment of nuclear energy requires robust policy frameworks, increased investments, and public acceptance. Addressing these challenges is critical to unlocking the full potential of nuclear power in achieving global energy security and NZE by 2050. [...] Discussion and policy implications Nuclear power presents a compelling case as a sustainable energy source owing to its several key advantages. Its high-energy density allows for substantial electricity generation from minimal fuel, enabling continuous operation, unlike intermittent renewables, such as solar and wind (Rekik and El Alimi, 2023a, 2023b), thus contributing significantly to grid stability (Cramer et al., 2023). Furthermore, nuclear power is a crucial tool for emissions reduction, boasting virtually no greenhouse gas emissions during operation. Although lifecycle emissions associated with fuel processing and plant construction exist, they remain comparable to or lower than those of renewables. Several studies have reported on the energy production capabilities of nuclear power and its contribution to reducing greenhouse gas emissions compared to other energy sources. A key aspect of these analyses is quantifying the potential contribution of nuclear power to reducing greenhouse gas emissions and achieving net zero targets. However, direct comparison of reported data can be challenging due to variations in model assumptions, geographic scope, and time horizons.  [...] From another perspective, radioactive waste generation poses a significant challenge to nuclear power because of its long-term hazardous nature. This necessitates meticulous management and disposal strategies to mitigate potential social impacts. These impacts arise from perceived or actual risks to human health and the environment, fueling public anxiety and opposition to nuclear power, which is often expressed through protests and legal action (Kyne and Bolin, 2016; Nilsuwankosit, 2017; Ram Mohan and Namboodhiry, 2020). Additionally, communities near waste sites can experience stigmatization, resulting in decreased property values and social isolation. The persistent nature of radioactive waste also raises intergenerational equity issues, burdening future generations with its management (Deng et al., 2020; Mason-Renton and Luginaah, 2019). Thus, transparent communication and stakeholder engagement are crucial for building public trust and ensuring responsible radioactive waste management (Dungan et al., 2021; Sančanin and Penjišević, 2023). There are various radioactive waste disposal pathways, each with unique social and technical considerations. Deep geological disposal, an internationally favored method for high-level waste disposal, involves burying waste deep underground for long-term isolation. Interim storage provides a secure temporary holding until a permanent solution is obtained (Chapman, 1992; Grambow, 2022). Reprocessing spent nuclear fuel recovers reusable materials, reducing high-level waste but creating lower-level waste. Advanced reactor technologies aim to minimize waste and improve safety, potentially converting long-lived isotopes into shorter-lived isotopes (Dixon et al., 2020; Englert and Pistner, 2023). Choosing a disposal pathway requires careful evaluation of factors, such as waste type and volume, geology, feasibility, cost, and public acceptance, often leading to a combined approach. Ongoing community engagement and addressing concerns are essential to safe and responsible waste management. Effective management and disposal of this waste require advanced technological solutions, robust regulatory frameworks, and long-term planning to ensure safety and sustainability (Abdelsalam et al., 2024; Rekik and El Alimi, 2024a), Moreover, its relatively small land footprint compared to other energy sources, especially solar and wind farms, minimizes the ecosystem impact and makes it a sustainable option in densely populated areas (Poinssot et al., 2016; Sadiq et al., 2022). Nuclear power also enhances energy security by reducing reliance on fossil fuels, which is particularly valuable in countries with limited domestic resources (Cramer et al., 2023; Ichord Jr., 2022). Additionally, nuclear power exhibits synergy with other clean technologies, providing a stable baseload complementing variable renewables and facilitating hydrogen production for diverse energy applications (Abdelsalam et al., 2024; El-Emam and Subki, 2021; Salam and Khan, 2018; Rekik, 2024; Rekik and El Alimi, 2024e). Finally, ongoing advancements in reactor design, such as SMRs, promise enhanced safety, reduced costs, and greater deployment flexibility, further solidifying the role of nuclear power in decarbonizing the electricity sector (Aunedi et al., 2023). Supportive policies and international cooperation are essential for fully realizing the potential of nuclear energy. Streamlined licensing and regulatory frameworks are crucial for reducing deployment time and costs and ensuring that safety standards are met efficiently (Gungor and Sari, 2022; Jewell et al., 2019). Furthermore, incentivizing investments through financial tools such as tax credits and loan guarantees can attract private capital and create a level-playing field for nuclear power (Decker and Rauhut, 2021; Nian and Hari, 2017; Zimmermann and Keles, 2023). Addressing public perception through education and engagement is equally important for building trust and acceptance. Moreover, international cooperation is vital in several respects. The disposal of radioactive waste remains a complex issue, requiring careful long-term management and securing geological repositories to prevent environmental contamination owing to the long half-life of some isotopes. Furthermore, while modern reactors incorporate advanced safety features, the potential for accidents such as Chernobyl and Fukushima remains a concern because of the potential for widespread radiation release and long-term health consequences (Denning and Mubayi, 2016; Högberg, 2013; Wheatley et al., 2016). Moreover, the high initial costs associated with design, construction, and licensing present significant barriers to new nuclear projects, particularly in developing countries. In addition, the risk of nuclear proliferation, in which technology intended for peaceful energy production is diverted for weapons development, necessitates stringent international safeguards, as highlighted by following reference. Public perception also plays a crucial role because negative opinions and concerns about safety and waste disposal can create opposition to new projects. Finally, the decommissioning of nuclear plants at the end of their operational life is a complex and costly process that requires substantial resources and expertise to dismantle reactors and manage radioactive materials. [...] Conclusion The role of nuclear power in sustainable energy transition is multifaceted and significant. As nations worldwide strive to transition toward more environmentally friendly energy systems, nuclear power has emerged as a crucial component of the decarbonization journey. Its capacity to provide low-carbon electricity, mitigate climate change, and contribute to energy security underscores its importance in the broader context of sustainable energy transitions. Despite this, challenges such as safety, waste management, and public perception must be addressed to fully harness the potential of nuclear power to achieve sustainability goals. By leveraging policy frameworks, technological innovations, and international cooperation, nuclear power can play a vital role in shaping the future of sustainable energy transition on a global scale. In this context, EMDEs exert a substantial influence on global growth, collectively accounting for over 90% of the aggregate, with China positioned to emerge as the foremost nuclear power producer before 2030. Concurrently, advanced economies have witnessed a notable 10% increase in their nuclear power capacity. This augmentation is attributed to the commissioning of new facilities, which offset retirements, manifestly observed in nations such as the United States, France, the United Kingdom, and Canada. Furthermore, there is a marked escalation in annual global investment in nuclear power, surging from US$30 billion throughout the 2010s to surpass US$100 billion by 2030. This upward trajectory is robustly sustained, remaining above US$80 billion by 2050. In conclusion, the remarkable decline in the levelized cost of electricity (LCOE) for solar PV and wind power over the past decade has positioned renewable energy as a cost-competitive and viable alternative to fossil fuels in many regions. The over 80% reduction in LCOE for utility-scale solar PV from 2010 to 2022 exemplifies the economic feasibility of renewables. Concurrently, the steady growth in renewable energy capacity, spearheaded by solar and wind energy, underscores their critical role in the global energy transition. With renewable electricity capacity surpassing 3300 GW in 2023 and accounting for over one-third of the global power mix, renewable energy is undeniably at the forefront of efforts to achieve a sustainable, low-carbon energy future. Declaration of conflicting interestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.FundingThe authors received no financial support for the research, authorship, and/or publication of this article.ORCID iDSassi Rekik https://orcid.org/0000-0001-5224-4152Supplemental materialSupplemental material for this article is available online.ReferencesAbbasi K, Jiao Z, Shahbaz M, et al. (2020) Asymmetric impact of renewable and non-renewable energy on economic growth in Pakistan: New evidence from a nonlinear analysis. Energy Exploration & Exploitation 38(5): 1946–1967. Crossref. Web of Science.Abdelsalam E, Almomani F, Azzam A, et al. (2024) Synergistic energy solutions: Solar chimney and nuclear power plant integration for sustainable green hydrogen, electricity, and water production. Process Safety and Environmental Protection 186: 756–772. Crossref. Web of Science.Addo EK, Kabo-bah AT, Diawuo FA, et al. (2023) The role of nuclear energy in reducing greenhouse gas (GHG) emissions and energy security: A systematic review. International Journal of Energy Research 2023(1): 8823507.Aghahosseini A, Solomon AA, Breyer C, et al. (2023) Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Applied Energy 331: 120401. Crossref. Web of Science.Ake SC, Arango FO, Ruiz RSG (2024) Possible paths for Mexico’s electricity system in the clean energy transition. Utilities Policy 87: 101716. Crossref. Web of Science.Aktekin M, Genç MS, Azgın ST, et al. (2024) Assessment of techno-economic analyzes of grid-connected nuclear and PV/wind/battery/hydrogen renewable hybrid system for sustainable and clean energy production in Mersin-Türkiye. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B 190: 340–353. Crossref. Web of Science.Alam F, Sarkar R, Chowdhury H (2019) Nuclear power plants in emerging economies and human resource development: A review. Energy Procedia 160: 3–10. Crossref.Ali M, Samour A, Soomro SA, et al. (2024) A step towards a sustainable environment in top-10 nuclear energy consumer countries: The role of financial globalization and nuclear energy. Nuclear Engineering and Technology 103142: 103142.Arvanitidis AI, Agarwal V, Alamaniotis M (2023) Nuclear-driven integrated energy systems: A state-of-the-art review. Energies 16(11): 4293. Crossref. Web of Science.Asif M, Solomon B, Adulugba C (2024) Prospects of nuclear power in a sustainable energy transition. Arabian Journal for Science and Engineering: 1–11. Crossref. Web of Science.Aunedi M, Al Kindi AA, Pantaleo AM, et al. (2023) System-driven design of flexible nuclear power plant configurations with thermal energy storage. Energy Conversion and Management 291: 117257. Crossref. Web of Science.Bhattacharya S, Banerjee R, Ramadesigan V, et al. (2024) Bending the emission curve—The role of renewables and nuclear power in achieving a net-zero power system in India. Renewable and Sustainable Energy Reviews 189: 113954. Crossref. Web of Science.Bhattacharyya R, El-Emam RS, Khalid F (2023) Climate action for the shipping industry: Some perspectives on the role of nuclear power in maritime decarbonization. E-Prime-Advances in Electrical Engineering, Electronics and Energy 4(2023): 100132. Crossref.Bórawski P, Bełdycka-Bórawska A, Klepacki B, et al. (2024) Changes in gross nuclear electricity production in the European union. Energies 17(14): 3554. Crossref. Web of Science.Budnitz RJ, Rogner HH, Shihab-Eldin A (2018) Expansion of nuclear power technology to new countries–SMRs, safety culture issues, and the need for an improved international safety regime. Energy Policy 119: 535–544. Crossref. Web of Science.Caciuffo R, Fazio C, Guet C (2020) Generation-IV nuclear reactor systems. EPJ Web of Conferences 246: 00011. Crossref.Cai ZB, Li ZY, Yin MG, et al. (2020) A review of fretting study on nuclear power equipment. Tribology International 144: 106095. Crossref. Web of Science.Chapman NA (1992) Natural radioactivity and radioactive waste disposal. Journal of Volcanology and Geothermal Research 50(1–2): 197–206. Crossref. Web of Science.Chen CC (2024) Comparative impacts of energy sources on environmental quality: A five-decade analysis of Germany’s Energiewende. Energy Reports 11: 3550–3561. Crossref. Web of Science.Cramer C, Lacivita B, Laws J, et al. (2023) What will it take for nuclear power to meet the climate challenge? Columbus, Atlanta, Boston, Houston, Toronto: McKinsey & Company. https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/what-will-it-take-for-nuclear-power-to-meet-the-climate-challenge.Dafnomilis I, den Elzen M, Van Vuuren DP (2023) Achieving net-zero emissions targets: An analysis of long- term scenarios using an integrated assessment model. Annals of the New York Academy of Sciences 1522(1): 98–108. Crossref. PubMed. Web of Science.Decker D, Rauhut K (2021) Incentivizing good governance beyond regulatory minimums: The civil nuclear sector. Journal of Critical Infrastructure Policy 2(2): 19–43. Crossref.Deng D, Zhang L, Dong M, et al. (2020) Radioactive waste: A review. Water Environment Research: A Research Publication of the Water Environment Federation 92(10): 1818–1825. Crossref. PubMed. Web of Science.Denning R, Mubayi V (2016) Insights into the societal risk of nuclear power plant accidents. Risk Analysis 37(1): 160–172. Crossref. PubMed. Web of Science.Dixon B, Hoffman E, Feng B, et al. (2020) Reassessing methods to close the nuclear fuel cycle. Annals of Nuclear Energy 147: 107652. Crossref. Web of Science.Dungan K, Gregg RWH, Morris K, et al. (2021) Assessment of the disposability of radioactive waste inventories for a range of nuclear fuel cycles: Inventory and evolution over time. Energy 221: 119826. Crossref. Web of Science.El-Emam RS, Subki MH (2021) Small modular reactors for nuclear-renewable synergies: Prospects and impediments. International Journal of Energy Research 45(11): 16995–17004. Crossref. Web of Science.El Hafdaoui H, Khallaayoun A, Ouazzani K. (2024) Long-term low carbon strategy of Morocco: A review of future scenarios and energy measures. Results in Engineering 21: 101724. Crossref. Web of Science.Englert M, Pistner C (2023) Technological readiness of alternative reactor concepts. Safety of Nuclear Waste Disposal 2: 209–209. Crossref.Espín J, Estrada S, Benítez D, et al. (2023) A hybrid sliding mode controller approach for level control in the nuclear power plant steam generators. Alexandria Engineering Journal 64: 627–644. Crossref. Web of Science.European Economy Discussion Papers (EEDP) (2023) The development of renewable energy in the electricity market. Available at: https://economy-finance.ec.europa.eu/ecfin-publications_en.Fälth HE, Atsmon D, Reichenberg L, et al. (2021) MENA compared to Europe: The influence of land use, nuclear power, and transmission expansion on renewable electricity system costs. Energy Strategy Reviews 33: 100590. Crossref. Web of Science.Fernández-Arias P, Vergara D, Antón-Sancho Á (2023) Global review of international nuclear waste management. Energies 16(17): 6215. Crossref. Web of Science.Fragkos P, Van Soest HL, Schaeffer R, et al. (2021) Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States. Energy 216: 119385. Crossref. Web of Science.Frilingou N, Xexakis G, Koasidis K, et al. (2023) Navigating through an energy crisis: Challenges and progress towards electricity decarbonisation, reliability, and affordability in Italy. Energy Research & Social Science 96: 102934. Crossref. Web of Science.Grambow B (2022) Mini review of research requirements for radioactive waste management including disposal. Frontiers in Nuclear Engineering 1: 1052428. Crossref.Guidi G, Violante AC, De Iuliis S (2023) Environmental impact of electricity generation technologies: A comparison between conventional, nuclear, and renewable technologies. Energies 16(23): 7847. Crossref. PubMed. Web of Science.Gungor G, Sari R (2022) Nuclear power and climate policy integration in developed and developing countries. Renewable and Sustainable Energy Reviews 169: 112839. Crossref. Web of Science.Halkos G, Zisiadou A (2023) Energy crisis risk mitigation through nuclear power and RES as alternative solutions towards self-sufficiency. Journal of Risk and Financial Management 16(1): 45. Crossref. Web of Science.Haneklaus N, Qvist S, Gładysz P, et al. (2023) Why coal-fired power plants should get nuclear-ready. Energy 280: 128169. Crossref. Web of Science.Hickey SM, Malkawi S, Khalil A (2021) Nuclear power in the Middle East: Financing and geopolitics in the state nuclear power programs of Turkey, Egypt, Jordan and the United Arab Emirates. Energy Research & Social Science 74: 101961. Crossref. Web of Science.Ho M, Obbard E, Burr PA, et al. (2019) A review on the development of nuclear power reactors. Energy Procedia 160: 459–466. Crossref.Högberg L (2013) Root causes and impacts of severe accidents at large nuclear power plants. AMBIO 42(3): 267–284. Crossref. PubMed. Web of Science.Hunter CA, Penev MM, Reznicek EP, et al. (2021) Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids. Joule 5(8): 2077–2101. Crossref. Web of Science.Ichord RF Jr (2022) Nuclear energy and global energy security in the new tripolar world order. Available at: https://www.atlanticcouncil.org/blogs/energysource/nuclear-energy-and-global-energy-security-in-the-new-tripolar-world-order/.International Energy Agency (IEA) (2019) Nuclear power in a clean energy system, OECD Publishing, Paris. Available at: Crossref.International Energy Agency (IEA) (2022) Nuclear power and secure energy transitions, IEA, Paris. Available at: https://www.iea.org/reports/nuclearpower-and-secure-energy-transitions.Islam MM, Shahbaz M, Samargandi N (2024) The nexus between Russian uranium exports and US nuclear-energy consumption: Do the spillover effects of geopolitical risks matter? Energy 293: 130481. Crossref. Web of Science.Islam MS, Roy S, Alfee SL, et al. (2023) An empirical study of the risk-benefit perceptions between the nuclear and non-nuclear groups towards the nuclear power plant in Bangladesh. Nuclear Engineering and Technology 55(12): 4617–4627. Crossref. Web of Science.Jenkins JD, Zhou Z, Ponciroli R, et al. (2018) The benefits of nuclear flexibility in power system operations with renewable energy. Applied Energy 222: 872–884. Crossref. Web of Science.Jewell J, Ates SA (2015) Introducing nuclear power in Turkey: A historic state strategy and future prospects. Energy Research & Social Science 10: 273–282. Crossref. Web of Science.Jewell J, Vetier M, Garcia-Cabrera D (2019) The international technological nuclear cooperation landscape: A new dataset and network analysis. Energy Policy 128: 838–852. Crossref. Web of Science.Jin B, Bae Y (2023) Prospective research trend analysis on zero-energy building (ZEB): An artificial intelligence approach. Sustainability 15(18): 13577. Crossref. Web of Science.Kanugrahan SP, Hakam DF (2023) Long-term scenarios of Indonesia power sector to achieve nationally determined contribution (NDC) 2060. Energies 16(12): 4719. Crossref. Web of Science.Khaleel M, Yusupov Z, Guneser M, et al. (2024) Towards hydrogen sector investments for achieving sustainable electricity generation. Journal of Solar Energy and Sustainable Development 13(1): 71–96. Crossref.Khalid F, Bicer Y (2019) Energy and exergy analyses of a hybrid small modular reactor and wind turbine system for trigeneration. Energy Science & Engineering 7(6): 2336–2350. Crossref. Web of Science.Khan SU-D, Khan SU-D, Haider S, et al. (2017) Development and techno-economic analysis of small modular nuclear reactor and desalination system across Middle East and North Africa region. Desalination 406: 51–59. Crossref. Web of Science.Kharitonov VV, Semenova DY (2023) On the economic efficiency of nuclear power digitization under the conditions of global energy transition. Studies on Russian Economic Development 34(2): 221–230. Crossref.Kim P, Yasmine H, Yim MS, et al. (2024) Challenges in nuclear energy adoption: Why nuclear energy newcomer countries put nuclear power programs on hold? Nuclear Engineering and Technology 56(4): 1234–1243. Crossref. Web of Science.Kosai S, Unesaki H (2024) Nuclear power, resilience, and energy security under a vulnerability-based approach. Cleaner Energy Systems 7: 100107. Crossref.Kröger W, Sornette D, Ayoub A (2020) Towards safer and more sustainable ways for exploiting nuclear power. World Journal of Nuclear Science and Technology 10(3): 91–115. Crossref.Krūmiņš J, Kļaviņš M (2023) Investigating the potential of nuclear energy in achieving a carbon-free energy future. Energies 16(9): 3612. Crossref. Web of Science.Kwasi S, Cilliers J, Yeboua K, et al. (2025) A developing country’s perspective on race to sustainability: Sustainability for countries with weak economic performance—Case study: Egypt’s challenge and opportunities to 2050. In: The Sustainability Handbook, Volume 1. Elsevier, 511–569. Crossref.Kyne D, Bolin B (2016) Emerging environmental justice issues in nuclear power and radioactive contamination. International Journal of Environmental Research and Public Health 13: 00. Crossref. Web of Science.Lau HC, Tsai SC (2023) Global decarbonization: Current status and what it will take to achieve net zero by 2050. Energies 16(23): 7800. Crossref. Web of Science.Lee JI (2024) Review of small modular reactors: Challenges in safety and economy to success. Korean Journal of Chemical Engineering 41: 2761–2780. Crossref. Web of Science.Li N, Brossard D, Anderson AA, et al. (2016) How do policymakers and think tank stakeholders prioritize the risks of the nuclear fuel cycle? A semantic network analysis. Journal of Risk Research 21(5): 599–621. Crossref. Web of Science.Li N, Brossard D, Su LYF, et al. (2015) Policy decision-making, public involvement and nuclear energy: What do expert stakeholders think and why? Journal of Responsible Innovation 2(3): 266–279. Crossref.Lin B, Xie Y (2022) Analysis on operational efficiency and its influencing factors of China’s nuclear power plants. Energy 261: 125211. Crossref. Web of Science.Liu L, Guo H, Dai L, et al. (2023) The role of nuclear energy in the carbon neutrality goal. Progress in Nuclear Energy 162: 104772. Crossref. Web of Science.Makarov V, Kaplin M, Perov M, et al. (2023) Optimization of coal products supply for the power industry and the country’s economy. In: Studies in Systems, Decision and Control, Cham: Springer Nature Switzerland, pp.87–98.Markard J, Bento N, Kittner N, et al. (2020) Destined for decline? Examining nuclear energy from a technological innovation systems perspective Energy Research & Social Science 67: 101512. Crossref. Web of Science.Marzouk OA (2024) Expectations for the role of hydrogen and its derivatives in different sectors through analysis of the four energy scenarios: IEA-STEPS, IEA-NZE, IRENA- PES, and IRENA-1.5°C. Energies 17(3): 46. Crossref. Web of Science.Mason-Renton SA, Luginaah I (2019) Lasting impacts and perceived inequities: Community reappraisal of the siting of a regional biosolids processing facility in rural Ontario. Journal of Risk Research 22(8): 1044–1061. Crossref. Web of Science.Mathew MD (2022) Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy 143: 104080. Crossref. Web of Science.Mendelevitch R, Kemfert C, Oei PY, et al. (2018) The electricity mix in the European low-carbon transformation: Coal, nuclear, and renewables. In: Energiewende “Made in Germany”. Cham: Springer International Publishing, 241–282. Crossref.Moon HS, Song YH, Lee JW, et al. (2024) Implementation cost of net zero electricity system: Analysis based on Korean national target. Energy Policy 188: 114095. Crossref. Web of Science.Murphy C, Cole W, Bistline J, et al. (2023) Nuclear power’s future role in a decarbonized US electricity system (No. NREL/TP-6A20-84451). National Renewable Energy Laboratory (NREL), Golden, CO (United States).Nassar YF, El-Khozondar HJ, El-Osta W, et al. (2024) Carbon footprint and energy life cycle assessment of wind energy industry in Libya. Energy Conversion and Management 300: 117846. Crossref. Web of Science.Nian V, Hari MP (2017) Incentivizing the adoption of nuclear and renewable energy in Southeast Asia. Energy Procedia 105: 3683–3689. Crossref.Nicolau AS, Cabral Pinheiro VH, Schirru R, et al. (2023) Deep neural networks for estimation of temperature values for thermal ageing evaluation of nuclear power plant equipment. Progress in Nuclear Energy 156: 104542. Crossref. Web of Science.Nilsuwankosit S (2017) Report on feasibility study for radiation alarming data collection from containers at Laem Cha Bang International Sea Port, Thailand. Volume 4: Nuclear Safety, Security, Non-Proliferation and Cyber Security; Risk Management. American Society of Mechanical Engineers.Nkosi NP, Dikgang J (2021) South African attitudes about nuclear power: The case of the nuclear energy expansion. International Journal of Energy Economics and Policy 11(5): 138–146. Crossref.Nnabuife SG, Oko E, Kuang B, et al. (2023) The prospects of hydrogen in achieving net zero emissions by 2050: A critical review. Sustainable Chemistry for Climate Action 2: 100024. Crossref. Web of Science.Nuclear Energy Agency (NEA) (2015) Nuclear energy: Combating climate change. Available at: https://www.oecd-nea.org/jcms/pl_14914.Obekpa HO, Alola AA (2023) Asymmetric response of energy efficiency to research and development spending in renewables and nuclear energy usage in the United States. Progress in Nuclear Energy 156: 104522. Crossref. Web of Science.Orikpete OF, Ewim DRE (2024) Interplay of human factors and safety culture in nuclear safety for enhanced organisational and individual performance: A comprehensive review. Nuclear Engineering and Design 416: 112797. Crossref. Web of Science.Oxford Institute for Energy Studies (OIES) (2024) Nuclear energy in the global energy landscape: Advancing sustainability and ensuring energy security? Available at: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2024/02/OEF-139-.pdf.Pan B, Adebayo TS, Ibrahim RL, et al. (2023) Does nuclear energy consumption mitigate carbon emissions in leading countries by nuclear power consumption? Evidence from quantile causality approach Energy & Environment 34(7): 2521–2543. Crossref. Web of Science.Pinho BE, Oliva JDJR, Maia Y L (2024) An approach for evaluation of the spent nuclear fuel management strategy for Brazilian nuclear power plants based on multi-criteria decision-making methodology. Nuclear Engineering and Design 424: 113186. Crossref. Web of Science.Pioro I, Duffey RB, Kirillov PL, et al. (2019) Current status and future developments in nuclear-power industry of the world. Journal of Nuclear Engineering and Radiation Science 5(2): 024001. Crossref.Poinssot C, Bourg S, Boullis B (2016) Improving the nuclear energy sustainability by decreasing its environmental footprint. Guidelines from life cycle assessment simulations. Progress in Nuclear Energy 92: 234–241. Crossref. Web of Science.Price J, Keppo I, Dodds PE (2023) The role of new nuclear power in the UK’s net-zero emissions energy system. Energy 262: 125450. Crossref. Web of Science.Ragosa G, Watson J, Grubb M (2024) The political economy of electricity system resource adequacy and renewable energy integration: A comparative study of Britain, Italy and California. Energy Research & Social Science 107: 103335. Crossref. PubMed. Web of Science.Raj AX (2023) Human reliability design—an approach for nuclear power plants in India. In: Risk, Reliability and Safety Engineering. Singapore: Springer Nature Singapore, 167–186.Ram Mohan MP, Namboodhiry SK (2020) An exploration of public risk perception and governmental engagement of nuclear energy in India. Journal of Public Affairs 20(3): e2086. Crossref. Web of Science.Rekik S (2024) Optimizing green hydrogen strategies in Tunisia: A combined SWOT-MCDM approach. Scientific African 26: e02438. Crossref. Web of Science.Rekik S, El Alimi S (2023a) Land suitability mapping for large-scale solar PV farms in Tunisia using GIS-based MCDM approach. In: 2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE), pp.1–5: IEEE.Rekik S, El Alimi S (2023b) Wind site selection using GIS and MCDM approach under fuzzy environment: A case of Tunisia. In: 2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE), pp.1–5: IEEE.Rekik S, El Alimi S (2024a) Prioritizing sustainable renewable energy systems in Tunisia: An integrated approach using hybrid multi-criteria decision analysis. Energy Exploration & Exploitation 42(3): 1047–1076. Crossref. Web of Science.Rekik S, El Alimi S (2024b) Unlocking renewable energy potential: A case study of solar and wind site selection in the Kasserine region, central-western Tunisia. Energy Science & Engineering 12(3): 771–792. Crossref. Web of Science.Rekik S, El Alimi S (2024c) A spatial perspective on renewable energy optimization: Case study of southern Tunisia using GIS and multicriteria decision making. Energy Exploration & Exploitation 42(1): 265–291. Crossref. Web of Science.Rekik S, El Alimi S (2024d) A GIS based MCDM modelling approach for evaluating large-scale solar PV installation in Tunisia. Energy Reports 11: 580–596. Crossref. Web of Science.Rekik S, El Alimi S (2024e) A spatial ranking of optimal sites for solar-driven green hydrogen production using GIS and multi-criteria decision-making approach: A case of Tunisia. Energy Exploration & Exploitation 42(6): 2150–2190. Crossref. Web of Science.Ren Y, Li G, Wang H, et al. (2024) China’s zero-coal power system future. International Journal of Electrical Power & Energy Systems 156: 109748. Crossref. Web of Science.Ruhnau O, Stiewe C, Muessel J, et al. (2023) Natural gas savings in Germany during the 2022 energy crisis. Nature Energy 8(6): 621–628. Crossref. Web of Science.Sadiq M, Shinwari R, Wen F, et al. (2023) Do globalization and nuclear energy intensify the environmental costs in top nuclear energy-consuming countries? Progress in Nuclear Energy 156: 104533. Crossref. Web of Science.Sadiq M, Wen F, Dagestani AA (2022) Environmental footprint impacts of nuclear energy consumption: The role of environmental technology and globalization in ten largest ecological footprint countries. Nuclear Engineering and Technology 54(10): 3672–3681. Crossref. Web of Science.Salam MA, Khan SA (2018) Transition towards sustainable energy production – A review of the progress for solar energy in Saudi Arabia. Energy Exploration & Exploitation 36(1): 3–27. Crossref. Web of Science.Sančanin B, Penjišević A (2023) Safe management of medical radiological waste. MEDIS - International Journal of Medical Sciences and Research 2(2): 7–13. Crossref.Temiz M, Dincer I (2021) Enhancement of a nuclear power plant with a renewable based multigenerational energy system. International Journal of Energy Research 45(8): 12396–12412. Crossref. Web of Science.Therme C (2023) French nuclear policy towards Iran: From the Shah to the Islamic Republic. Diplomacy & Statecraft 34(1): 117–139. Crossref. Web of Science.Utami I, Riski MA, Hartanto DR (2022) Nuclear power plants technology to realize net zero emission 2060. International Journal of Business Management and Technology 6(1): 158–162.Vujić J, Bergmann RM, Škoda R, et al. (2012) Small modular reactors: Simpler, safer, cheaper? Energy 45(1): 288–295. Crossref. Web of Science.Wagner F (2021) CO2 Emissions of nuclear power and renewable energies: A statistical analysis of European and global data. The European Physical Journal Plus 136(5): 62. Crossref. Web of Science.Wang Z, He Y, Duan Z, et al. (2023) Experimental study on transient flow characteristics in an equal-height-difference passive heat removal system for ocean nuclear power plants. International Journal of Heat and Mass Transfer 208: 124043. Crossref. Web of Science.Wheatley S, Sovacool B, Sornette D (2016) Of disasters and dragon kings: A statistical analysis of nuclear power incidents and accidents. Risk Analysis 37(1): 99–115. Crossref. PubMed. Web of Science.Wisnubroto DS, Sunaryo GR, Susilo YSB, et al. (2023) Indonesia’s experimental power reactor program (RDE). Nuclear Engineering and Design 404: 112201. Crossref. Web of Science.Yamagata H (2024) Public opinion on nuclear power plants in Japan, the United Kingdom, and the United States of America: A prescription for peculiar Japan. Energy Policy 185: 113939. Crossref. Web of Science.Yang X, Xue Y, Cai B (2024) Pathway planning of nuclear power development incorporating assessment of nuclear event risk. Journal of Modern Power Systems and Clean Energy 12(2): 500–513. Crossref. Web of Science.Zhan L, Bo Y, Lin T, et al. (2021) Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews 34: 100630. Crossref. Web of Science.Zhang S, Liu J, Liu X (2022) Comparing the environmental impacts of nuclear and renewable energy in top 10 nuclear- generating countries: Evidence from STIRPAT model. Environmental Science and Pollution Research 30(11): 31791–31805. Crossref. Web of Science.Zheng S, Liu H, Guan W, et al. (2024) How do nuclear energy and stringent environmental policies contribute to achieving sustainable development targets? Nuclear Engineering and Technology 56(10): 3983–3992. Crossref. Web of Science.Zimmermann F, Keles D (2023) State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects. Energy Policy 173: 113403. Crossref. Web of Science.

Energy & Economics
Mercosur and European Union agreement flag

Economic integration and convergence in globalization: An analysis of the relations between Mercosur, the Pacific Alliance and the European Union

by Giuseppe Ciccone , Davide Galletti

Abstract Globalization has posed significant challenges for Latin American countries, prompting them to rethink their economic integration models. Mercosur and the Pacific Alliance, the two main regional blocs, have faced processes of economic and political convergence, albeit with different approaches: Mercosur, oriented towards protectionism, and the Pacific Alliance, which is committed to trade liberalization. In this context, the European Union emerges as a key player with which both blocs have sought to strengthen their economic relations, through strategic agreements such as the one signed in 2019, the Mercosur-EU free trade agreement. The article examines the dynamics of economic integration in Latin America, analyzing the structural divergences between the blocs and their capacity to face global challenges. In particular, it delves into the implications of the Mercosur-EU agreement, with special attention to economic impacts, sectoral cooperation opportunities and environmental challenges. The research also includes a case study on the implementation of the agreement and future prospects, complemented by an interview with the Consul of Uruguay to analyze the diplomatic position and prospects for the development of relations between Latin America and the European Union. The objective of this work is to explore how economic integration models can contribute to face global challenges, promote sustainable development and strengthen Latin America's competitiveness in the global scenario Introduction Global Context of Cooperation Between the European Union and Latin America Future cooperation between the European Union (EU) and the main Latin American trade blocs — Mercosur and the Pacific Alliance — is expected to focus on key areas such as sustainability, digitalization, and technological innovation. These sectors are essential for modernizing the involved economies and building a long-term partnership capable of addressing the economic, environmental, and geopolitical challenges of today’s global landscape. One of the main opportunities for cooperation lies in the circular economy. The EU promotes sustainable production and consumption models that aim to reduce waste and optimize resources. This approach paves the way for close collaboration with Latin American countries in waste management and reducing the environmental impact of industrial activities. The potential economic and labor impacts of this collaboration are significant, as it could create new opportunities for innovation and development in strategic sectors. At the same time, digitalization is emerging as a key pillar for the economic transformation of both regions. The EU’s Digital Alliance, for example, aims to strengthen Latin American economies by promoting connectivity, the development of digital skills, and the creation of new technological ecosystems. This effort also includes social inclusion initiatives, targeting vulnerable sectors such as informal workers and the elderly population, to reduce the digital divide and foster social inclusion. Another area of cooperation is maritime transport. The EU intends to invest in advanced and sustainable port infrastructure to improve operational efficiency and reduce the environmental impact of port activities. This initiative aligns with global sustainability goals and the EU’s broader strategy to promote environmentally responsible trade practices. However, cooperation between the EU and Latin American trade blocs also faces challenges. While the Pacific Alliance appears more inclined toward adopting advanced technologies, Mercosur faces significant structural reforms to close the technological gap among its members. Despite these hurdles, the EU is committed to supporting both regions, strengthening its role as an economic and political partner, and promoting a development model that integrates sustainability and inclusiveness. In this context, digitalization, economic modernization, and infrastructure diversification emerge as key elements to address global challenges. These factors are essential for promoting fair and inclusive development in both regions, creating a favorable environment for innovation and sustainable economic growth. The European Union considers Latin America as a strategic partner not only because of its natural resources but also due to shared values, such as the fight against climate change. Within this framework, the EU’s Green Deal and the environmental diplomacy play a crucial role in supporting ecological transition in the region, with a particular focus on renewable energy, the protection of the Amazon, and sustainable agricultural practices. Nevertheless, challenges remain, including the strong influence of traditional economic sectors like agribusiness and limited institutional capacity in some countries. Despite these issues, the EU is working to encourage the adoption of strict environmental standards through investments in sustainable projects and clean technologies, helping to reduce deforestation and improve biodiversity. The cooperation with the Pacific Alliance is particularly strong due to the region’s openness to sustainability, whereas Mercosur faces internal obstacles such as regulatory fragmentation and coordination difficulties among its members. Still, the EU continues to support initiatives in renewable energy, energy efficiency, and the bioeconomy, creating important economic opportunities for the region. Rising geopolitical competition, especially with China and the United States, is pushing the EU to strengthen its ties with Latin America by backing initiatives like the Global Gateway, which aims to promote sustainable and transparent infrastructure. Programs like “Horizon Europe” support scientific development in the region, while initiatives such as Erasmus+ encourage cultural exchange and the training of a new generation of professionals. The EU stands out for its integrated approach, aiming to promote a development model that combines economic growth, social inclusion, and environmental protection—seeking to overcome political and economic barriers and foster effective and mutually beneficial cooperation between the two regions. The main challenge remains translating these ambitions into concrete actions. The adoption of shared standards and the reduction of non-tariff barriers will be key elements in achieving fruitful cooperation. Despite the difficulties, EU–Latin America cooperation has the potential to lead the future toward sustainable and inclusive development, with positive effects on global policy, the ecological transition, and international trade. Methodology The methodology used in the preparation of this article combined extensive documentary research with the collection of primary data through direct interviews. First, documentary research served as the main foundation for analyzing the issues discussed, such as the environmental impacts and diplomatic challenges related to the Association Agreement between the European Union and Mercosur. To that end, official sources were consulted, including documents from the European Commission and reports from the European Parliament, which provide detailed data and analyses on the trade, environmental, and social aspects of the agreement. This phase of the research included a review of institutional reports, political resolutions, and other public documents available online, offering a comprehensive view of regulatory developments and the political positions adopted by European institutions and Mercosur countries. In addition to documentary research, a distinctive element of this work was an interview conducted with the General Consul of Uruguay in Spain, who provided a direct diplomatic perspective on the topic. The interview aimed to gather insights and information on the agreement negotiations from Mercosur’s point of view, exploring the political dynamics and diplomatic challenges associated with the understanding between the two blocs. The topics addressed during the interview focused on how Mercosur perceives the agreement in relation to its economic and environmental priorities, and on the measures being taken to balance development and sustainability within the framework of European policies. Finally, the research methodology was enhanced through the triangulation of information obtained by comparing data from official EU sources with the insights gathered from the interview. This approach enabled the development of a balanced and comprehensive view of the topics discussed. The combination of qualitative methods allowed for an in-depth analysis of the challenges and opportunities arising from the Mercosur–EU Agreement, as well as its social, economic, and environmental implications at the international level. Development Inside the Agreement The free trade agreement between Mercosur and the European Union, signed in 2019 after more than twenty years of negotiations, stands as one of the most ambitious examples of interregional cooperation. This treaty, which aims to create one of the largest free trade areas in the world, involves nearly 770 million people and accounts for around 25% of global Gross Domestic Product (GDP). The significance of the agreement is heightened by the current geopolitical context, marked by a rise in protectionist policies and the growing influence of China, making it crucial to strengthen ties between the two regional blocs (European Commission, 2019).   Trade relations across both sides of the Atlantic are substantial. In the previous year, European exports to the four Mercosur countries amounted to €55.7 billion, while imports of goods totaled €53.8 billion. The roots of cooperation between the European Union and Mercosur go back to the 1990s, when the EU initiated a structured dialogue with Mercosur aimed at promoting trade liberalization, political dialogue, and cooperation in various sectors. The agreement signed in 2019 can be interpreted as a strategic response to increasing global protectionist pressures. However, the ratification process has been hindered by political disagreements, economic asymmetries, and concerns over potential environmental impacts, such as deforestation and pesticide use (López, 2020). The agreement has received support from several EU countries, including Germany, Spain, and Portugal, while others — such as France, Poland, and Ireland — have opposed it due to fears related to unfair competition and food safety. Specifically, the treaty could lead to increased imports of meat and other agricultural products from Mercosur, which raises concern among EU agricultural sectors. At the same time, Mercosur views the agreement as an opportunity to strengthen its international competitiveness and reduce its economic dependence on China and the United States (Pereira, 2021). The path to ratification, still ongoing, requires a lengthy legal process involving approvals by various national parliaments. If ratified, the agreement will help reduce tariffs and simplify customs procedures, benefiting strategic sectors such as industry, chemicals, and pharmaceuticals. However, ongoing disagreements among the involved countries continue to cast uncertainty over the future of the initiative (European Commission, 2019). The future of the free trade agreement between the European Union and Mercosur stands at a critical crossroads, facing the risk of a complete breakdown in negotiations or, alternatively, a "no-deal" scenario. However, between these two extreme outcomes, there are several intermediate solutions, which could include modifications to the treaty’s controversial points or even the possibility of granting a new mandate to the European Commission to renegotiate the agreement — either partially or entirely. Such modifications could lead to significant delays in the progress already made (Brito, 2021). The Portuguese presidency of the EU Council, which began on January 1, 2025, now faces a particularly complex situation as it attempts to steer the process toward a positive conclusion. Portuguese Foreign Minister Augusto Santos Silva has expressed his intent to accelerate the ratification process and promote the agreement’s entry into force. However, resistance from France, which fears negative impacts on its agricultural and livestock sectors, remains a major obstacle. Protests by French farmers, including demonstrations and road blockades, highlight internal difficulties within the European Union (Müller, 2020). Despite this opposition, the European Commission — backed by countries like Spain and Germany — continues to push for the agreement’s ratification, highlighting the enormous economic benefits for both parties. It is estimated that the agreement could result in a €15 billion increase in GDP for the European Union and €11.4 billion for the Mercosur countries. Moreover, the elimination of customs tariffs would boost European exports, particularly in sectors such as wine, alcoholic beverages, and dairy products. For the European Union, the agreement represents not only a strategic opportunity to expand trade with South America but also a mean to strengthen its economic security amid an unstable geopolitical context (European Commission, 2021). The deal is expected to create new commercial and employment opportunities with a positive impact on both regions’ economies. Particularly, it could attract sustainable investment into Mercosur, especially in high-tech sectors. Additionally, it would support the strengthening of supply chains and enhance the EU’s economic resilience, reinforcing strategic cooperation between the two regional blocs.   However, the success of the agreement will depend on both parties’ ability to overcome existing differences, address environmental and human rights concerns, and implement effective monitoring mechanisms. On Mercosur’s side, it will be necessary to undertake economic reforms to enhance competitiveness, stimulate innovation, and attract foreign investment. Meanwhile, the European Union will face the challenge of gradually reducing agricultural subsidies to ensure fair competition (Pereira, 2021). In summary, the free trade agreement between the European Union and Mercosur represents a significant opportunity to strengthen economic cooperation between two blocs with complementary economies: the EU, a global leader in the industrial sector, and Mercosur, one of the main exporters of agricultural raw materials. The agreement aims to increase bilateral trade and direct investment, particularly in the agricultural and industrial sectors, with important implications for the future of interregional cooperation and global trade. The Association Agreement between the EU and Mercosur has raised serious concerns of both environmental and diplomatic nature. While designed to strengthen economic and political ties between the two blocs, the agreement could have devastating environmental impacts, especially considering Mercosur’s heavy reliance on agricultural exports to the EU. Brazil, the leading exporter of products like soy, beef, and coffee, stands as a clear example of these issues. The demand for these products is directly linked to deforestation, with severe consequences for vital ecosystems such as the Amazon. Although deforestation in Brazil decreased by 50% in 2023 compared to the previous year, future projections remain worrisome. The access to European markets, guaranteed by the agreement, could accelerate land conversion and intensify pressure on natural resources. Some studies estimate that the agreement could lead to the conversion of between 560 and 1,730 km² of land — an impact that, although lower than the 13,235 km² of annual deforestation recorded in the Brazilian Amazon in 2021, remains significant (FAO, 2021). A crucial chapter of the agreement is the “Trade and Sustainable Development Chapter” (TSDC), which promotes cooperation between the EU and Mercosur on environmental issues and establishes a commitment to adhere to international climate agreements, such as the Paris Agreement. However, criticism of the TSDC focuses on the lack of binding enforcement mechanisms for environmental regulations and the absence of adequate sanctions, which limits the agreement’s ability to ensure compliance with environmental commitments. Despite the creation of a joint committee to monitor the implementation of the TSDC, its effectiveness is weakened by the lack of concrete punitive tools (European Commission, 2020). The European Commission also highlights the value that Mercosur can bring in terms of agricultural and fishery products to the European market. Some of these goods — such as soy, cocoa, and coffee — are items that EU member states cannot produce or only produce in minimal quantities. Others, such as beef, poultry, honey, and cheese, compete directly with European agricultural businesses. This has fueled rural anger, particularly among French, Polish, and Italian farmers, who accuse the EU of promoting unfair competition, given that South American producers are not subject to the same regulations as their European counterparts. Concerns about increasing deforestation and the weakening of environmental and social standards are among the primary fears expressed by environmental groups and certain EU member states. During Jair Bolsonaro’s presidency (2019–2022), environmental policies were significantly rolled back, exacerbating these concerns. However, the election of Luiz Inácio Lula da Silva has raised new hopes for a renewed commitment to environmental protection, although economic priorities may complicate the negotiation process (Doyle, 2023). Despite the criticisms, the agreement presents an opportunity to promote the sustainable management of natural resources, enhance transparency in production chains, and strengthen the enforcement of environmental laws in Mercosur countries. To achieve a positive and lasting impact, however, concrete commitment from both governments and the private sector will be essential, supported by effective monitoring mechanisms and enforceable sanctions. An innovative aspect of the agreement is the inclusion of clauses that mandate the end of illegal deforestation by 2030, with a monitoring system designed to ensure compliance with these rules. Although this commitment represents an important step forward, doubts remain about its enforcement and effective oversight — particularly regarding Brazil’s compliance, given its central role in deforestation. Additionally, the agreement stipulates that only “deforestation-free” products — such as soy, beef, palm oil, and cocoa — will be allowed to enter the EU market (European Commission, 2022). Concerns related to food safety and public health are equally relevant. The importation of beef from countries where the use of antibiotics and hormones is less regulated could compromise food safety in Europe, as highlighted by an audit conducted by the European Commission. Some critics fear that the agreement may lower product quality standards and increase unfair competition for European farmers. Furthermore, there is concern that the deal could encourage industrial relocation to South America, resulting in job losses in Europe (OECD, 2021). Despite these challenges, the agreement represents a rare opportunity to strengthen interregional relations between the EU and Mercosur in the face of global challenges such as climate change and biodiversity protection. However, the success of the agreement will depend on the ability of both regions to effectively integrate economic interests with the need for social and environmental sustainability. It will be necessary to adopt strict measures to monitor the environmental and social impacts of the agreement, actively involve local communities in policymaking, and promote a development model that balances economic growth with sustainability. To further explore the issues affecting Mercosur and potential solutions for greater regional integration, we interviewed Ramiro Rodríguez Bausero, General Consul of Uruguay in Spain. During the conversation, Bausero shared his perspective on the economic and political challenges that face the bloc, as well as on the opportunities for cooperation with the Pacific Alliance and the policies needed to address emerging global problems such as climate change and food security. Below are some key excerpts from the interview, along with a commentary on how these insights contribute to a deeper understanding of the challenges and opportunities facing Mercosur in a global context. To better understand the issues influencing Mercosur, it is essential to examine the internal challenges and asymmetries among its members. According to Ramiro Rodríguez Bausero, General Consul of Uruguay in Spain, “Mercosur displays significant disparities in terms of size and level of development; there are evident inequalities between countries and regions, and these persist over time.” This observation highlights one of the core difficulties in achieving economic integration within the bloc: the economic disparities between its larger and smaller members. Resources and investments are unevenly distributed, and the inability to effectively manage these asymmetries hinders balanced growth, with larger countries often dominating the economic process. This concept is fundamental to understanding the structural limitations that constrain Mercosur’s development. Another crucial aspect is the influence of ideological orientation on the integration processes. Bausero notes that “within the bloc, different visions coexist, based on internal productive structures, and as governments change, their profiles evolve toward more or less protectionist/open policies, depending on the ideological orientation of each administration.” This phenomenon poses a major obstacle to strengthening Mercosur, as the swings between protectionist and open-market policies make it difficult to establish a coherent and long-term strategy. Ideological differences between governments further complicate the formation of a stable and strategic economic bloc. Nevertheless, despite internal challenges, there are significant opportunities for cooperation with other regional entities such as the Pacific Alliance. Bausero highlights that “strengthening ties between the two blocs presents several areas with the potential for cooperation, such as trade facilitation, reciprocal investment, physical integration, technological innovation, and the movement of people.” Although political divergences may hinder closer cooperation, these mutual areas of interest could reinforce regional integration, especially in fields like trade and technological innovation. On the environmental sustainability and climate change front, Bausero suggested that “Mercosur could implement more ambitious climate policies, promoting a transition to a low-carbon economy with measures that support renewable energy and encourage technological innovation in sustainable industries.” Adopting more advanced climate policies represents an opportunity for Mercosur to address global climate challenges. Given its significant influence over agricultural policies and natural resource management, the bloc could play a crucial role in driving the shift toward a green economy — responding to international pressure and improving its reputation as a responsible global actor. The trade potential of Mercosur, especially in the context of the agreement with the European Union, is another key issue. Bausero emphasized that “the benefits of the trade component of the Agreement show that many of the goods comprising Mercosur countries’ export offerings to the EU will receive preferential treatment in the European market.” This agreement could create new opportunities for economic growth among member countries, reducing their dependence on Asian markets — particularly China. However, internal challenges related to the agreement, especially concerning the agricultural sector, could hinder full implementation and require careful attention. Finally, reforming Mercosur has emerged as a relevant topic, with some countries, like Uruguay, advocating for a more flexible bloc. Bausero stated: “Some countries (such as Uruguay) have argued for the need to make the bloc more flexible, transforming it into a Free Trade Area (FTA), allowing each member to pursue its own international agenda, including negotiating agreements with third countries.” The proposal to transform Mercosur into a more flexible FTA reflects criticism of the bloc's rigidity. If implemented, such a reform could allow member states to adopt more individualized policies — but it also raises questions about the future of regional integration and the political and economic unity of the bloc. Another important area of development is digital cooperation and infrastructure. According to Bausero, “the so-called ‘Digital Mercosur’ is a cooperation project between the EU and Mercosur, aimed at reducing technological asymmetries and promoting common policies and strategies in the fields of the Information Society, e-commerce, and human resource training.” Digital cooperation could be one of the main drivers of growth for Mercosur, enabling member countries to overcome technological inequalities and access global markets. Digitalization and the integration of modern technologies are essential to enhancing regional competitiveness and developing an interconnected digital economy. Conclusions The free trade agreement between Mercosur and the European Union, signed in 2019, represents a significant step toward greater interregional economic integration, with the ambitious goal of creating one of the largest free trade areas in the world. However, its future remains uncertain and depends on a series of interrelated factors, including internal political divergences within the EU, environmental challenges, and economic inequalities among Mercosur members. These elements raise numerous questions and opportunities for critical reflection that could be explored in future research. First and foremost, one of the main issues to address is the environmental impact of the treaty. The "Trade and Sustainable Development Chapter" (TSDC), while establishing a commitment to international climate agreements, does not provide sufficiently binding mechanisms to ensure effective environmental protection. What is the role of trade policy in a context of growing urgency for environmental sustainability? To what extent can the current provisions halt deforestation and guarantee the sustainable use of natural resources, especially in countries like Brazil, where agricultural expansion is directly linked to ecosystem destruction? These questions could pave the way for deeper research into the monitoring and effectiveness of environmental policies within trade agreements. Another relevant issue is the question of economic asymmetries within Mercosur. The disparities among member countries, in terms of size and development level, pose a challenge to genuine economic integration. How can smaller Mercosur countries compete on equal footing with larger ones without compromising their competitiveness? Furthermore, how can it be ensured that the benefits of the agreement are more equitably distributed among the bloc's members? Answering these questions is crucial for implementing policies that promote balanced and inclusive development. The geopolitical context also plays a fundamental role. In a scenario where protectionist trends are on the rise and China's influence continues to grow, how might the agreement between the EU and Mercosur redefine trade and geopolitical relations between the two blocs? Could this agreement represent the beginning of a reorganization in global economic balances, reducing dependence on Asian markets and strengthening ties between Europe and Latin America? These questions invite a deeper analysis of the geopolitical implications of the treaty and its influence on global trade dynamics. Additionally, the proposal to reform Mercosur — advocating for greater flexibility by transforming it into a Free Trade Area (FTA) — raises important questions. How would such a reform affect the bloc’s political and economic cohesion? Would flexibility be the right approach to addressing internal differences, or could it instead lead to the fragmentation of Mercosur and undermine its ability to act as a unified player on the international stage? Finally, digital cooperation, particularly the "Digital Mercosur" project, could become one of the most promising areas of development. How could digitalization and technological cooperation between the EU and Mercosur help reduce technological disparities and promote the competitiveness of the Latin American bloc? Strengthening digital infrastructure could accelerate Mercosur’s economic growth and open new trade opportunities, but what political and technological challenges will arise in this digitalization process? In conclusion, the free trade agreement between the European Union and Mercosur represents a significant opportunity, but it also poses a range of challenges that require ongoing attention. The questions raised by this agreement— from environmental concerns and economic asymmetries to geopolitical dynamics and structural reforms within Mercosur — offer numerous starting points for future research. The ability of both regions to effectively integrate economic interests with the demands of social and environmental sustainability will be key to the long-term success and viability of the agreement. Bibliographic References Agenzia del Brasile. (2017, April 7). El MERCOSUR y la Alianza del Pacífico quieren expandir el comercio en América del Sur. https://www.gob.mx/cms/uploads/attachment/file/349593/DECLARACION_AP_MERCOSUR.pdfAlianza del Pacífico. (n.d.). El poder de la integración. https://alianzapacifico.net/en/Alianza del Pacífico. (n.d.). La Alianza del Pacífico y el Mercosur avanzan en materia de facilitación de comercio. https://alianzapacifico.net/alianza-del-pacifico-y-mercosur-avanzan-en-materia-de-facilitacion-de-comercio/Alianza del Pacífico. (n.d.). Mujeres de la Alianza del Pacífico y el Mercosur son capacitadas para la era digital. https://alianzapacifico.net/alianza-del-pacifico-y-mercosur-avanzan-en-materia-de-facilitacion-de-comercio/Avvenire. (2024, December 6). Acuerdo UE-MERCOSUR: ¿qué prevé? https://www.avvenire.it/economia/pagine/accordo-eu-mercosur-cosa-prevedeBaltensperger, M., & Dadush, U. (2019). The European Union-Mercosur Free Trade Agreement: Prospects and Risks. Bruegel Policy Contribution, No. 11. Brussels: Bruegel.Basco, A., Ramos, P., & Rozemberg, R. (2024). Going Green: A New Trade Agenda for Latin America and the Caribbean. Integration & Trade Journal, No. 49, mayo 2024. Banco Interamericano de Desarrollo.Bressan, R. N., & Luciano, B. T. (2018a). La Comunidad Andina en el siglo XXI: entre bolivarianos y la Alianza del Pacífico*. Revista de Sociología e Política, 26, 62–80.Bressan, R. N., & Luciano, B. T. (2018b). La Alianza del Pacífico como un actor regional. En E. Pastrana Buelvas & A. Ripoll (Eds.), La Alianza del Pacífico: atrapada en el péndulo del regionalismo e interregionalismo? (Vol. 1, 22 ed., pp. 173–186). Fundación Konrad Adenauer México.Bressan, R. N., & Borba Gonçalves, J. D. S. (2023). La convergencia entre la Alianza del Pacífico y el Mercosur: avances, estancamientos y desafíos contemporáneos. Política Latinoamericana, 14, 167–183. https:// doi.org/10.1111/lamp.12291Busso, A., & Zelicovich, J. (2016). El gobierno de Mauricio Macri y la integración regional: ¿del MERCOSUR a la Alianza del Pacífico? Coyuntura Austral, 7(37), 17–24.Clemente Batalla, I., López Burian, C., & Telias, D. (2015). *Uruguay y la Alianza del Pacífico: ¿repensar el modelo de inserción internacional? Cuadernos sobre Relaciones Internacionales, Regionalismo y Desarrollo, 10(19), 23–46.CELAC. (2018). La convergencia entre la Alianza del Pacífico y el MERCOSUR: enfrentar juntos un escenario mundial desafiante. http://hdl.handle. net/11362/43614Comisión Europea. (2019). Acuerdo de asociación entre la Unión Europea y el MERCOSUR. https://ec.europa. eu/info/food-farming-fisheries/sustainability/strategy-eu-2019-2024_enDaniels, C. (2015). The Pacific Alliance and Its Effect on Latin America: Must a Continental Divide be the Cost of a Pacific Alliance Success? Loyola of Los Angeles International and Comparative Law Review, 37(2), 153-189.El País. (2024, 5 de diciembre). Bruselas acelera para cerrar esta semana el acuerdo comercial con Mercosur a pesar del rechazo de Francia. https://elpais.com/ internacional/2024-12-05/la-comision-acelera-para-cerrar-el-acuerdo-comercial-con-mercosur-pese-al-rechazo-de-francia.htmlEuractiv. (2024, 6 de diciembre). Acuerdo UE-Mercosur: entre polémicas, oportunidades y protección del sector agrícola. https://euractiv.it/section/comercio-ed-economia-mondiale/news/accordo-ue-mercosur-tra-polemiche-opportunita-e-tutela-del-settore-agricolo/Euronews. (2024, 19 de noviembre). Acuerdo comercial UE-Mercosur: ¿quién ganaría y quién no? https://it.euronews.com/business/2024/11/19/accordo-commerciale-ue-mercosur-chi-ci-guadagnerebbe-e-chi-noFélix Peña. (2022). Asesor y miembro del grupo de asesoramiento del Programa Hemisférico de Comercio Internacional e Integración Regional en el IICA.Gallegos, J. (2021). Antagonismo, convergencia y letargo: la relación de la Alianza del Pacífico y el Mercosur. En S. C. Negro & L. Klein Vieira (Eds.), Mercosul 30 Años: Pasado, Presente y Futuro (pp. 199–218). https://www.researchgate.net/publication/354132133Gardini, G. L. (2023). La redefinición de la presencia de la UE en América Latina y el Caribe. Peter Lang.Ghiotto, L., & Echaide, J. (2019). Análisis del Acuerdo entre la Unión Europea y el Mercosur. PowerShift e.V., Berlín.Giacalone, R. (2022). Valores en la convergencia de la Unión Europea-Latinoamérica y Mercosur-Alianza del Pacífico: ¿los valores compartidos de Europa promueven la convergencia? De Europa, 5(1), 81-100.Le Monde. (2024, 16 de noviembre). UE-Mercosur: pourquoi les Français s'opposent à l'accord de libre-échangeLlairó, M. D. M. (2019). Los nuevos desafíos y ejes de poder de la integración latinoamericana: la dualidad MERCOSUR-Alianza del Pacífico (2010–2017). Anuario Latinoamericano – Ciencias Políticas y Relaciones Internacionales, 7, 111.Mercosur. (2021). XXVII Reunión Extraordinaria de la comisión administradora del Ace n. 35 Mercosur–Chile. https://documentos.mercosur.int/simfiles/docreuniones/88802_ACE35_2021_ACTA01_ES.pdfNicole Gorton & Elena Ianchovichina. (2021). Economistas en el Banco Mundial que trabajan en la eficiencia espacial de las redes comerciales en América Latina, evaluando el potencial para mejoras infraestructurales dentro de MERCOSUR y la Comunidad Andina.OECD. (2024). Disponible en. https://www.oecd.org.Palmieri, R., Amice, C., Amato, M., & Verneau, F. (2024). Beyond the Finish Line: Sustainability Hurdles in the EU–Mercosur Free Trade Agreement. Social Sciences, 13(362).Sanguinet, E. R., & Alvim, A. M. (2024). The Effects of the EU-MERCOSUR Agreement on Bilateral Trade: The Role of Brexit. International Economics and Economic Policy, 21, 227–249.Sekulić, T. (2020). The European Union and the Paradox of Enlargement: The Complex Accession of the Western Balkans. Berlín y Heidelberg: Springer Nature.Tales Henrique Nascimento Simoes. (2024). Doctorando en Geografía en la Universidad de São Paulo, Brasil, se ocupa de los desafíos geopolíticos y de integración de MERCOSUR, con particular atención a las dinámicas de conflicto y cooperación en Sudamérica. Velasco e Cruz, S. C. (2022). International Order? Inter-American Relations and Political Outlook for Latin America. En Contributions to International Relations. Cham: Springer.Zaldívar, P. M. (2024). La Relación Histórico-Cultural entre España y Latinoamérica: Clave para Potenciar la Política Exterior de la Unión Europea en América Latina. Universidad Autónoma de Madrid.Revista Política Internacional | Volumen VII Nro. 2 abril-junio de 2025. https://doi.org/10.5281/zenodo.15103813This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). The opinions and contents of the published documents are solely the responsibility of their authors.

Energy & Economics
Xi Jinping and Vladmir Putin at welcoming ceremony (2024)

Russia and China in the Era of Trade Wars and Sanctions

by Ivan Timofeev

Economic relations between Russia and China remain high. Beijing has become Moscow's most important trading partner, and in the context of Western sanctions, it has also become an alternative source of industrial and consumer goods, as well as the largest market for Russian energy and other raw materials. At the same time, external political factors may have a growing influence on Russian-Chinese economic relations. These include the trade war between China and the United States, a possible escalation of US sanctions against Russia, and the expansion of secondary sanctions by the European Union against Chinese companies. The trade war, in the form of increased import duties on imported goods, has become one of the calling cards of Donald Trump's second term in office. The executive order he issued on April 2, 2025, provided a detailed conceptual justification for such a policy. The main goal is the reindustrialisation of the United States through the return or transfer of industrial production to the territory of the US, as well as an equalization of the trade balance with foreign countries. The basic part of Trump's order concerned all countries throughout the world and assumes a tariff increase of 10%. It goes on to determine individual duties on the goods of more than 70 countries, with its own sets for each. China became one of the few countries which decided to mirror the tariff increases. This led to a short-lived and explosive exchange of increases in duties. While it was suspended by negotiations between the two countries in Geneva, it was not removed from the agenda. In the US trade war “against the whole world”, China remains a key target. This is determined by the high level of the US trade deficit in relations with China, which has persisted for more than 40 years. Apparently, it remained comfortable for the US until China made a noticeable leap in the field of industrial and technological development. Such a leap allowed China to gradually overcome its peripheral place in the global economy, displace American and other foreign goods from the domestic market, and occupy niches in foreign markets. Despite the critically important role of American components, patents and technological solutions in a number of industries, China has managed to reduce its dependence on them. The growing industrial and technological power of the PRC is becoming a a political problem for the US. It was clearly identified during the first term of Trump's presidency. Even then, the US pursued a course toward the technological containment of China. Despite the temporary respite in the trade war, US pressure on China will remain. The tariff policy may be supplemented by restrictive new measures (sanctions) in the field of telecommunications and other industries. During the new term of Donald Trump's presidency, the politicisation of issues that the Biden administration avoided putting at the forefront of US-Chinese relations began again. These include the problem of Hong Kong autonomy and the issue of ethnic minorities in the Xinjiang Uyghur Autonomous Region of China. Both issues received a high level of politicisation during Trump's first term. The US-China trade war has so far had little effect on Russian-Chinese relations. The increase in US tariffs has had virtually no effect on Russia. Russia is already facing a significant number of restrictive measures, and the volume of trade with the United States has been reduced to near zero since the start of Moscow’s Special Military Operation in 2022. However, Russia may feel the effects of the trade war. For example, the United States may require China to purchase American energy resources as a measure to correct the trade balance. Obviously, such a measure is unlikely to solve the imbalance. However, it has the potential to affect the volume of Russian oil supplies to China in one way or another. In addition, the trade war as a whole may affect oil prices downwards, which is also disadvantageous for Russia. On the other hand, Russia is a reliable supplier of energy resources for China, which will not politicise them. Even in the context of new aggravations of the trade war, China is unlikely to refuse Russian supplies. Another factor is US sanctions against Russia. After the start of Russian-American negotiations on Ukraine in 2025, Washington avoided using new sanctions, although all previously adopted restrictive measures and their legal mechanisms are in force. However, Donald Trump failed to carry out a diplomatic blitzkrieg and achieve a quick settlement. The negotiations have dragged on and may continue for a long time. If they fail, the United States is ready to escalate sanctions again. Existing legal mechanisms allow, for example, for an increase in the list of blocked persons, including in relation to Chinese companies cooperating with Russia. This practice was widely used by the Biden administration. It was Chinese companies that became the key target of US secondary sanctions targeting Russia. They fell under blocking financial sanctions for deliveries of industrial goods, electronics and other equipment to Russia. However, there was not a single large company among them. We were talking about small manufacturing companies or intermediary firms. At the same time, the Biden administration managed to significantly complicate payments between Russia and China through the threat of secondary sanctions. US Presidential Executive Order 14114 of December 22, 2023 threatened blocking sanctions against foreign financial institutions carrying out transactions in favour of the Russian military-industrial complex. In practice, such sanctions against Chinese financial institutions were practically not applied, except for the blocking of several Chinese payment agents in January 2025. However, the very threat of secondary sanctions forced Chinese banks to exercise a high level of caution in transactions with Russia. This problem has not yet been fully resolved. New legal mechanisms in the field of sanctions, which are being worked on in the United States, may also affect Russian-Chinese relations. We are talking about the bill introduced by US Senator Lindsey Graham and several other senators and members of congress. Their bill assumes that in the event of failure of negotiations with Russia on Ukraine, the US executive branch will receive the authority to impose 500% duties on countries purchasing Russian raw materials, including oil. China may be among them. This threat should hardly be exaggerated for now. The passage of the bill is not predetermined. Even if it is signed into law, the application of 500% tariffs against China will be an extremely difficult matter. Recent rounds of the trade war have shown that China is ready for retaliatory measures. However, the emergence of such a norm will in any case increase the risks for business and may negatively affect Russian suppliers of raw materials. Another factor is EU sanctions policy. Unlike the US, the EU continues to escalate sanctions against Russia despite the negotiations on Ukraine. Brussels is expanding the practice of secondary sanctions, which also affect Chinese companies. In the context of a deepening economic partnership between China and the EU, this factor seems significant. However, in reality, it will play a peripheral role. The EU's practice of secondary sanctions is still significantly more limited than the American one. It does not affect any significant Chinese companies. Problems may be created by the expansion of EU bans on the provision of financial messaging services for Russian banks—this will affect their relations with Chinese counterparties. But such bans stimulate the acceleration of the use of the Chinese CIPS payment system by Russians, which has the functionality of transmitting financial messages. Compared to the US, the EU policy factor remains secondary. First published in the Valdai Discussion Club.

Energy & Economics
Alternative or renewable energy financing program, financial concept : Green eco-friendly or sustainable energy symbols atop five coin stacks e.g a light bulb, a rechargeable battery, solar cell panel

The Success of Climate Change Performance Index in the Development of Environmental Investments: E-7 Countries

by Başak Özarslan Doğan

Abstract Climate change is considered to be one of the biggest problems acknowledged globally today. Therefore, the causes of climate change and solutions to this problem are frequently investigated. For this reason, the purpose of this study is to empirically examine whether the ‘Climate Change Performance Index’ (CCPI) is successful in increasing environmental investments for E-7 countries with the data for the period of 2008–2023. To achieve this aim, the Parks-Kmenta estimator was used as the econometric method in the study. The study findings provide strong evidence that increases in the climate change performance support environmental investments. High climate change performance directs governments and investors toward investing in this area; therefore, environmental investments tend to increase. The study also examined the effects of population growth, real GDP and inflation on environmental investments. Accordingly, it has been concluded that population growth and inflation negatively affect environmental investments, while GDP positively affects environmental investments. 1. Introduction There is a broad consensus that the main cause of climate change is human-based greenhouse gas emissions from non-renewable (i.e., fossil) fuels and improper land use. Accordingly, climate change may have serious negative consequences as well as significant macroeconomic outcomes. For example, an upward trend of temperatures, the rising sea levels, and extreme weather conditions can seriously disrupt the output and productivity (IMF, 2008a; Eyraud et al., 2013). Due to the global climate change, many countries today see environmental investments, especially renewable energy investments, as an important part of their growth strategies. Until recent years, the most important priority of many countries was an improvement in the economic growth figures. Still, the global climate change and the emergence of many related problems are now directing countries toward implementing policies which would be more sensitive to the environment and would ensure sustainable growth rather than just increase the growth figures. (Baştürk, 2024: 327). The orientation of various countries to these policies has led to an increase in environmental investments on a global scale. A relative rise of the share of environmental investments worldwide is not only a medium-term climate goal. It also brings many new concepts to the agenda, such as an increasing energy security, reduction of the negative impact of air pollution on health, and the possibility of finding new growth resources (Accenture, 2011; McKinsey, 2009; (OECD), 2011; PriceWaterhouseCoopers, 2008; Eyraud et al., 2013). Today, environmental investments have a significant share in energy and electricity production. According to the World Energy Outlook (2023), investments in environmentally friendly energies have increased by approximately 40% since 2020. The effort to reduce emissions is the key reason for this increase, but it is not the only reason. Economic reasons are also quite strong in preferring environmental energy technologies. For example, energy security is also fundamentally important in the increase in environmental investments. Especially in fuel-importing countries, industrial plans and the necessity to spread clean (i.e., renewable) energy jobs throughout the country are important factors (IEA WEO, 2023).  In economic literature, environmental investments are generally represented by renewable energy investments. Accordingly, Figure 1 below presents global renewable energy electricity production for 2000–2020. According to the data obtained from IRENA (2024) and Figure 1, the total electricity production has increased by approximately 2.4% since 2011, with renewable energy sources contributing 6.1% to this rate, while non-renewable energy sources contributed 1.3%. In 2022 alone, renewable electricity grew by 7.2% compared to 2021. Solar and wind energy provided the largest growth in renewable electricity since 2010, which reached 11.7% of the global electricity mix in 2022.   Figure 2 below presents renewable energy investments by technology between 2013 and 2022. As shown in Figure 2, photovoltaic solar. and terrestrial wind categories are dominating, accounting for 46% and 32% of the global renewable energy investment, respectively, during 2013–2022.   Economic growth supported by environmental investments is impacted by the type and number of energy used to increase the national output. Thus, both the environmental friendliness of the energy used and the rise in energy efficiency is bound to reduce carbon emissions related to energy use and encourage economic growth (Hussain and Dogan, 2021). In this context, in order to minimize emissions and ensure sustainable economic growth, renewable energy sources should be used instead of fossil resources in energy use. Increasing environmental investments on a global scale, especially a boost in renewable energy investments, is seen as a more comprehensive solution to the current global growth-development and environmental degradation balance. In this context, as a result of the latest Conference of the Parties held in Paris, namely, COP21, it was envisaged to make an agreement covering the processes after 2020, which is accepted as the end year of the Kyoto Protocol. On December 12, 2015, the Paris Agreement was adopted unanimously by the countries that are parties to the UN Framework Convention on Climate Change (Kaya, 2020). As a result of the Paris Agreement and the reports delivered by the Intergovernmental Climate Change Panels, international efforts to adapt to the action to combat climate change and global warming have increased, and awareness has been raised in this area (Irfan et al., 2021; Feng et al., 2022; Anser et al., 2020; Zhang et al., 2021; Huang et al., 2021; Fang, 2023). The rise in the demand for low-carbon energy sources in economies has been caused by environmental investments such as renewable energy investments. The countries that are party to the Paris Agreement, commit to the way to achieve efficient energy systems through the spread of renewable energy technologies throughout the country (Bashir et al., 2021; Fang, 2023). This study empirically examines the impact of the climate change performance on increasing environmental investments for E-7 countries. The climate change performance is expressed by the ‘Climate Change Performance Index’ (CCPI) developed by the German environmental and developmental organization Germanwatch. The index evaluates the climate protection performance of 63 developed and developing countries and the EU annually, and compares the data. Within this framework, CCPI seeks to increase clarity in international climate policies and practices, and enables a comparison of the progress achieved by various countries in their climate protection struggle. CCPI evaluates the performance of each country in four main categories: GHG Emissions (40% overall ranking), Renewable Energy (20%), Energy Use (20%), and Climate Policy (20%). In calculating this index, each category of GHG emissions, renewable energy, and energy use is measured by using four indicators. These are the Current Level, the Past Trend, the Current Level Well Below 2°C Compliance, and the Countries’ Well Below 2°C Compliance with the 2030 Target. The climate policy category is evaluated annually with a comprehensive survey in two ways: as the National Climate Policy and the International Climate Policy (https://ccpi.org/methodology/).  Figure 3 below shows the world map presenting the total results of the countries evaluated in CCPI 2025 and their overall performance, including the four main categories outlined above.   As it can be seen from Figure 3, no country appears strong enough to receive a ‘very high’ score across all categories. Moreover, although Denmark continues to be the highest-ranking country in the index, but it still does not perform well enough to receive a ‘very high’ score overall. On the other hand, India, Germany, the EU, and the G20 countries/regions will be among the highest-performing countries/regions in the 2024 index. When we look at Canada, South Korea, and Saudi Arabia, they are the worst-performing countries in the G20. On the other hand, it can be said that Türkiye, Poland, the USA, and Japan are the worst-performing countries in the overall ranking. The climate change performance index is an important criterion because it indicates whether the change and progress in combating climate change is occurring across all countries at an important level. The index is important in answering various questions for countries under discussion. These questions are expressed below:  • In which stage are the countries in the categories in which the index is calculated?• What policies should countries follow after seeing the stages in which they are in each category? • Which countries are setting an example by truly combating climate change? These questions also constitute the motivation for this study. The sample group for the study was selected as E-7 countries, which are called the Emerging Economies; this list consists of Türkiye, China, India, Russia, Brazil, Mexico, and Indonesia. The reason for selecting these particular countries is that they are undergoing a rapid development and transformation process, and are also believed to be influential in the future with their increasing share in the world trade volume, huge populations, and advances in technology. Besides that, when the relevant literature has been examined, studies that empirically address the relative ranking of the climate change performance appear to be quite limited. In particular, there are almost no studies evaluating the climate change performance index for the sample group considered. Therefore, it is thought that this study will be of great importance in filling this gap in the literature. The following section of the study, which aims to empirically examine whether the climate change performance is effective in developing environmental investments in E-7 countries, includes national and international selected literature review on the subject. Then, the model of the study and the variables chosen in this model are introduced. Then, the findings obtained in the study are shared, and the study ends with discussion and policy proposal. 2. Literature Review 2.1. Studies on environmental investment  The excessive use of fossil-based energy sources, considered non-renewable and dirty energy, along with industrialization, constitutes a large part of carbon emissions and is regarded as the main reason of climate change. Thus, countries have turned to renewable energy investments with the objective to minimize the reaction of climate change and global warming, by introducing technologies which are considered more environmentally friendly and cleaner. Global energy investments are estimated to exceed 3 trillion US dollars by the end of 2024, and 2 trillion US dollars of this amount will go to clean and environmentally friendly energy base technologies and infrastructure. Investment in environmentally friendly energy has been gaining speed since 2020, and the total expense on renewable energy, networks, and storage now represents a higher figure than the total spending on oil, gas, and coal (IEA, 2024). When the energy economics literature is examined, since environmental investments are mostly represented by renewable energy investments, renewable energy investments studies and studies in related fields shall be discussed in this study section. One of the important studies in this field is the work of Eyraud et al. (2013). In the study, the authors analyzed the determinants of environmental and green (clean) investments for 35 developed and developing countries. Accordingly, they stated in the study that environmental investment has become the main driving force of the energy sector, and China has generally driven its rapid growth in recent years. In addition, in terms of the econometric results of the study, it has been found that environmental investments are supported by economic growth, a solid financial system suitable for lower interest rates, and higher fuel prices. Fang (2023) examined the relationship between investments in the renewable energy sector, the economic complexity index, green technological innovation, industrial structure growth, and carbon emissions in 32 provinces in China for the period of 2005–2019 by using the GMM method. Based on the study results, the economic complexity index causes an increase in China’s carbon dioxide levels. On the contrary, all of the following – the square of the economic complexity index, investments in clean energy, green technical innovation, and the industrial structure – were found to help decrease carbon dioxide emissions. Another important study in this field is the work of Masini and Menichetti (2013). The authors examined the non-financial sources of renewable energy investments in their study. Accordingly, the study results show that knowledge and confidence in technological competence positively impact renewable energy investments. In addition, trust in policy measures only impacts PV (Photovoltaic) and hydropower investments, whereas institutional pressure negatively impacts renewable energy investments. Finally, the study stated that experienced investors are more likely to fund innovations in renewable energy. One of the important studies on renewable energy investments is the work of Ozorhon et al. (2018). To support and facilitate the decision-making process in renewable energy investments, the authors determined the main criteria affecting investors’ decisions by reviewing the literature and examining sector-level practices. According to the findings, economic criteria, like policies and regulations, funds availability, and investment costs were the most important factors in the decision-making process for renewable energy investments. Xu et al. (2024) examined the relationship between the renewable energy investments and the renewable energy development with a threshold value analysis for China. According to the results, impact of the clean (renewable) energy investment on renewable energy development has a significant threshold value, and the general relation between them is a ‘V’ type non-linear relation. At this point, the study suggests that the state should keep spending in the segment of investments in clean energy, increase the financial proficiency, and ensure an efficient financial infrastructure for clean energy in China. 2.2. Studies on Climate Change and their Impact on Economic Variables  The widespread use of fossil-based energy sources, considered dirty energy, continues to create a negative externality in carbon emissions despite the globally implemented policies like the Kyoto Protocol and the Paris Agreement (Rezai et al., 2021). The economic literature on climate change focuses particularly on the adverse effect of climate change on the economy. One of the important studies in this field is the study of Fan et al. (2019). In their study, the authors focused on the impact of climate change on the energy sector for 30 provinces in China and conducted their research with the help of a fixed-effect regression feedback model. As a result of the study, it was found that hot and low-temperature days positively affected the electricity demand. On the other hand, Singh et al. (2022) examined the effects of climate change on agricultural sustainability in India with data from 1990–2017. On the grounds of the study, it was found that India’s agricultural sector was negatively impacted by the climate change. In this regard, it is stated that India needs to take powerful climate policy action so that to reduce the adverse effect of the climate change and increase its sustainable agricultural development. One of the important studies in this field is the study of Gallego-Alvarez et al. (2013). This study investigated how the climate change affects the financial performance with a sample of 855 international companies operating in sectors with high greenhouse gas/ CO2 emissions from 2006–2009. The results reveal that the relationship between the environmental and financial performance is higher in times of economic crisis triggered by climate crisis. In other words, these results show that companies should continue investing in sustainable projects in order to achieve higher profits. Kahn et al. (2021) examined the long-term macroeconomic impact of the climate change by using a panel data set consisting of 174 countries between 1960 and 2014. According to the findings, the amount of output per capita is negatively affected by temperature changes, but no statistically significant effect is observed for changes in precipitation. In addition, according to the study’s results, the main effects of temperature shocks also vary across income groups. Alagidede et al. (2015) examined the effect of climate change on sustainable economic growth in the Sub-Saharan Africa region in their study. The study stated that the relationship between the real GDP and the climate change is not linear. In addition, Milliner and Dietz (2011) investigated the long-term economic consequences of the climate change. Accordingly, as the economy develops over time, and as progress is achieved, this situation will automatically be less affected by the adverse impact of the climate change. Structural changes made with economic development will make sectors more sensitive to the climate change, such as the agricultural sector, which would become stronger and less dependent. Dell et al. (2008) examined the effect of climate change on economic activity. The study’s main results are as follows: an increase of temperatures significantly decreases economic growth in low-income countries. Furthermore, increasing temperature does not affect economic growth in high-income countries. On the other hand, when examining the effects of climate change on the economy, the study of Zhou et al. (2023) is also fundamentally important. Zhou et al. (2023) examined the literature on the effects of climate change risks on the financial sector. In the studies examined, it is generally understood that natural disasters and climate change reduce bank stability, credit supply, stock and bond market returns, and foreign direct investment inflows. In their study for Sri Lanka, Abeysekara et al. (2023) created a study using the general equilibrium model ORANI-G-SL with the objective to investigate the economic impacts of the climate change on agricultural production. The study findings suggest that reductions in the production of many agricultural products will lead to increases in consumer prices for these agricultural commodities, resulting in a decrease in the overall household consumption. The projected decrease in crop production and increases in food prices will increase the potential for food insecurity Another important document in this field is the study by Caruso et al. (2024) examining the relationship between the climate change and human capital. The study findings reveal a two-way result regarding the effects of the climate change damages and the effects of climate change mitigation and adaptation on the human capital. Accordingly, the climate change has direct effects on health, nutrition and welfare, while changes in markets and damage to the infrastructure are expressed as indirect effects. In addition to these studies, the uncertainty of the climate change policies also exerts an impact on economic factors. Studies conducted in this context in recent years have also enriched the literature on the climate change. For example, Çelik and Özarslan Doğan (2024) examined the effects of uncertainty of the climate change policies on economic growth for the USA by using the ARDL bounds test. Their results confirmed the existence of a positive and statistically significant relationship between the climate policy uncertainty and economic growth in the USA. 3. Model Specification  This study empirically examines whether the climate change performance index successfully develops environmental investments in E-7 countries. For further details related to the mathematical model check https://doi.org/10.15388/Ekon.2025.104.2.6 4. Conclusion and Policy Implications  Today, many national and international initiatives are within the scope of combating global warming and climate change. In addition, many developed and developing countries are differentiating their growth and development policies with the objective to prevent these disasters. Although they vary from country to country, as well as from region to region, these policies mostly represent those policies which reduce carbon emissions and ensure energy efficiency. At this point, the key factor is renewable energy investments, which represent environmentally friendly investments. However, according to Abban and Hasan (2021), the amount of environmentally friendly investments is not the same in every country. This is because the determinants of environmentally friendly investments vary from country to country. While financial and economic factors are more encouraging in increasing these investments in some countries, international sanctions are the driving force in this regard in some other countries as well. This study aims to empirically examine whether CCPI is effective in the success of environmental investments in the E-7 countries in the period of 2008–2023 with the help of the Parks-Kmenta estimator. In this direction, the study’s dependent variable is environmental investments, represented by renewable energy investments. On the other hand, the climate change performance is represented by the ‘Climate Change Performance Index’ calculated by Germanwatch, which constitutes the main independent variable of the study. Other control variables considered in the study are the population growth, the real GDP per capita, and inflation. The study findings provide strong evidence that increases in the climate change performance support environmental investments. High-rate climate change performance drives governments and investors toward investing in this area; thus, environmental investments tend to increase. These results are consistent with the study results of Raza et al. (2021). As a result of their study, Raza et al. (2021) stated that the climate change performance is an important channel for the general environmental change, and that renewable energy has a very important role in this regard.  In addition, the study concludes that population growth and inflation negatively affect environmental investments. These results are consistent with Suhrab et al. (2023), but not with Yang et al. (2016). While Suhrab et al. (2023) obtained results regarding the negative effects of inflation on green investments, Yang et al. (2016) focused on the positive effect of population on renewable energy. Finally, the effect of the real GDP per capita on environmental investments has been found to be positive. These results are also consistent with Tudor and Sova (2021). The authors found that Real GDP encourages green investments. This study offers policymakers a number of policy recommendations. These are presented below. • One of the important factors affecting the climate change performance is the raising of awareness of the populations in these countries at this point, and providing them with the knowledge to demand clean energy. In this way, consumers, would demand environmental energy, and investors would invest more in this area. This is of great importance in increasing environmental investments. • The climate change performance also shows how transparent the energy policies implemented by countries are. Therefore, the more achievable and explanatory are the goals of policy makers in this regard, the more climate change performance will increase, which will strengthen environmental investments. • Moreover, the initial installation costs are the most important obstacles on the way toward developing environmental investments. At this point, the country needs to develop support mechanisms that would encourage investors to invest more. • Environmental investments, similar to other types of physical investments, are greatly affected by the country’s macroeconomic indicators. At this point, a stable and foresighted economic policy will encourage an increase in such investments. The countries in the sample group represent developing countries. Therefore, in many countries in this category, the savings rates within the country are insufficient to make investments. At this point, the financial system that will bring together those who supply funds and those who demand funds in the country; this system needs to be developed further. In addition, more extensive use of new and various financial instruments should be encouraged with the objective to collect the capital required for environmental investments. References Abban, A. R., & Hasan, M. Z. (2021). Revisiting the determinants of renewable energy investment-New evidence from political and government ideology. Energy Policy, 151, 112184. https://doi.org/10.1016/j. enpol.2021.112184 (missing in the following “Access date:dd.mm.20yy”) Abeysekara, W. C. S. M., Siriwardana, M., & Meng, S. (2023). Economic consequences of climate change impacts on the agricultural sector of South Asia: A case study of Sri Lanka. Economic Analysis and Policy, 77, 435-450. https://doi.org/10.1016/j.eap.2022.12.003 (missing in the following “Access date:dd.mm.20yy”) Accenture, 2011, New Waves of Growth: Unlocking Opportunity in the Multi-Polar World, Worldwide, Oxford. McKinsey & Company, 2009. Pathways to a Low-Carbon Economy, New York. Anser, M. K., Iqbal, W., Ahmad, U. S., Fatima, A., & Chaudhry, I. S. (2020). Environmental efficiency and the role of energy innovation in emissions reduction. Environmental Science and Pollution Research, 27, 29451-29463. https://doi.org/10.1007/s11356-020-09129-w (missing in the following “Access date:dd. mm.20yy”) etc .... Bashir, M. F., Ma, B., Bashir, M. A., Radulescu, M., & Shahzad, U. (2022). Investigating the role of environmental taxes and regulations for renewable energy consumption: evidence from developed economies. Economic Research-Ekonomska Istraživanja, 35(1), 1262-1284. https://doi.org/10.1080/1331677X.2021.1962383Baştürk, M. F. (2024) Yeşil Tahviller ve Yenilenebilir Enerji Üretimi İlişkisi: AB Örneği. Verimlilik Dergisi, 58(3), 325-336. https://doi.org/10.51551/verimlilik.1443364 Caruso, G., de Marcos, I., & Noy, I. (2024). Climate changes affect human capital. Economics of Disasters and Climate Change, 8(1), 157-196. https://doi.org/10.1007/s41885-023-00140-2 Climate Change Performance Index, 2024. (https://ccpi.org/wp-content/uploads/CCPI-2024-Results.pdf) Çelik, B. S., & Doğan, B. Ö. (2024). Does Uncertainty in Climate Policy Affect Economic growth? Empirical Evidence from the US. Ekonomika, 103(1), 44-55. https://doi.org/10.15388/Ekon.2024.103.1.3 Dell M, Jones BF, Olken BA (2008) Climate change and economic growth: evidence from the last half century, NBER Working Paper Series, No. 14132 Eyraud, L., Clements, B., & Wane, A. (2013). Green investment: Trends and determinants. Energy policy, 60, 852-865. https://doi.org/10.1016/j.enpol.2013.04.039 Fan, J. L., Hu, J. W., & Zhang, X. (2019). Impacts of climate change on electricity demand in China: An empirical estimation based on panel data. Energy, 170, 880-888. https://doi.org/10.1016/j.energy.2018.12.044 Fang, Z. (2023). Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China. Renewable Energy, 205, 772-782. https://doi.org/10.1016/j.renene.2023.01.014 Feng, H., Liu, Z., Wu, J., Iqbal, W., Ahmad, W., & Marie, M. (2022). Nexus between government spending’s and green economic performance: role of green finance and structure effect. Environmental Technology & Innovation, 27, 102461. https://doi.org/10.1016/j.eti.2022.102461 Gallego‐Álvarez, I., García‐Sánchez, I. M., & da Silva Vieira, C. (2014). Climate change and financial performance in times of crisis. Business Strategy and the Environment, 23(6), 361-374. https://doi.org/10.1002/ bse.1786 Germanwatch, 2024 (https://www.germanwatch.org/en/indices?pk_campaign=20733850518&pk_content=155627208696&pk_kwd=climate%20change&pk_source=g&pk_cid=679389546151&mtm_placement=&gad_source=1&gclid=Cj0KCQjwwuG1BhCnARIsAFWBUC2ChKtgVoXt2XG7BKUJ_FRK90m86VeI6oRnpIDCPSnDTpZthsvvaQcaAnmjEALw_wcB) Access date:11.08.2024). Huang, H., Chau, K. Y., Iqbal, W., & Fatima, A. (2022). Assessing the role of financing in sustainable business environment. Environmental Science and Pollution Research, 1-18. https://doi.org/10.1007/s11356-021- 16118-0 IEA, 2024 (https://www.iea.org/reports/world-energy-investment-2024/overview-and-key-findings) . International Energy Agency (IEA, 2023, World Energy Outlook 2023, Paris.https://www.iea.org/reports/ world-energy-outlook-2023/overview-and-key-findings International Monetary Fund, 2008a, Climate Change and the Global Economy, World Economic Outlook, Washington. IRENA (2015), Renewable capacity statistics 2015, International Renewable Energy Agency, Abu Dhabi. IRENA (2024), Renewable capacity statistics 2024, International Renewable Energy Agency, Abu Dhabi. IRENA (2024). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Jul/Renewable_energy_highlights_FINAL_July_2024.pdf?rev=469292ef67144702b515ecb20575ec7d Irfan, M., Zhao, Z. Y., Li, H., & Rehman, A. (2020). The influence of consumers’ intention factors on willingness to pay for renewable energy: a structural equation modeling approach. Environmental Science and Pollution Research, 27, 21747-21761. https://doi.org/10.1007/s11356-020-08592-9 Kaya, H. E. (2020). Kyoto’dan Paris’e Küresel İklim Politikaları. Meriç Uluslararası Sosyal ve Stratejik Araştırmalar Dergisi, 4(10), 165-191. Kahn, M. E., Mohaddes, K., Ng, R. N., Pesaran, M. H., Raissi, M., & Yang, J. C. (2021). Long-term macroeconomic effects of climate change: A cross-country analysis. Energy Economics, 104, 105624. https:// doi.org/10.1016/j.eneco.2021.105624 Karaçor, Z., Özer, H., Saraç, T.B. (2011). Enflasyon ve ekonomik büyüme ilişkisi: Türkiye ekonomisi üzerine ekonometrik bir uygulama (1988-2007). Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 4(2), 29-44.Masini, A., & Menichetti, E. (2013). Investment decisions in the renewable energy sector: An analysis of non-financial drivers. Technological Forecasting and Social Change, 80(3), 510-524. https://doi.org/10.1016/j. techfore.2012.08.003 Milliner A, Dietz S (2011) Adaptation to climate change and economic growth in developing countries, Centre for Climate Change Economics and Policy, Working Paper, No. 69 Organization of Economic Cooperation and Development (OECD), 2011. Towards Green Growth, Paris. Ozorhon, B., Batmaz, A., & Caglayan, S. (2018). Generating a framework to facilitate decision making in renewable energy investments. Renewable and Sustainable Energy Reviews, 95, 217-226. https://doi. org/10.1016/j.rser.2018.07.035 PriceWaterhouseCoopers, 2008. Going Green: Sustainable Growth Strategies, New York. Raza, A., Sui, H., Jermsittiparsert, K., Żukiewicz-Sobczak, W., & Sobczak, P. (2021). Trade liberalization and environmental performance index: Mediation role of climate change performance and greenfield investment. Sustainability, 13(17), 9734. https://doi.org/10.3390/su13179734 Rezai, A., Foley, D. K., & Taylor, L. (2012). Global warming and economic externalities. Economic theory, 49, 329-351. https://doi.org/10.1007/s00199-010-0592-4 Shrimali, G., & Kniefel, J. (2011). Are government policies effective in promoting deployment of renewable electricity resources?. Energy Policy, 39(9), 4726-4741. https://doi.org/10.1016/j.enpol.2011.06.055 Singh, A. K., Kumar, S., & Jyoti, B. (2022). Influence of climate change on agricultural sustainability in India: A state-wise panel data analysis. Asian Journal of Agriculture, 6(1). https://doi.org/10.13057/asianjagric/ g060103 Suhrab, M., Ullah, A., Pinglu, C. et al. Boosting green energy: impact of financial development, foreign direct investment, and inflation on sustainable energy productivity in China–Pakistan economic corridor (CPEC) countries. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04093-0 Tudor, C., & Sova, R. (2021). On the impact of gdp per capita, carbon intensity and innovation for renewable energy consumption: worldwide evidence. Energies, 14(19), 6254. https://doi.org/10.3390/en14196254 Yang, J., Zhang, W., & Zhang, Z. (2016). Impacts of urbanization on renewable energy consumption in China. Journal of Cleaner Production, 114, 443-451. https://doi.org/10.1016/j.jclepro.2015.07.158 Xu, G., Yang, M., Li, S., Jiang, M., & Rehman, H. (2024). Evaluating the effect of renewable energy investment on renewable energy development in China with panel threshold model. Energy Policy, 187, 114029. https://doi.org/10.1016/j.enpol.2024.114029 Zhang, Y., Abbas, M., Koura, Y. H., Su, Y., & Iqbal, W. (2021). The impact trilemma of energy prices, taxation, and population on industrial and residential greenhouse gas emissions in Europe. Environmental Science and Pollution Research, 28, 6913-6928. https://doi.org/10.1007/s11356-020-10618-1 Zhou, F., Endendijk, T., & Botzen, W. W. (2023). A review of the financial sector impacts of risks associated with climate change. Annual Review of Resource Economics, 15(1), 233-256. https://doi.org/10.1146/ annurev-resource-101822-105702 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Contents lists available at Vilnius University Press

Energy & Economics
 March 28, 2018, the US and Chinese flags and texts at a studio in Seoul, Korea. An illustrative editorial. trade war

International trade war - Spice Road against Silk Road

by Joon Seok Oh

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском AbstractPurpose The purpose of this paper is to analyse the international political economy of Korea and its effects due to geopolitical tension between China and the USA. Design/methodology/approach Economic war between China and the USA has prolonged longer than expected. Aftermath of the COVID-19 pandemic, reforming the supply chain has been the centre of economic tension between China and the USA. Quite recently, with the rapid expansion of Chinese e-commerce platforms, distribution channels come upon a new economic tension between the two. And now is the time to pivot its pattern of conflict from competition into cooperation. In this end, economic diplomacy could be a useful means to give a signal of cooperation. From the view of economic diplomacy, this paper tries to analyse the projected transition of economic war between China and the USA with its implication on the trade policy of Korea. Findings As an implementation of economic diplomacy, China suggested the Belt and Road Initiative (BRI), enhancing trade logistics among related countries to gain competitiveness. In 2023, the Biden administration suggested the India-Middle East and Europe Economic Corridor as a counter to BRI, which will be a threshold for changing trade policy from economic war into economic diplomacy. As a result, it is expected China and the USA will expand their economic diplomacy in a way to promote economic cooperation among allied states, while the distribution channel war would continue to accelerate the economic tension between China and the USA. Korea has to prepare for and provide measures handling this geopolitical location in its trade policy or economic diplomacy. Originality/value This research contributes to the awareness and understanding of trade environments from the perspective of economic diplomacy. 1. Introduction The advent of globalisation has led to widespread economic integration, creating global production networks and markets. However, the COVID-19 pandemic has acted as a significant setback to this trend. In the wake of COVID-19, an economic war has arisen between China and the USA, centred on the restructuring of global supply chains following widespread disruptions. International political economy (IPE) examines the power dynamics between states and the structures of influence within regional economies. Consequently, economic diplomacy has gained unprecedented attention. Economic diplomacy focuses on government actions regarding international economic issues, distinct from political diplomacy through its market-oriented approach in foreign policy. Putnam (1988) categorises economic diplomacy into two levels: unilateralism and bilateralism. Unilateral economic diplomacy (or unilateralism) often relies on hard power, involving decisions on trade liberalisation or market protection without negotiation. Bilateral economic diplomacy (or bilateralism) or multilateral economic diplomacy (or multilateralism), by contrast, involves negotiation among trade partners, resulting in agreements such as regional or global free trade agreements (FTAs). A vast range of state or non-state actors engage in economic diplomacy, navigating the complex interplay between international and domestic factors. Defining economic diplomacy is extremely challenging, but one useful definition is “the broad concept of economic statecraft, where economic measures are taken in the pursuit of political goals, including punitive actions such as sanctions” (Blanchard and Ripsman, 2008).  Figure 1 Recent trend of economic diplomacy To exert influence internationally, ministers and heads of government strive to demonstrate their capacity for national security through two primary approaches, as shown in Figure 1 (above): economic war (or competition) and economic diplomacy (or international cooperation). In the context of global supply chain restructuring, the economic conflict between China and the USA has intensified, marked by threats of supply chain disruptions. This has led to emerging strategies aimed at “crowding out” the USA from global supply chains (去美戰略) or excluding China through alliances such as the Allied Supply Chain and Chip 4. While economic war is inherently “temporary” due to its painstaking nature, economic diplomacy or international cooperation offer a more “long-term” approach because it is gains-taking. This paper analyses the factors contributing to the prolonged nature of this economic war and explores potential outcomes of the supply chain tensions between China and the USA from the perspectives of IPE or geo-economics. In conclusion, it highlights the importance of preparing for trade policy adjustments and strategic economic diplomacy. 2. International trade war and strategic items2.1 Supply chain The supply chain encompasses a network of interconnected suppliers involved in each stage of production, from raw materials and components to the finished goods or services. This network can include vendors, warehouses, retailers, freight stations and distribution centres. Effective supply chain management is a “crucial process because an optimised supply chain results in lower costs and a more efficient production cycle” [1]. Within the supply chain, a leading company typically holds governance power, enabling it to coordinate scheduling and exercise control across the interconnected suppliers, resulting in reduced costs and shorter production times (Gereffi et al., 2005) [2]. Since the 2000s, forward and backward integration have been key strategies for managing time, cost and uncertainty in supply chains. For example, Toyota’s Just-In-Time (JIT) system demonstrated the efficiency of locally concentrated supply chains until disruptions from the 2011 East Japan Earthquake and the Thailand flood. Following supply chain shutdowns in 2020, many businesses shifted from local to global supply chains, utilising advancements of the information technology (IT) and transportation technologies to geographically diversify operations. As the need for a systematically functioning global supply chain has grown, a leading nation, much like a leading company, often assumes governance power in international trade and investment, as illustrated in Figure 2 (below), by aligning with the leadership of a dominant market competitiveness, which makes this leadership valuable.  Figure 2 Supply chain The COVID-19 pandemic dealt a severe blow to the global supply chain, causing sudden lockdowns that led to widespread supply chain disruptions. To mitigate the risks of future global disruptions, supply chains have begun restructuring to operate on a more regionally segmented basis. In this shift toward regional supply chains, China and the USA are at the centre, drawing allied countries within their spheres of influence. This alignment helps explain why the economic war between China and the USA has lasted longer than anticipated. 2.2 Strategic items China has restricted exports of two rare metals, gallium and germanium, which are critical to semiconductor production. Kraljic (1983) highlighted the importance of managing “strategic items” within the framework of supply chain management, as shown in Figure 3. Kraljic emphasises the need to strengthen and diversify critical items. The Kraljic matrix provides a valuable tool for identifying essential items that require focused management within the supply chain.  Figure 3 Kraljic matrix Kraljic identified the importance of managing “bottleneck items” in strategic supply chain management – items that present high supply risk but have relatively low business value. Due to the potential costs associated with non-delivery or compromised quality of strategic items, these must be closely monitored and controlled. From a risk management perspective, establishing medium-term business relationships and collaboration with suppliers is essential. For example, South Korea imports over 90% of its urea for agricultural and industrial purposes from China [3]. Heavily dependent on China for urea supplies due to pricing factors, Korea faced challenges when China imposed export controls on urea, underscoring Korea’s vulnerability within China’s sphere of influence. The European Union (EU) also faces challenges with critical raw materials (CRMs). China remains the EU’s sole supplier of processed rare earth elements, while Chile supplies 79% of its lithium. In response, the EU introduced the CRM Act (CRMA) to support projects aimed at increasing “the EU’s capacity to extract, process, and recycle strategic raw materials and diversify supplies from the third countries” [4]. 2.3 Resilient supply chain alliance In contrast to China’s approach of leveraging supply disruptions to strengthen its influence, the Biden administration in the USA has adopted a cooperative approach focused on building resilient supply chains (Pillar 2) through the Indo-Pacific Economic Framework (IPEF), which includes 14 member countries [5]. The need for resilient supply chains has been further underscored by the Russia–Ukraine crisis. The IPEF aims to address supply chain vulnerabilities by fostering global efforts to reduce risks associated with concentrated, fragile supply chains [6].  Figure 4 Resilient supply chain alliance In Figure 4, the EU Commission presented the Single Market Emergency Instrument (SMEI) in September 2022, a crisis governance framework designed to ensure the availability of essential goods and services during future emergencies. The SMEI operates on three levels: contingency planning, vigilance and emergency. The contingency planning phase focuses on collaboration among member states to mitigate supply chain disruption and monitor incidents. The vigilance phase can be activated when a significant disruption is anticipated, enabling specific measures such as mapping and monitoring supply chains and production capacities. Finally, the emergency phase is activated in cases of severe disruption to the functioning of the single market [7]. Establishing a resilient supply chain through international cooperation may be appealing, yet the reality often falls short of the ambition. In South Korea, the IPEF took effect on 17 April 2024, after an extended negotiation process, marking the first multilateral agreement on supply chains. As a result, during non-crisis periods, the 14 member countries will collaborate to strengthen international trade, investment and trade logistics. In times of crisis, member countries will activate a “crisis response network”. Conversely, opportunities for negotiation with China, South Korea’s largest trading partner, are essential for building supply chain resilience [8]. China has pursued an industrial policy focused on enhancing its supply chain management capabilities. In the semiconductor sector, the decoupling between China and the USA has become increasingly evident. Contrary to expectations, China has adopted a policy of internalising its supply chains, returning to the integration strategies of the 2000s rather than furthering globalisation. A promising opportunity for transformation between the two countries has emerged recently. Since 2015, China and South Korea have maintained bilateral FTA, and with the second phase of FTA negotiations currently underway, there is an opportunity to strengthen trade and investment ties, fostering positive progress through international cooperation. 2.4 China manufacturing exodus During the COVID-19 pandemic, China imposed sudden lockdowns without prior notice or preparation, halting production and logistics cycles. This “zero COVID” policy may have triggered a shift towards “de-risking” China from supply chain disruptions. Although China still offers significant advantages as “the factory of the world,” with vast market potential, prolonged trade tensions with the USA, intensified during the Trump administration, have prompted global manufacturers with substantial USA market bases to relocate operations amid rising geopolitical uncertainties. For example, Nike and Adidas have shifted much of their footwear manufacturing to Vietnam, Apple has begun iPhone production at a Foxconn in Chennai, India, and AstraZeneca has contracted production with India’s Serum Institute. In the pre-globalised era, defining the Rule of Origin (ROO) was straightforward, as a product’s components were usually manufactured and assembled within a single country. However, with the complexity of global supply chains, particularly since 2012, determining ROO has become a time-consuming and subjective process. ROO are classified as either non-preferential or preferential. The USA applies non-preferential ROO to restrict imports from countries like Cuba, Iran and North Korea, while offering trade preference programmes for others. Preferential ROO are used to determine duty-free eligibility for imports from approved countries [9], whereas non-preferential ROO play a crucial role in “country of origin labelling, government procurement, enforcement of trade remedy actions, compilation of trade statistics, supply chain security issues.” [10] China manufacturing exodus may negatively impact capital inflows into Hong Kong, traditionally seen as the Gateway to China. In 2023, Hong Kong’s initial public offering volume fell to a 20-year low of $5.9bn [11]. While China-oriented business remains in Hong Kong, which returns fully to Chinese control in 2047, non-China-oriented businesses have migrated to Singapore. As the certainty of contract and ownership rights forms the foundation of capitalism, this capital flight from Hong Kong is likely to persist. 3. Trade logistics and economic corridors Globalisation has allowed supply chains to leverage interdependence and interconnectedness, maximising efficiency. However, while these efficiencies have been beneficial, they have also created a fertile ground for friction between trade partners due to a “survival of the fittest” mindset and the principle of “winner takes all.” This interdependence has also highlighted vulnerabilities; the global supply chain struggled to manage the disruptions caused by COVID-19, prompting a shift towards regional integration initiatives, such as Association of Southeast Asian Nations, Regional Comprehensive Economic Partnership, United States–Mexico–Canada Agreement and Comprehensive and Progressive Agreement for Trans-Pacific Partnership. As the global economy seeks stability, collaboration over competition has become increasingly essential, with economic diplomacy emerging as a priority. The prolonged economic war between China and the USA arguably needs to shift towards economic diplomacy. The global supply chain is restructuring into regional supply chains, building resilience by operating in regional segments that can withstand crises. Michael Porter introduced the concept of value chain as “a set of activities that a firm performs to deliver a valuable product or service to the market.” [12] Complex finished goods often depend on global value chains, traversing multiple countries. As shown in Figure 5, the value chain consists of supply chain and trade channel components. While the focus has traditionally been on which country holds lead status within a regional supply chain, the emphasis is now shifting to how these regional segments can be interconnected and relayed. In this context, the supply chain competition may evolve into a “channel war” in international trade, where trade logistics will centre on the internal flow of goods, standardising channel processes and establishing authority over these channels.  Figure 5 Supply chain v. trade channel 3.1 Trade logistics It is natural for governments to seek environments that enhance competitiveness within in their countries. In terms of trade, effective trade logistics are essential for maintaining competitive advantage. As a prerequisite, a strong IT management infrastructure is indispensable. As shown in Figure 6, trade logistics encompass the internal flow of goods to market, integrating physical infrastructure with operating software – such as transport hubs, warehouses, highways, ports, terminals, trains and shipping vessels. Key areas of conflict in trade logistics involve the standardisation of channel processes and determining who holds governance over operation of these logistics systems. This is equally relevant within the digital economy. Recently, Chinese e-commerce – often referred to as C-commerce – has aggressively sought to gain control over digital distribution channels, interconnected delivery networks and trade logistics via digital platforms. Chinese platforms such as Taobao, Temu and AliExpress are actively working to increase their monthly active users (MAUs), positing themselves as counterweights to USA-based platforms such as Amazon and eBay in digital trade [13].  Figure 6 Trade logistics When the agenda of establishing international trade logistics is introduced to relevant trade members across various countries, initial progress and effective responses are often achieved. However, efforts soon encounter obstacles related to standardising logistics processes and establishing operational governance. Greater reliance on international institutions could help resolve these issues (Bayne, 2017). Yet governments frequently prioritise domestic interests, and after prolonged negotiations, the risk of international agreements failing increases. Amid the economic war between China and the USA, China launched a trade logistics initiative known as the Belt and Road Initiative (BRI), or One Belt One Road, in 2013. Often referred to as the New Silk Road, the BRI aims to establish economic corridors for trade logistics. The World Bank estimates that the BRI could boost trade flows by 4.1% and reduce trade costs by 1.1% [14]. In response, the Biden administration proposed the India-Middle East and Europe Economic Corridor (IMEC) in September 2023 to strengthen transport and communication links between Europe and Asia as a countermeasure to China’s BRI. IMEC has been well received by participating countries, with expectations of fostering economic growth, enhancing connectivity and potentially rebalancing trade and economic relations between the EU and China [15]. Both BRI and IMEC are ambitious projects aimed at boosting international trade through substantial investments in trade logistics infrastructure. Each seeks to assert governance over international trade channels, signalling that the supply chain war may soon evolve into a trade channel war between China and the USA. 3.2 Economic corridors Economic corridors are transport networks designed to support and facilitate the movement of goods, services, people and information. These corridors often include integrated infrastructure, such as highways, railways and ports, linking cities or even countries (Octaviano and Trishia, 2014). They are typically established to connect manufacturing hubs, high-supply and high-demand areas, and producers of value-added goods. Economic corridors comprise both hard infrastructure – such as trade facilities – and soft infrastructure, including trade facilitation and capacity-building measures. The Asian Development Bank introduced the term “economic corridor” in 1998 to describe networks connecting various economic agents within a region [16]. Economic corridors are integrated trade logistics networks, providing essential infrastructure for connecting regional segments of supply chains. As supply chains increasingly operate in regional “chunks,” linking these segments becomes ever more important. Economic corridors typically include a network of transport infrastructure, such as highways, railways, terminals and ports. Initiatives like the BRI and IMEC use economic corridors as instruments of economic diplomacy, shifting strategies from hard power to soft power, as shown in Figure 7. Because less-developed or developing countries often lack sufficient funding to invest in trade logistics, they tend to welcome these initiatives from developed countries, which offer international collaboration and support. However, these initiatives usually come with the condition that participating countries must accept standardised trade processes and governance led by the sponsoring developed country.  Figure 7 Economic corridor initiatives as economic diplomacy To succeed, economic corridors must meet three key conditions [17]. First, government intervention is essential, as economic corridor initiatives primarily involve public infrastructure investments beyond the scope of the private sector. In realising these projects, governments must reconcile three tensions to ensure their policies are mutually supportive: tensions between politics and economics, between international and domestic pressures and between governments and other stakeholders. Second, intermediate outcomes should be measured and demonstrated as results of economic corridors, allowing participants to experience tangible benefits throughout these longer-term projects. Finally, economic corridors should deliver broader benefits. Participants need incentives to utilise the infrastructure sustainably. These benefits may extend beyond economic welfare, such as wages and income, to include social inclusion, equity and environmental gains, which support the long-term viability of the infrastructure. 4. BRI vs IMEC4.1 Belt and Road Initiative (BRI) - Silk Road The BRI can be a modern-day realisation of the Silk Road concept, connecting Europe as a market base with China as a production base. Unlike the ancient Silk Road, which connected trade routes across Eurasia, the BRI poses potential challenges due to its extensive connectivity. Firstly, there are social and environmental externalities, such as increased congestion and accidents from concentrating traffic flows through limited links and nodes within trade networks. Secondly, while the connectivity may benefit the production and market bases at either end, regions situated between these hubs, through which highways and railways pass, may gain minimal advantage. Thirdly, there is often a mismatch between where costs and benefits are realised. Transit regions that facilitate network traffic often see fewer direct benefits compared to high-density nodes within the network. 4.2 India-Middle East and Europe Economic Corridor (IMEC) - The Spice Road The ancient Spice Roads once connected the Middle East and Northeast Africa with Europe, facilitating the exchange of goods such as cinnamon, ginger, pepper and cassia, which, like silk, served as a form of currency. The IMEC proposes a modern route from India to Europe through the United Arab Emirates (UAE), Saudi Arabia, Israel and Greece. Since its announcement in September 2023, some regional experts have expressed reservations about its feasibility, particularly regarding the connection between the Middle East and Israel. The project has faced delays due to the Israel–Hamas war. Despite these challenges, IMEC holds potential to drive economic growth and strengthen connectivity, especially as countries like Vietnam and India emerge as alternative manufacturing bases for companies relocating from China. For Saudi Arabia and the UAE, IMEC is not viewed as a challenge to China but rather as an opportunity to diversify their economies and solidify their roles within the Middle East region [18]. 5. Conclusion A new trade war between China and the USA has begun, with the Biden Administration’s introduction of IMEC as a counter to China’s BRI. This shift could soon transform the nature of economic war from a focus on supply chains to one on trade channels. The China manufacturing exodus was further accelerated by supply disruptions during the COVID-19 pandemic. Amidst the economic tensions between China and the USA, the restructuring of global supply chains into regional networks has made significant progress. With China maintaining its stance on export controls for strategic items, South Korea must prepare for resilient supply chain management. In relation to China–Korea FTA, which is currently undergoing its second phase of negotiation, South Korea should seek clarity on the transparency of China’s strategic item controls. The Committee on Foreign Investment in the United States (CFIUS) plays a key role in monitoring the quality of inbound investments; similarly, South Korea is experiencing increased inbound investment due to the manufacturing shift from China and should apply similar standards to evaluate investment quality. This emerging economic war between China and the USA is now marked by the competing initiatives of the BRI and IMEC. The BRI can be viewed as a modern Silk Road, linking China with Europe, while the IMEC seeks to establish a trade logistics corridor connecting Saudi Arabia, the UAE, Israel and Greece. The South Korean Government should take proactive steps to prepare for the evolving dynamics of the trade war between China and the USA. CitationOh, J.S. (2025), "International trade war - Spice Road against Silk Road", International Trade, Politics and Development, Vol. 9 No. 1, pp. 2-11. https://doi.org/10.1108/ITPD-06-2024-0031  Notes 1. https://www.investopedia.com/terms/s/supplychain.asp2. According to Gary Gereffi et al, 5 governance types of a lead company could be categorised as market, modular, relational, captive and hierarchy.3. Korea imports urea from 12 countries including Qatar, Vietnam, Indonesia and Saudi Arabia, in addition to China.4. https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials/strategic-projects-under-crma_en5. IPEF was launched on May 23,2022 at Tokyo. 14 member countries are Australia, Brunei, Fiji, India, Indonesia, Japan, Republic of Korea, Malaysia, New Zealand, Philippines, Singapore, Thailand, Vietnam and the USA. 4 Pillar of IPEF are Trade (Pillar 1), Supply Chain (Pillar 2),Clean Economy (Pillar 3) and Fair Economy (Pillar 4).6. Critics say “lack of substantive actions and binding commitments, instead focusing on process-driven framework building.” https://www.piie.com/blogs/realtime-economics/its-time-ipef-countries-take-action-supply-chain-resilience7. https://ec.europa.eu/commission/presscorner/detail/en/ip_22_54438. As of 2023, the first-largest trade partner of Korea is China (Trade volume of $267.66bn), the second is the US ($186.96bn) and the third is Vietnam ($79.43bn)9. As preferential ROO contain the labour value content requirement in the USMCA, it could increase compliance costs for importers. https://crsreports.congress.gov/product/pdf/RL/RL3452410. USITC(1996), Country of Origin Marking: Review of Laws, Regulations and Practices, USITC Publication 2975, July, pp. 2–411. https://www.barrons.com/articles/hong-kong-financial-center-china-46ba5d3612. Porter identifies a value chain broken in five primary activities: inbound logistics, operations, outbound logistics, marketing and sales and post-sale services. https://www.usitc.gov/publications/332/journals/concepts_approaches_in_gvc_research_final_april_18.pdf13. MAU is a metric commonly used to identify the number of unique users who engage with apps and website. MAU is an important measurement to the level of platform competitiveness in the digital trade logistics or e-commerce industry.14. https://home.kpmg/xx/en/home/insights/2019/12/china-belt-and-road-initiative-and-the-global-chemical-industry.html15. https://www.bradley.com/insights/publications/2023/10/the-india-middle-east-europe-economic-corridor-prospects-and-challenges-for-us-businesses16. The Asian Development Bank (ADB), which first used the term in 1998, defines economic corridors as important networks or connections between economic agents along a defined geography, which link the supply and demand sides of markets. http://research.bworldonline.com/popular-economics/story.php?id=350&title=Economic-corridors-boost-markets,-living-conditions17. Legovini et al. (2020) comments traditional cross border agreements of transport investment focuses only on a narrow set of direct benefits and cost. However, economic corridors can entail much wider economic benefits and costs such as trade and economic activity, structural change, poverty reduction, pollution and deforestation.18. Arab Centre Washington D.C. https://arabcenterdc.org/resource/the-geopolitics-of-the-india-middle-east-europe-economic-corridor/ References Bayne, N. (2017), Challenge and Response in the New Economic Diplomacy, 4th ed., The New Economic Diplomacy, Routledge, London, p. 19.Blanchard, J.M.F. and Ripsman, N.M. (2008), “A political theory of economic statecraft”, Foreign Policy Analysis, Vol. 4, pp. 371-398, doi: 10.1111/j.1743-8594.2008.00076.x.Gereffi, G., Humphrey, J. and Sturgeon, T. (2005), “The governance of value chain”, Review of International Political Economy, Vol. 12 No. 1, pp. 78-104, doi: 10.1080/09692290500049805.Kraljic, P. (1983), “Purchasing must be supply management”, Harvard Business Review, Vol. 61 No. 5, September.Legovini, A., Duhaut, A. and Bougna, T. (2020), “Economic corridors-transforming the growth potential of transport investments”, p. 10.Octaviano, B.Y. and Trishia, P. (2014), Economic Corridors Boost Markets, Living Conditions, Business World Research, Islamabad, October.United States International Trade Commission (USITC) (1996), “Country of origin marking: Review of Laws, Regulations, and Practices”, USITC Publication, Vol. 2975, July, pp. 2-4.Further readingPorter, M. (1985), Competitive Advantage: Creating and Sustaining Superior Performance, Free Press.Putman, R.D. (1988), “Diplomacy and domestic politics; the logic of two-level games”, International Organization, Vol. 42 No. 4, pp. 427-600.USITC (2019), “Global value chain analysis: concepts and approaches”, Journal of International Commerce and Economics, April, pp. 1-29.

Energy & Economics
Press Conference by European Commission President Ursula von der LEYEN and Mario DRAGHI on the Report on the Future of EU Competitiveness in Brussels, Belgium on September 9, 2024.

European Competitiveness at Stake: Industrial and Technological Challenges

by Federico Castiglioni

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском Introduction  On 7 April 2025, the Italian Istituto Affari Internazionali and the Dutch Clingendael Institute co-hosted the fourth edition of the Van Wittel/Vanvitelli Roundtable, which is becoming a major recurring event in the policy dialogue between Italy and the Netherlands. The meeting, co-organized by the two policy institutes, took place at the Italian School of Public Administration in Caserta (NA, Italy), bringing together a broad array of stakeholders including experts from academia, think tanks, ministries and civil society.1 This year’s roundtable focused on the critical intersections between industrial innovation, technological sovereignty and (open) strategic autonomy, underlining the urgent need to strengthen linkages between these domains within the broader European framework. Held under the Chatham House Rule and by invitation only, the event created a space for frank and forwardlooking exchanges on how both Italy and the Netherlands can safeguard their national interests while contributing constructively to the collective resilience and strategic capacity of the European Union. One of the most relevant outcomes of this edition was the joint endorsement of a proposal to develop a bilateral policy paper aimed at strengthening collaboration between the two countries, while also feeding into ongoing EU-level initiatives.  1. Increasing security and reducing dependencies The dialogue began with a reflection on the pressing geopolitical challenges facing the European Union. Participants broadly acknowledged that escalating tensions between the United States and China, including an increasingly protectionist American posture – as seen during and potentially following the Trump administration – pose risks for Europe’s role in the international order. The possibility of a global trade war, alongside the gradual withdrawal of the US from traditional multilateralism, is both a threat and a wake-up call for Europe. In the last months, the challenge has become particularly serious, as the US administration threatened multiple times to impose high tariffs on EU products. Rather than becoming collateral damage in this global rivalry, Europe should take active steps to strengthen its strategic positioning and develop a strategy to counter and deter coercion from third countries. This goal, the participants argued, requires avoiding marginalisation through enhanced internal cohesion, greater autonomy from external suppliers, and the ability to act collectively on the world stage. In this light, there was widespread agreement that bilateral relationships such as the one between Italy and the Netherlands can serve as essential building blocks in shaping Europe’s capacity to act with strategic clarity and operational effectiveness.  In the event of a global trade war, another source of instability could come from China. If the US markets shut its doors, China would be faced with an overproduction capacity, due to the misplacement of all the goods destined to the US economy. In this scenario, the only option for Beijing would be to flow the same commodities to Europe, thereby saturating the market and curbing EU competitiveness. This scenario must be avoided. The solution can be only a tough but necessary negotiation with the US to avoid a dramatic fragmentation of global trade. The EU should act reasonably and try to persuade Washington of the existing nexus between global trade, wealth and political stability. The negotiation should start from the assumption that the transatlantic trade with the United States is much smaller than trade within the European Union. As a consequence, all the EU member states have a practical convenience in standing together and speaking with Washington with one voice. The formal and exclusive competence that the Commission holds in the commercial field, granted by the EU Treaties, should be therefore supported politically at the highest levels. At the same time, the Commission and the member states should focus on: 1) developing bilateral agreements with like-minded countries worldwide which believe in open and fair trade; 2) removing non-tariff barriers inside the internal market to boost competitiveness vis-à-vis the rest of the world. The second point is particularly important, as the Commission needs to make the bloc more resilient to external shocks through a set of instruments aimed at enhancing strategic autonomy in a framework of necessary global interdependence.  Indeed, the recipe to achieve this goal has been already identified in the Letta and Draghi reports, which offer sound analyses and strategic directions for European industrial and economic policy. Despite these clear guidelines, the participants’ consensus was that implementation today remains inconsistent due to poor coordination among member states and institutional inertia. It was argued that meaningful progress depends on increased financial support, forward-looking strategic planning and, crucially, the formation of coalitions among like-minded EU member states – especially when the broader EU framework falls short. A recurring theme throughout the discussion was Europe’s evolving role as a global actor; if the ambitions of the bloc go beyond playing the role of an excellent regulatory power, the EU must position itself as a mediator and real broker in a multipolar world. Italy and the Netherlands, with their strong institutional, industrial and diplomatic assets, are natural complimentary partners in this effort, and can help the EU agenda in many respects. One dimension obviously pivotal for both the Union and its member states is the future of our economies. In this regard, participants insisted on the need to place industrial policy at the very heart of Europe’s strategic agenda. The capacity to maintain economic leadership, social cohesion and democratic vitality depends in no small part rests on the continent’s ability to manufacture, innovate and compete. A number of shared structural challenges – most prominently energy affordability, demographic change and the digital transition – must be tackled through integrated strategies that involve both public and private actors. The traditional rigid separation between public sector policy and private investment is therefore outdated and counterproductive. Today’s complex challenges require unified action driven by shared objectives. The Italy–Netherlands partnership, in this context, was identified as a potential nucleus for a new wave of EU-wide strategic thinking. These two countries already hold considerable influence in different sectors and can use their complementary strengths to demonstrate the added value of bilateral cooperation for the entire EU. By jointly addressing pressing infrastructure needs, advancing cooperation on research and innovation, and fostering deeper market integration, Italy and the Netherlands could set a precedent for other mid-sized EU member states. The panel was concluded by a call to action: to jointly draft a detailed position paper, developed in direct dialogue with the European Commission, to define shared priorities and propose concrete initiatives. This policy paper would focus on key areas such as advanced technologies, green innovation, the energy transition and the pursuit of strategic autonomy – laying the foundations for a resilient and forward-looking Europe. Italy and the Netherlands, as major industrial powerhouses, can give a significant contribution, as they already did in the past. 2. Innovation and strategic sectors: Agriculture, defence and semiconductors The second part of the discussion focused on innovation as a cornerstone of European competitiveness. While there was strong recognition of the EU’s ambition in this domain, participants pointed to significant structural weaknesses, particularly underinvestment in research and development and fragmented policy implementation. The Chips Act and the Critical Raw Materials Act were cited as important legislative efforts, but whose success will depend on coherent action across all member states and the mobilisation of private capital and expertise. Among the strategic sectors identified for both countries, agriculture stood out as a particularly relevant case. Agriculture in fact embodies both industrial potential and the need for open strategic autonomy – especially in the context of international trade developments, such as those stemming from EU-Mercosur negotiations and US demands to open European agricultural markets. Italy and the Netherlands are major players in this field. According to Eurostat data, the Netherlands is one of the top three agricultural exporters in the EU, while Italy ranks among the leaders in high-quality agricultural production and is a world leader in agri-food machinery. These comparative advantages create space for deep, complementary cooperation. Participants stressed the need to build a joint framework focused on food quality, innovation testing and the harmonisation of production systems. The Netherlands was recognised for its leadership in digitalisation and agri-tech innovation, while Italy’s sophisticated machinery sector was seen as critical for enabling largescale adoption of new technologies. Importantly, agricultural innovation was also viewed as essential for climate adaptation. With the increasing scarcity of water and the shrinking availability of arable land, Europe’s food systems must evolve to remain viable and resilient. The digital transformation of agriculture, through the adoption of Internet of Things (IoT) and data-driven solutions, presents opportunities to increase productivity and sustainability. However, it also raises challenges, including the need to ensure equitable access to vital semiconductors in order to build digital infrastructure and to address skills gaps in digital literacy. Semiconductors in particular, the hardware backbone of all digital systems, were identified as a cross-cutting capability essential not only to agriculture but to broader industrial policy. For Italy and the Netherlands, enhancing national capacity in this field aligns with the strategic goal of technological sovereignty. Another core issue raised was the generational transition in agriculture. As rural populations age, the sector should be made more appealing to younger, highly educated individuals. This requires a cultural shift: reframing agriculture as a highvalue and socially meaningful profession. The traditional image of the isolated farmer must give way to a narrative that resonates with environmentally conscious youth who see value in returning to the land. However, this shift requires careful policy design to reconcile environmental goals with economic sustainability. Specific strategies were discussed for supporting small farms, which often lack access to advanced technology, and for incentivising large-scale producers to integrate sustainable practices. Italy’s prominence in agricultural machinery offers a further avenue for international engagement. Expanding innovation to developing countries through machinery exports and technical cooperation could support global food security while reinforcing Europe’s leadership. In closing, participants linked these reflections back to the broader topic of European security and defence. The defence industry and the cybersecurity domain face similar issues of dependency and vulnerability. Strategic autonomy in these sectors is not only about accessing raw materials but about entire supply chains – from design and production to deployment. Both Italy and the Netherlands are well-positioned to lead within a broader European effort to secure these strategic infrastructures. Conclusions The roundtable concluded by reaffirming the centrality of the economic dimension to the future of Europe. A clear and robust industrial strategy must return to the forefront of EU policymaking. In the absence of an effective industrial policy framework, too much responsibility remains at the national level, creating disparities and inefficiencies. Europe must shift from aspirational rhetoric to operational pragmatism, investing decisively in sectors that underpin its long-term resilience. The cooperation between the public and private sectors is essential. Both Italy and the Netherlands are undergoing parallel transitions – digital, environmental and demographic. These must be tackled simultaneously, as none can be deprioritised. Change will require acknowledgment of systemic constraints. Among the most urgent priorities is the cost of energy, which undermines industrial competitiveness across Europe. Italy is particularly affected due to its structural vulnerabilities, but this is a shared European challenge. Energy prices must be drastically reduced, and a fully functioning internal (energy) market must be established. Demographic decline poses a new challenge. Unlike previous decades, the EU must now envision growth in a context of population shrinkage. The only answer to this unprecedented challenge lays in innovation, accessible energy and a revitalised industrial base. Hence, the call for new models and economic frameworks capable of adapting to shrinking labour markets while maintaining living standards. Ultimately, the Van Wittell/Vanvitelli Roundtable highlighted that the EU should engage proactively the US to avoid a global trade crisis and forge alliances with like-minded and complementary world players. With the contribution of two important actors such as Italy and the Netherlands, the EU can find new pathways to open strategic autonomy and long-term prosperity. *Updated 23 May 2025 Report of the fourth edition of the Van Wittel/Vanvitelli Roundtable organised at the Italian School of Public Administration in Caserta on 7 April 2025 by the Istituto Affari Internazionali (IAI) and Clingendael Institute. Paper produced in the framework of the project “Van Wittel/Vanvitelli Roundtable”. The project has benefited from the financial support of the Dutch Ministry of Foreign Affairs, the Policy Planning Unit of the Italian Ministry of Foreign Affairs and International Cooperation (MAECI) pursuant to art. 23-bis of Presidential Decree 18/1967, and the Compagnia di San Paolo Foundation. The views expressed in this report are solely those of the authors and do not necessarily reflect the views of the Italian Ministry of Foreign Affairs and International Cooperation and the Dutch Ministry of Foreign Affairs. References 1 - A video of the closing remarks by Antonio Tajani, Italian Deputy Prime Minister and Minister of Foreign Affairs and International Cooperation, and Caspar Veldkamp, Dutch Minister of Foreign Affairs, is available here: https://www.youtube.com/live/mqhfJfW-4s8.

Energy & Economics
New York City, New York, USA - January 18 2025: Sign with the words,

Donald Trump, the revolt of the lower middle class and the next phase of European integration

by Klaus Welle

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском Abstract The defining political shift of our era is the revolt of the lower middle class. Much more exposed than the better-off to the succession of crises in recent years—from the financial crisis to uncontrolled migration, from Covid-19 to Russia’s aggression against Ukraine—the lower middle class is turning to the populist right and its promise of protection by closure. Unlike the US first-past-the-post system, the EU’s institutional framework emphasises compromise and cross-party cooperation and thus offers a critical buffer against this wave of disruption. But this is not enough to protect our post-1945 political order, which is based on parliamentary democracy, the rule of law and European integration, from both internal and external threats. The EU needs a bold agenda that focuses on competitiveness, growth, migration and defence, all of which are crucial to strengthening our continent. Introduction1 Once is an accident, twice the new normal. With his electoral success, Donald Trump is the new reality in the US, not just an aberration. Trump obviously understands his time better than anybody else, which ensured him his comeback as president of the US, elected by the people against seemingly overwhelming legal and political resistance. He is the new rule of the game, like it or not. The revolt of the lower middle classWhat is the new reality? The party political system in the US and Europe has been fundamentally transformed by the revolt of the lower middle class. Voter analyses in several European countries give a clear picture: in France, Marine Le Pen and the National Rally (Rassemblement National) represent the ‘défavorisés’ like no other party and have replaced in that function the traditional left. Le Pen is successful in the former Communist heartland and mining territory of northern France, where she also assured her own seat in parliament (Ipsos 2024). Similarly, Alternative for Germany (Alternative für Deutschland, AfD) is electorally over-represented among workers and the unemployed and those with below average incomes and education (Moreau 2024a). And the Freedom Party of Austria (Freiheitliche Partei Österreichs, FPÖ) rallies the workers too (Moreau 2024b). This should not come as a big surprise. Right-wing populist parties have been recognised in political science as unconventional workers’ parties for more than a decade (Rydgren 2013). And the transformation of the political space in Europe has been ongoing for more than a decade as well. European Parliament elections are an excellent monitor of the overall situation in Europe and the member states. The outcome of the 2024 European Parliament elections shows us a political space that is basically divided into three parts. One-third of the members now sit on the left, organised in the Green, Socialist and Left groups; a good third are in the centre, encompassing the Liberals and the Christian Democrat European People’s Party (EPP); and close to a third now belong to the populist and radical right (European Parliament 2024). In the US, Trump’s success was assured in 2016 through gains in the ‘rustbelt states’, formerly the Democrat Party’s heartland. In 2020 Joe Biden was able to narrowly turn the tide. With his credibility among workers—acquired over decades through close cooperation with the trade unions—he was able to achieve what presidential candidates from liberal New York and California, Hillary Clinton and Kamala Harris, could not. The Republican Party today is the Make America Great Again Party. It is the party of Donald Trump. The Republican Party of Ronald Reagan and George Bush does not exist anymore. The party that used to represent the highly skilled today represents and owes its electoral success to the lower-skilled working class. ‘National security Republicans’ have lost their political home. Why is the lower middle class revolting? The lower middle class can be identified as those whose economic situation is tense. In other words, they have no financial buffer and anything unexpected happening can push them over the edge. In the US, this group, known as those living ‘from paycheque to paycheque’, is considered to comprise 25% to 30% of the population. A single paycheque not arriving might force people belonging to this group to sell their car; several paycheques not arriving might oblige them to sell their house (Bank of America Institute 2024). Ever since the financial crisis that started in 2008, we have gone in Europe from crisis to crisis. The drawn-out financial crisis was followed by uncontrolled migration as a consequence of Russia’s bombardment of big cities in Syria, and this was followed by Covid-19 and then Russia’s aggression against Ukraine, which caused major spikes in energy and food prices and another massive wave of migration. What we call a ‘crisis’ might equally be considered a lack in performance of the system overall and an indication of increasing loss of control. Russia is being aggressive militarily and in other ways because it believes it can do so and get away with it. External borders prove time and time again to be porous. After the Second World War, the German economy grew by an average of about 5% per year; but in the last five years, this has dropped to 0% and even into the negative. What can be weathered by the better-off is an existential challenge for the lower middle class. If you are not already on the housing ladder by luck of birth, it is increasingly difficult to get onto. The social elevator is stuttering. And while migration is perceived by the upper middle class as the promise of affordable personal services today and care in old age later, for the lower middle class it means competition for affordable housing and state services, and the risk of decreasing educational standards for children in their lower-income living areas. German sociologist Andreas Reckwitz (2020) describes the experience of the lower middle class as one of a double devaluation: economic and cultural. It is economic because formerly well-paid industrial workers are falling increasingly behind the new university-educated service class. And it is cultural because their system of traditional values is regarded as outdated and destined to be superseded. From a horizontal to a vertical understanding of the party political system The traditional horizontal classification of parties on a left to right axis is very misleading now. To understand what is happening, we need to replace the traditional horizontal classification with a vertical one based on social status, income and education. On the basis of the 2021 German federal election and data provided by the Bundestag (data no longer available online) and others (Focus online 2021), we can construct such a vertical system for Germany: 1. Greens and liberals represent younger voters, with a very good income in the case of the liberals and an average income, but outstanding level of education, when it comes to the greens, the new party of the Bildungsbürgertum (the very well-educated). These voters can together be considered the upper middle class and the most dynamic part of society.2. The traditional people’s parties, the Christian Democrats and the Social Democrats, become more popular the older the cohort, with their popularity rocketing among those above 70 years old. The income levels of the voters of these parties are average, as is their education, and this voter base is shrinking. These parties represent the middle class.3. The Left (Die Linke) is over-represented among academics and the unemployed; its electorate has a below-average income. The extreme-right AfD is over-represented among workers, the unemployed and people of working age. The educational levels of these voters are low, and their household incomes are below average. The Left and the AfD both represent the lower middle class. The part of the lower middle class that is represented by the populist right is being promised protection by closure. Right-wing populism is therefore ‘social nationalism’. But it is not just about the programme. Bringing that new coalition of various social groups together is facilitated by charismatic leadership: Trump is a charismatic leader in the sense of Max Weber (1921); and he finds his European equivalents in the likes of Nigel Farage, Boris Johnson, Marine Le Pen and Viktor Orbán. Moreover, the dominance of social media over the traditional media has dramatically decreased the cost of political organisation and provided a chance for newcomers to establish themselves. Social media have also normalised hate, which was banned from the traditional media for very good reasons after the dramatic experiences of racism, National Socialism and Communism in the twentieth century. Political parties based on portraying political adversaries as enemies in the tradition of Carl Schmitt (2007) are profiting more than any other from these new tools. What differentiates Europe from the US? Party political competition in the US If we are observing a revolt of the lower middle class in both the US and Europe, why has the impact been so different up to now? In the US the first-past-the-post system forces everybody to integrate into one of the two major political parties, the Democrats and the Republicans. Both parties therefore represent very large coalitions, which essentially serve an electoral purpose only and cannot be considered programme parties. The fight for content takes place mainly within, among the different caucuses organised in Congress. What you would find in the European Parliament in the EPP, the European Conservatives and Reformists, the Patriots and the Sovereigntists is, in the US, all assembled in one political family, the Republicans. Equally, what you would find in the liberal Renew group, the Socialists and Democrats, the Greens and the Left in Europe has to cohabit within the Democrat Party in the US. The Republican Party can be understood as a broad political coalition which has effectively fallen under the control and leadership of what in Europe might rather be considered the line of Viktor Orbán and the Patriots. The other tendencies are still there but marginalised. They can no longer determine the overall direction but might still be sufficiently strong in Congress to block decision-making or align with the other side when they regard policies as being against their core convictions, such as creating unsustainable debt levels, or on matters related to national security and defence.Europe and its national electoral systemsEuropean states are not immune either. The British, the French and the Hungarian electoral systems provide an oversized seat result for the relatively strongest party, and this increases the opportunities of the extremes. Brexit can be considered one outcome of this. The current political stalemate in France, where the extreme right and the extreme left are holding the system hostage, is another. In systems of pure proportional representation, by contrast, you need more than 50% of the votes for one party or a coalition of several parties to take effective political control. In a first-past-the-post system, as in the US, 20%–30% of the electorate is more than sufficient to take over one of the major political parties and, with that, to potentially run the country. Pure proportional systems therefore provide better protection against a right-wing or left-wing populist takeover. The EU political system On the federal level of the EU on the other hand, the incentives are there for cooperation across the political centre. Decisions in the Council need an oversized qualified majority; the election of a European Commission president by the European Parliament requires an absolute majority of the members elected to the house. These majorities can regularly be found only through cooperation across the aisle and by transcending the traditional left–right schism. The desire to hold important political offices in the EU, therefore, requires a willingness to compromise and forces political parties that are more on the right or on the left to look towards the centre. The final vote on the von der Leyen Commission was carried by a large cross-cutting alliance of the Christian Democrat EPP, the liberal Renew and the Socialists, complemented by the constructive right, centred on Italian Prime Minister Giorgia Meloni, and the constructive left, led by the German Greens. The more radical elements of both the European Conservatives and Reformists and Green groups voted against. The institutional system has a strong impact on the political culture in the EU, which is a culture of cooperation. The political system favours the creation of unity—as the condition for stability on a historically, geographically and culturally divided continent—and therefore the centre. The absence of permanent coalitions and the lack of fixed roles of majority and minority in the division of power in the EU create the opportunity to integrate those on the very right and the very left who are not opposed to the system as such and whose primary aim is not to destroy it: the constructive right and the constructive left. Contrary to the US, where the destructive and anti-system elements can dominate the rest of their respective coalitions, inside the EU that destructive right and left find themselves isolated unless they stop being the system opposition. That is why Ursula von der Leyen was well advised to integrate Raffaele Fitto from Brothers of Italy (Fratelli d’Italia) as vice-president of the European Commission and, at the same time, to continue a constructive dialogue with the co-leader of the Green group Terry Reincke on the importance of climate change policies and actions to preserve the rule of law. Brothers of Italy had not only supported the new asylum pact, in contrast to Viktor Orbán, but had also supported Ukraine in a steadfast fashion, including in the vote to ensure Ukraine profits from the interest on Russian assets. Brothers of Italy is part of the constructive right, stabilising the political system of the EU. Is the EU therefore safe? The EU is a federal union of citizens and states and therefore dependent on support in each and every member state. It is only as strong as its weakest link. Even though, on average, support for EU institutions is close to historical highs and well above the support levels for national institutions, that is not enough (EU 2024). Before Brexit the EU’s weakest link in terms of overall support was the UK. Nowadays its weakest link is France, which is paralysed by the combination of a destructive right, on the one hand, and on the other, a destructive left which, in the form of France Unbowed (La France Insoumise), is holding the socialists and greens hostage. And both extremes are cooperating in the destabilisation of the state. That smells like Weimar. What needs to be done? An agenda for the next phase of European integration An agenda for strength In the worlds of Trump, Vladimir Putin and Xi Jinping, strength is the only thing that counts. Internationally and geopolitically, we are back in the world of nineteenth-century power politics. The rules of the game have changed, and the quicker we understand this the better. We are threatened at the same time from the inside and from the outside. From the inside, by the destructive nationalist populist right and left that are trying to hollow out the political order, established after 1945, based on parliamentary democracy, the rule of law and European integration. From the outside, by aggressive nationalist power politics. And more often than not, these two are connected. The seatbelts need to be fastened. Defending ourselves from threats both inside and outside has to start with the recognition that we are confronted with real issues, not just imagined ones. Hyper-inflation was real and is still stored in today’s price levels. The accumulated inflation during Joe Biden’s four-year term was above 20% (US Bureau of Labour Statistics n.d., author’s calculations), and it will not have been very different in Europe. Growth rates are very low, while debt is rising, and with it the difficulty of states to intervene in times of absolute need. Uncontrolled mass immigration happened. Our capacity to defend our continent is seriously compromised. International respect comes from strength, not from weakness. This is not a case for mass psychotherapy, but political action: the political agenda has to change. The European Parliament nowadays plays a key role in setting the agenda for the upcoming legislative term. Ursula von der Leyen had to negotiate with all the political forces of good will about the programme for the next five years to have any chance of being elected by an absolute majority of the members of the house. The need for the Commission president to negotiate the programme also changes the role of the European political foundations. The Wilfried Martens Centre for European Studies has contributed hundreds of precise policy proposals to the process of reflection in a document entitled The 7Ds for Sustainability. This text centres on defence, debt, digitalisation, demography, democracy, decarbonisation and de-risking globalisation in order to enrich the debate and help set a new agenda (Wilfried Martens Centre for European Studies n.d.). The outcomes of the European elections matter, as they should. With the Greens and the Liberals having together lost more than 50 seats and the so-called progressive majority between the Liberals, Greens, Socialists and the far left having disappeared, European Commission priorities for this legislature have markedly changed. Competitiveness and security, comprising both defence and migration, including border protection, have become the top two priorities. This is underpinned by the different composition of the European Commission and the European Council. With half of the members of both institutions coming from the EPP and the EPP occupying the centre space in the European Parliament as well, concerns about competitiveness, migration and defence, critical to strengthening our continent, which is being challenged from both within and without, now have a stronger voice. An agenda for growth: implementing the Draghi report Like every other policy paper, the Letta and Draghi reports can and are being discussed in detail. But no one can dispute the competence of Mario Draghi in matters monetary and economic. The Draghi report will therefore provide a most important reference point. His report comprises six basic truths that will inspire the legislative proposals of the European Commission in this term, even more so as it was requested by the European Commission president herself. Draghi brings everybody face to face with his or her responsibilities. From my personal reading, his report can be summarised as follows: • Investment is the precondition for future growth. Europe is lagging behind in high-tech investment and has largely lost the new digital economy race. This can be identified as the key reason for the difference in per capita growth between the US and the EU. Mid-tech–based industry, such as the car industry, which provides our current economic backbone, is coming under increasing competitive pressure from China.• Without investment, annual productivity growth falls behind. Europe could maintain and improve its living standard by considerably increasing female and older-age participation in the workplace. Worsening demographics make that quantitative input increase more difficult.• The EU has to return to the strategy of scaling through the development of its own internal market, especially in the less-integrated areas of the service sector.• The Banking Union and the Capital Markets Union are critical to assisting high-tech investors in their efforts to scale beyond national boundaries. Given that high-tech means not only high return but also high risk, venture capital is necessary to accompany that growth.• We have regulated for risk and not for opportunity, as is typical for ageing societies. The regulatory burden has to be reduced.• Common public debt has to come in as a residual answer, dependent in volume on the progress in the above-mentioned areas. Consensus on common European debt could be achieved in the area of defence, which could be considered a European public good. Common European financing would also contribute to more equal burden sharing. An agenda for migration Migration is at the core of right-wing populist parties’ growth. It brings together social and cultural challenges: social challenges in the form of competition for scarce public services and support, and cultural ones in the form of a challenge to traditional constructions of national and cultural identity. Here society is falling apart. What is a promise of improved personal services for the upper middle class and the liberal and green parties representing them is, for the lower middle class, a threat of lower salaries and increased competition for state services, including education. Experiences during the negotiations to form the current Swedish and Finnish governments showed that a tough policy on migration was the one area where populist parties were not ready to adapt or compromise. Preliminary voting analysis from the European Parliament demonstrates that while right-wing populist parties show some diverging views on economics, they clearly differentiate themselves from other political forces on the cultural axis of the political divide (Welle and Frantescu 2025). We have experienced a radicalisation of our political space following the events of mass migration, both in the Mediterranean and following Russia’s aggression in Syria and Ukraine. Russia even actively tries to destabilise its neighbours by transporting refugees to their common borders or via Belarus. Denmark is the only country in the EU that has managed to reduce established right-wing populist parties back to single digits. It has done so by establishing a consensus in society on a tough migration policy that is being continued by its current Social Democrat–led government. At the same time, Denmark represents a country with one of the highest standards of societal development. ‘Going to Denmark’ is even a reference in international development policy. Danish migration policy will therefore need to be studied in more detail so as to understand how far it can provide guidance for the EU as a whole or not. Speedier implementation of the migration pact voted on in the European Parliament in April 2024 therefore has to be a prime priority. But it cannot be the last step. Integration capacity has to become critical to migration policy. An agenda for defence Those who cannot defend themselves are inviting their stronger neighbours to aggress them. A look at maps of Russia over the last 500 years shows us that Russia has expanded continuously at the expense of its weaker neighbours—from basically the city territory of Moscow to becoming the largest state on earth. The military submission of its neighbours is the Russian business model. The peaceful and voluntary integration of the European space, based on the rule of law, is the business model of the EU. These concepts are now geographically colliding. And the grey zone in between, at the very least, is now in danger of Russian aggression and occupation, as demonstrated in Ukraine, where Russia is trying to reintroduce the logic of nineteenth-century empire to the European continent. The US will focus its own efforts increasingly on Asia and the attempt to contain China. Europe will therefore have to provide the lion’s share of its own conventional defence. This can only be effectively organised by making use of the possibilities provided by the EU. The Martens Centre has provided a plan in 10 steps—the European Defence Pyramid—on how to achieve a viable European defence under changed geopolitical circumstances. Starting with more basic ideas at the beginning, it has now been outlined in considerable detail with the help of external experts in The 7Ds for Sustainability – Defence Extended (Ciolan and Welle 2024). Progress is already visible. The Martens Centre suggested the creation of the office of a European defence commissioner and a standing defence committee in the European Parliament. Both are now reality. The proposed increase in financial support for military mobility has now been achieved through the decision of the European Commission to allow the use of regional funds for this purpose. And the new defence commissioner has suggested the creation of an ‘EU DARPA’2 for military research, as developed in the concept papers. Living in dangerous times Europe is being simultaneously challenged internally and externally: internally by right-wing populist parties, which have now conquered nearly 30% of the political space; externally by Russia, which is trying to reintroduce the nineteenth-century rules of empire through military aggression with at least the benevolent acceptance of China. These challenges are not unrelated. Some of the populist parties on the right and left openly make the case for China and Russia. Viktor Orbán’s Hungary has even been rewarded by China with massive investments and the status of an ‘all-weather partner’. Ever since the collapse of the Soviet Union in 1991, we have been living in a world of cooperation. System competition between East and West was replaced by globalisation. System seemingly did not matter anymore. Production went wherever it was the cheapest. Communist China became the capitalists’ best friend in exchange for the transfer of superior technology. In analogy to Lenin, China sold the capitalists the rope with which to hang themselves. The price paradigm replaced the security paradigm. With China now so strong that it can and does challenge the US economically and politically for number-one status globally, and strongly on the rise militarily, this phase has ended. China is preparing for the military strangulation, if not occupation of Taiwan, as demonstrated by its ever more menacing sea exercises around the island every year. Russia waged a war against Ukraine only days after establishing a ‘no limits partnership’ with China, testing the global order established after 1945 when conquering and annexing the territory of a weaker neighbour was outlawed. The West is being challenged both in Asia and in Europe. To defend our European way of life we need to be strong economically and militarily. We need to close the rifts in our societies and constructively end the revolt of the lower middle class. System competition is back, and the security paradigm has replaced the price paradigm. Cite:  Welle, K. (2025). Donald Trump, the revolt of the lower middle class and the next phase of European integration. European View, 0(0). https://doi.org/10.1177/17816858251345566 Footnotes 1. This article is a revised version of an article that originally appeared on the website of the research centre Groupe d’études géopolitiques on 19 March 2025 with the title ‘Trump and the next phase of European integration’. See https://geopolitique.eu/en/2025/03/19/after-trump-the-next-phase-of-european-integration/. Used by permission.2. The Defense Advanced Research Projects Agency is a US Department of Defense agency focused on developing breakthrough technologies for national security. References Bank of America Institute. (2024). Paycheck to paycheck: What, who, where, why? 22 October. https://institute.bankofamerica.Com/content/dam/economic-insights/paycheck-to-paycheck-lower-income-households.pdf. Accessed 24 April 2025.Ciolan I. M., Welle K., eds. (2024). The 7Ds for sustainability – Defence extended. https://www.martenscentre.eu/publication/the-7ds-defence-extended/. Accessed 24 April 2025.EU. (2024). Standard Eurobarometer 102 – Autumn 2024. https://europa.eu/eurobarometer/surveys/detail/3215. Accessed 24 April 2025.European Parliament. (2024). European Parliament 2024–2029. Constitutive session. https://results.elections.europa.eu/en/european-results/2024-2029/. Accessed 24 April 2025.Focus online. (2021). Wer wählte wie? Die Analyse. Frauen und Rentner lassen Union abstürzen, die Jungen bestimmen die Kanzlermacher. 27 September. https://www.focus.De/politik/deutschland/bundestagswahl/analyse-der-bevoelkerungsgruppen-wer-waehlte-wie-akademiker-und-reiche-waehlen-gruen-renter-spd_id_24280744.html. Accessed 24 April 2025.Ipsos. (2024). Sociologie des électorats – Législatives 2024. 30 June. https://www.ipsos.com/sites/default/files/ct/news/documents/2024-06/ipsos-talan-sociologie-electorats-legislatives-30-juin-rapport-complet.pdf. Accessed 24 April 2025.Moreau P. (2024a). AfD: The German far-right at a dead end. Fondapol, 6 November. https://www.fondapol.org/en/study/afd-the-german-far-right-at-a-dead-end/. Accessed 24 April 2025.Moreau P. (2024b). The FPÖ and the challenge of Europe: Ideological radicalism and electoral constraints in Austria. Fondapol, 29 October. https://www.fondapol.org/en/study/the-fpo-and-the-challenge-of-europe-ideological-radicalism-and-electoral-constraints-in-austria/. Accessed 24 April 2025.Reckwitz A. (2020). Society of singularities. Cambridge: Polity.Rydgren J., ed. (2013). Class politics and the radical right. London: Routledge.Schmitt C. (2007). The concept of the political. Chicago: University of Chicago Press.CrossrefUS Bureau of Labour Statistics. (n.d.). CPI inflation calculator. https://www.bls.gov/data/inflation_calculator.htm. Accessed 24 April 2025.Weber M. (2010). Politik als Beruf [Politics as a vocation], 11th edn. Berlin: Duncker & Humblot.Welle K., Frantescu D. (2025). (Forthcoming study on voting behaviour in the European Parliament in the 2019–24 legislature).Wilfried Martens Centre for European Studies (n.d.). Publications: The 7Ds. https://www.martenscentre.eu/publication/#the-7ds. Accessed 24 April 2025.

Energy & Economics
Economical relationship between EU European union and India international trade of Europe, India, international trading, economics concept, investments, flags set on coin euros background

EU–India Free Trade Agreement and its Possible Economic and Geopolitical Ramifications.

by Krzysztof Sliwinski

Abstract The EU-India–Trade Agreement (FTA) negotiations, relaunched in 2022 after a nine-year hiatus, represent a significant step towards deepening economic and geopolitical ties between the European Union (EU) and India. The agreement, with its potential to eliminate tariffs, reduce non-tariff barriers, and enhance market access, particularly in services such as telecommunications, could substantially increase trade volume between the two entities, offering promising economic prospects. By creating a combined market of over 1.5 billion people, the FTA offers significant economic opportunities in sectors such as chemicals, machinery, and transport equipment. More importantly, it serves as a geopolitical tool aligned with the EU’s Indo-Pacific strategy, aiming to strengthen partnerships with like-minded democracies and potentially counterbalance China’s increasing influence, reassuring them about its geopolitical implications. Therefore, this study examines the potential economic and geopolitical opportunities and challenges associated with the EU-India FTA. It concludes that, perhaps unsurprisingly, much depends on the foreign and security policies of great powers such as the US, China, and Russia. Key Words: EU, India, Free Trade Area, Geopolitics Introduction Negotiations regarding the EU-India Free Trade Agreement (FTA) were initially launched in 2007. The talks were suspended in 2013 due to a gap in ambition and resumed after a nine-year pause with a formal relaunch on June 17, 2022, announced by Union Minister Piyush Goyal and European Commission Executive Vice-President Valdis Dombrovskis in Brussels.[i] This relaunch also included separate negotiations for an Investment Protection Agreement (IPA) and an Agreement on Geographical Indications (GIs), reflecting a broader agenda to enhance bilateral economic relations. The EU is India's largest trading partner, accounting for €124 billion in goods trade by 2023 (12.2% of the total Indian trade). India is the EU’s ninth-largest trading partner, representing 2.2% of the total trade in goods. Trade in services reached €59.7 billion in 2023, nearly double the 2020 level, with a significant portion being digital services, highlighting the growing economic interdependence.[ii]       *Data acquired from the European Commission at: https://policy.trade.ec.europa.eu/eu-trade-relationships-country-and-region/countries-and-regions/india_en Negotiation Rounds and Progress Since the relaunch, ten rounds of negotiations have been conducted, with the following timeline detailing key developments:   ·         Acquired through Grok. Prompt: What is the latest on the EU – India FTA Negotiations? At: https://x.com/i/grok?conversation=1922705918707265888 (14 May 2025) What is so important regarding FTAs? Free Trade Areas (FTAs) have become the cornerstone of international trade policy by reshaping global economic landscapes and geopolitical dynamics. These agreements aim to reduce trade barriers and foster economic cooperation among member states; however, their implications extend far beyond mere economic exchanges. Economic Consequences of Free Trade Areas One of the primary economic consequences of FTAs is the creation of new trade opportunities among the member states. By reducing tariffs and non-tariff barriers, FTAs encourage specialisation and efficiency and increase trade volumes. For instance, the African Continental Free Trade Area (AfCFTA) is expected to boost intra-African trade by creating a single market for goods and services that can unlock regional value chains and enhance economic integration.[i]  Similarly, the ASEAN-China Free Trade Area (ACFTA) has expanded trade between Indonesia and China, although the benefits may be asymmetric, with Indonesia's imports growing faster than exports.[ii] However, FTAs can also lead to trade diversion, in which member states import goods at the expense of non-member countries. This phenomenon can harm non-members by reducing market access and undermining global trade liberalisation efforts.[iii] For example, the Trans-Pacific Partnership (TPP), which never entered into force,[iv] and the Transatlantic Trade and Investment Partnership (TTIP), which shared the same fate, were criticised for potentially marginalising non-member states and creating a fragmented global trade system.[v] FTAs often attract foreign direct investment (FDI) by creating more integrated markets. For instance, the Regional Comprehensive Economic Partnership (RCEP) has stimulated FDI inflows into member states such as Japan, Australia, and New Zealand, contributing to GDP growth.[vi] Similarly, establishing Free Trade Zones (FTZs) in China has promoted financial employment and industrial upgrading, particularly in the middle and western regions, balancing regional development.[vii] However, the benefits of FTAs are not always distributed evenly. Some studies suggest that while FTAs may boost economic growth for member states, non-members may experience adverse impacts such as reduced trade volumes and deteriorating terms of trade.[viii] Geopolitical Consequences of Free Trade Areas FTAs often serve as tools for geopolitical influence, allowing powerful states to shape their global economic order. For example, the TTIP and TPP were partly designed to counterbalance China's rising economic influence and establish new trade standards.[ix] Similarly, the RCEP has reinforced China's economic leadership in Asia, while the United States–Mexico–Canada Agreement (USMCA) has allowed the United States to maintain its influence in North America.[x] For smaller countries like Vietnam, FTAs can enhance international recognition and strategic balancing between major powers, contribute to regional integration and stability, influence internal political legitimacy and power dynamics, and provide tools to manage geopolitical risks and external shocks. FTAs, especially New Generation Free Trade Agreements (NGFTAs) such as the EU-Vietnam Free Trade Agreement (EVFTA), act as economic instruments and geopolitical tools that shape Vietnam's global and regional order position.[xi] The geopolitical implications of FTAs are evident in their impact on international trade governance. The proliferation of mega-regional trade agreements has challenged the multilateral trading system under the World Trade Organization (WTO), creating a fragmented trade landscape.[xii] This shift has raised concerns about the marginalisation of developing countries and the erosion of global trade rules. FTAs can also mitigate interstate conflict by increasing war costs. For instance, the African Continental Free Trade Area (AfCFTA) catalyses regional peace, fostering economic interdependence and reducing the likelihood of conflict.[xiii] Similarly, the ASEAN-China Free Trade Area (ACFTA) has strengthened economic ties between Indonesia and China, reducing potential geopolitical tensions in the region.[xiv] FTAs are not always effective in preventing conflict. In some cases, they may exacerbate tensions by creating unequal benefits or excluding certain states. For example, the TPP and TTIP have been criticised for their exclusionary nature, which may have contributed to trade tensions between member and non-member states.[xv] FTAs often serve as building blocks for broader regional integrations. For instance, the EU began a series of FTAs and customs unions before evolving into a deeply integrated economic and political bloc. Similarly, AfCFTA is part of a broader vision for African economic integration, aiming to create a single market and customs union. The proliferation of FTAs has also raised concerns regarding the future of multilateralism. The Doha Round of WTO negotiations has stalled, and the rise of mega-regional trade agreements has further fragmented the global trade system.[xvi] This has led to calls for a more inclusive and equitable approach to trade governance that ensures that developing countries are not left behind.Free trade has profound economic and geopolitical consequences. It shapes global trade patterns, influences regional stability, and affects the distribution of wealth and power. Although FTAs offer significant economic growth and integration opportunities, they also pose inequality, exclusion, and sustainability challenges. EU – India FTA Opportunities Economic The potential Free Trade Agreement (FTA) between the EU and India presents significant economic opportunities for the EU driven by eliminating trade barriers, increased market access, and deeper economic integration. First, the services sector is a critical area where the EU can benefit significantly from an FTA with India. The EU's services exports to India could more than double, while India's services exports to the EU would increase by approximately 50%.[xvii] This growth is attributed to reduced trade barriers and the liberalisation of sectors such as telecommunications, which has been identified as a key area for reform. Arguably, half of the predicted export expansion is driven by reforms to domestic regulations, particularly in the telecommunications sector, which could further enhance the EU's competitive position in the Indian market. The FTA is expected to eliminate tariffs and reduce non-tariff barriers, creating a more level-playing field for the EU businesses in India. The FTA of EU-Indian trade could approximately double, particularly in business services.[xviii] This liberalisation would increase trade volumes and lead to structural changes in both economies, with the EU potentially gaining a competitive advantage in high-value-added sectors. The FTA would create a combined market of over 1.5 billion people, enabling the EU and India to reap the benefits of economies of scale. This integration would be particularly beneficial for manufactured goods, such as chemicals, machinery, and transport equipment, where intra-industry trade could lead to efficiency gains and cost reductions. These economies of scale could also give the EU a competitive edge in global markets, helping to stimulate economic growth and job creation.[xix] Geopolitics and security The EU–India FTA is an economic arrangement and a geopolitical tool that aligns with the EU's broader objectives in the Indo-Pacific region. The EU's geopolitical position and security interests are central to understanding the opportunities and challenges presented by the FTA. The EU's engagement with India through the FTA is deeply rooted in its Indo-Pacific strategy, formally launched in 2021. This reflects the EU's ambition to strengthen its presence in the Indo-Pacific region, an area increasingly characterised by multipolar competition, particularly between the United States and China. The EU's strategy is driven by recognising that the Indo-Pacific is the "pivotal region" of the 21st century, and its economic and security dynamics will shape global governance.[xx] While the EU's new strategy does not take a confrontational stance towards China, it reflects increased concerns about Beijing’s growing assertiveness and the implications of the US-China rivalry for Europe. The strategy advocates for a multifaceted engagement with China, encouraging cooperation and protecting EU interests and values. An FTA with India is a key component of the EU’s strategy. India's growing economic and political influence in the Indo-Pacific region makes it a critical partner for the EU. The EU views India as a like-minded democracy that shares concerns about China's assertiveness and the need for a rule-based international order. This alignment creates a unique opportunity for the EU to deepen its strategic partnership with India by leveraging economic cooperation to strengthen geopolitics.[xxi] The EU's engagement with India is part of its broader effort to strengthen security cooperation in the Indo-Pacific region. The EU and India share concerns regarding maritime security, cybersecurity, and the challenges posed by China's growing influence in the region. The FTA can serve as a foundation for deeper collaboration on security issues such as counterterrorism, non-proliferation, and disaster management.[xxii] The EU's security strategy in the Indo-Pacific also emphasises the importance of upholding a rule-based international order. An FTA with India can help promote this objective by reinforcing shared norms and standards in trade, investment, and intellectual property rights. This alignment is critical in China's increasing assertiveness and need for like-minded partners to counterbalance its influence.[xxiii] The EU's approach to an FTA is also shaped by its identity as a normative power. The EU has historically sought to promote its values, such as human rights, environmental sustainability, and social justice, through trade agreements. The FTA with India allows for advancing these values by incorporating labour rights, environmental protection, and sustainable development clauses.[xxiv] However, its geopolitical and economic realities constrain the EU’s ability to promote its normative agenda. The EU must be pragmatic and balance its value-based approach with the need to secure concessions on market access and other economic interests. This tension is evident in EU trade policy, where strategic and economic interests often precede normative objectives.[xxv] EU – India FTA Challenges Existing literature on the challenges the EU–India FTA poses is sparse. Generally, scholars admit that FTA, especially those negotiated by the EU, can face varying degrees of politicisation and contestation from civil society, as seen with TTIP and CETA.[xxvi] This finding suggests the potential for public opposition to new FTAs. In addition, the EU often pursues ambitious agreements beyond tariff reductions, including behind-the-border measures and regulatory cooperation.[xxvii] While FTAs aim to boost trade, their impact can be uneven. Some agreements have failed to entirely realise the expected benefits of trade and investment flows.[xxviii] There are also concerns that FTAs may reduce policy space for developing country partners to pursue alternative development strategies.[xxix] Economic However, several economic challenges regarding the EU-India negotiated FTA can be easily identified. To begin, the talks were stuck for nearly two decades, mainly because the EU and India had different goals. The EU wants deeper integration, including investment and competition policies, whereas India prefers a more limited agreement. This has led to repeated delays, and little progress has been made. Specifically, market access has been a point of contention, especially in sensitive sectors such as agriculture and automobiles. India imposes high tariffs on EU cars (60-100%) compared to the EU's 6.5% on Indian cars, and it protects its agricultural sector, making it difficult for EU farmers to enter the market. The EU also wanted India to open up services such as accountancy and legal work, but India resisted due to fears of competition.[xxx] The EU has strict rules, such as the Carbon Border Adjustment Mechanism (CBAM) and sustainability directives, which India sees as overregulatory and burdensome. This creates friction, as India worries these rules could act as trade barriers. There are also issues with intellectual property rights, where the EU wants stronger protection, but India resists keeping generic drugs affordable.[xxxi] Finally, the EU has invested heavily in India, around €100 billion by 2020, but India's decision to end bilateral investment treaties in 2016 and stalled talks on investment protection since 2023 creates uncertainty. There is also a trust deficit, with India fearing EU regulatory overreach and the EU worrying about compliance.[xxxii] Geopolitics and security As mentioned above, the EU's engagement with India is part of its broader strategy to deepen ties with the Indo-Pacific region. This strategy is driven by the need to counterbalance rising powers like China and enhance its global influence. The EU's Indo-Pacific Strategy and the Global Gateway Initiative reflect this ambition, emphasising the importance of strategic partnerships with like-minded actors such as India.[xxxiii] China's growing economic and military presence in the Indo-Pacific region poses a significant challenge for the EU and India. The EU has expressed concerns about China's assertive behaviour in the South China Sea and its Belt and Road Initiative (BRI), which is seen as a tool for expanding Chinese influence.[xxxiv] The EU and India share a common interest in promoting rules-based international order and countering China's increasing dominance. This alignment has been a key driver of their strategic partnership, with both sides seeking to enhance trade, technology, and security cooperation.[xxxv] The Russia-Ukraine war has further complicated the geopolitical landscape, with significant implications for EU-India relations. While the EU has strongly supported Ukraine, India has maintained a more neutral stance by prioritising its strategic partnership with Russia.[xxxvi] This divergence in approach has created tensions, particularly in terms of energy security and sanctions, which could impact FTA negotiations. The EU and India face various traditional security challenges that affect their strategic partnerships and FTA negotiations. China's military modernisation and assertive behaviour in the Indo-Pacific region have heightened security concerns for the EU and India. The EU has expressed support for India's role in maintaining regional stability, particularly in China's actions in the South China Sea and along the India-China border.[xxxvii] The EU and India are also concerned about regional instability, including Myanmar and the Korean Peninsula. These issues underscore the need for enhanced security cooperation between the two partners.[xxxviii] As for non-traditional security challenges, climate change and energy security are key areas of cooperation between the EU and India. The EU has emphasised the importance of transitioning to renewable energy sources, while India has sought to balance its energy needs with environmental concerns.[xxxix] In addition, the increasing importance of digital technologies has highlighted the need for cooperation in cybersecurity and data protection areas. The EU and India are interested in collaborating with digital infrastructure and innovation.[xl] Conclusion According to the European Parliament, “India was among the first countries to establish diplomatic relations with the European Economic Community in 1962. With the formal establishment of the EU in 1993, India signed a Cooperation Agreement in 1994, which opened the door to broader political interaction between the two. […] The relationship was upgraded to a 'Strategic Partnership' during The Hague's 5th India-EU Summit in 2004. From 1980 to 2005, EU-India trade grew from €4.4 billion to €40 billion. The EU was India's largest trading partner at the time, accounting for 22.4% of Indian exports and 20.8% of imports”.[xli] Despite these incentives, India's historical emphasis on autonomy and self-reliance can sometimes clash with the EU's multilateral approach.[xlii] Further, India's complex relationship with Russia, particularly its continued reliance on Russian defence technology, presents a challenge for closer EU-India security cooperation.[xliii] Finally, although the EU and India share concerns about China's growing influence, their strategies for managing this challenge may differ. These issues, if left unaddressed, could limit the potential for a deeper and more strategic partnership between the EU and India.[xliv] Time will typically show how much the FTA between the EU and India will facilitate closer security and geopolitical links. Much depends on great powers' foreign and security policies, such as the US, China, and Russia. Their intricate games make the geopolitical chessboard fascinating, if not difficult to predict. REFERENCES  [1] EU and India kick-start ambitious trade agenda. (2022, June 17). Directorate-General for Trade and Economics. https://policy.trade.ec.europa.eu/news/eu-and-india-kick-start-ambitious-trade-agenda-2022-06-17_en[2] EU trade relations with India. Facts, figures and latest developments. (n.d.). European Commission. https://policy.trade.ec.europa.eu/eu-trade-relationships-country-and-region/countries-and-regions/india_en[3] Joseph, J. E. (2024). Critical factors to consider in the trade–security nexus of the African Continental Free Trade Area: A catalyst for establishing peace. African Security Review https://doi.org/10.1080/10246029.2024.2303459[4] Kurniawan, K. (2011). The Economic, Environmental, and Geopolitical Impacts of ASEAN-China Free Trade Area (ACFTA) on Indonesia. https://www.researchgate.net/publication/349858225_THE_IMPACT_OF_ASEAN-CHINA_FREE_TRADE_AREA_ACFTA_AGREEMENT_ON_INDONESIA'S_MAJOR_PLANTATION_EXPORT_COMMODITIES[5] Pasara, M. T., & Dunga, S. H. (2023). Impact of Regional Trade Agreements on Economic Growth: An Econometric Analysis. https://doi.org/10.1007/978-3-031-30541-2_6[6] Following the U.S. withdrawal, the remaining 11 nations (without the U.S.) negotiated a revised agreement called the CPTPP, which is now in force.[7] Tellis, A. J. (2014). The geopolitics of the TTIP and the TPP. Adelphi Series. https://doi.org/10.1080/19445571.2014.1019720[8] Zhang, Q., & Wang, Q. (2024). Impact assessment of multilateral trade agreements on regional economic growth based on quantitative model optimization. Applied Mathematics and Nonlinear Sciences. https://doi.org/10.2478/amns-2024-2831[9] Chen, Y., & Wu, S. (2024). Can the Founding of Free Trade Zones Lead to Financial Employment Boom? --Based on Multi-period Double-difference model. Highlights in Business, Economics and Management. https://doi.org/10.54097/tfrq5c45[10] Zhang, Q., & Wang, Q. (2024). Impact assessment of multilateral trade agreements on regional economic growth based on quantitative model optimization. Applied Mathematics and Nonlinear Sciences. https://doi.org/10.2478/amns-2024-2831[11] Tellis, A. J. (2014). The geopolitics of the TTIP and the TPP. Adelphi Series. https://doi.org/10.1080/19445571.2014.1019720[12] Zhang, Q., & Wang, Q. (2024). Impact assessment of multilateral trade agreements on regional economic growth based on quantitative model optimization. Applied Mathematics and Nonlinear Sciences. https://doi.org/10.2478/amns-2024-2831[13] Boguszewski, M. (2022). Political economy of domestic influences of free trade agreements: A case study of the agricultural sector in Vietnam (Doctoral dissertation, The Education University of Hong Kong).[14] Palit, A. (2017). Mega-regional trade agreements and non-participating developing countries: Differential impacts, challenges and policy options: Competition and Change. https://doi.org/10.1177/1024529417729324[15] Joseph, J. E. (2024). Critical factors to consider in the trade–security nexus of the African Continental Free Trade Area: A catalyst for establishing peace. African Security Review. https://doi.org/10.1080/10246029.2024.2303459[16] Kurniawan, K. (2011). The Economic, Environmental, and Geopolitical Impacts of ASEAN-China Free Trade Area (ACFTA) on Indonesia.[17] Tellis, A. J. (2014). The geopolitics of the TTIP and the TPP. Adelphi Series. https://doi.org/10.1080/19445571.2014.1019720[18] Palit, A. (2017). Mega-regional trade agreements and non-participating developing countries: Differential impacts, challenges and policy options: Competition and Change. https://doi.org/10.1177/1024529417729324[19] Nordås, H. K. (2023). Services in the India-EU free trade agreement. https://doi.org/10.1016/j.inteco.2023.100460[20] Felbermayr, G., Mitra, D., Aichele, R., & Gröschl, J. K. (2017). Europe and India: Relaunching a Troubled Trade Relationship. Research Papers in Economics.[21] Khorana, S., Perdikis, N., & Kerr, W. A. (2015). Global economies of scale in the EU-India trade agreement: are they the key to a return to economic growth? Asia Europe Journal, 13(1), 41–55. https://doi.org/10.1007/S10308-014-0404-8[22] Carteny, A., & Tosti Di Stefano, E. (2024). The EU and the Indo-Pacific: The path towards a comprehensive strategy. In The European Union in the Asia-Pacific: Rethinking Europe’s strategies and policies (pp. 406–428). Routledge. https://doi.org/10.4324/9781003336143-25[23] Kaura, V., & Singh, P. (2022). European Union’s Indo-Pacific Strategy: Policy Implications For India. Indian Journal of Public Administration, 68(4), 542–555. https://doi.org/10.1177/00195561221098175[24] Grgić, G. (2023). Ambition, meet reality: The European Union’s actorness in the Indo-Pacific. International Political Science Review. https://doi.org/10.1177/01925121231191275[25] Pugliese, G. (2024). The European Union and an “Indo-Pacific” Alignment. Asia-Pacific Review, 31(1), 17–44. https://doi.org/10.1080/13439006.2024.2334182[26] Christou, A., & Damro, C. (2024). Frames and Issue Linkage: EU Trade Policy in the Geoeconomic Turn. Journal of Common Market Studies. https://doi.org/10.1111/jcms.13598[27] Leeg, T. (2014). Normative Power Europe? The European Union in the Negotiations on a Free Trade Agreement with India. European Foreign Affairs Review, 19(3), 335–355. https://dialnet.unirioja.es/servlet/articulo?codigo=4834907[28] De Bièvre, D., & Poletti, A. (2020). Towards Explaining Varying Degrees of Politicization of EU Trade Agreement Negotiations. Politics and Governance, 8(1), 243–253. https://doi.org/10.17645/pag.v8i1.2686[29] Lakatos, C., & Nilsson, L. (2016). The EU-Korea FTA: anticipation, trade policy uncertainty and impact. Review of World Economics, 153(1), 179–198. https://doi.org/10.1007/s10290-016-0261-1[30] Mazyrin, V. M. (2025). The EAEU – Vietnam Free Trade Agreement: Expectations and Reality. Outlines of Global Transformations: Politics, Economics, Law, 17(3), 128–148. https://doi.org/10.31249/kgt/2024.03.07[31] Hurt, S. R. (2012). The EU–SADC Economic Partnership Agreement Negotiations: ‘locking in’ the neoliberal development model in southern Africa? Third World Quarterly, 33(3), 495–510. https://doi.org/10.1080/01436597.2012.657486[32] Khorana, S. (n.d.). The FTA: a strategic call for the EU and India? European Council on Foreign Relations, India’s Foreign Policy. https://ecfr.eu/special/what_does_india_think/analysis/the_fta_a_strategic_call_for_the_eu_and_india[33] Carbon Border Adjustment Mechanism. (n.d.). European Commission, Taxation and Customs Union. https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en[34] Mishra, A. R. (2015). India cancels EU trade talks over pharma ban. Mint. https://www.livemint.com/Politics/JtJwcwhXDZz4c01D9DGk5I/Govt-cancels-trade-negotiatorlevel-meet-with-EU.html[35] Reiterer, M. (2023). The Indo-Pacific taking centre-stage for the EU’s security policy. EuZ – Zeitschrift Für Europarecht. https://doi.org/10.36862/eiz-euz022[36] Singh, M. (2021). India, Europe and Connectivity: From Shared Views on BRI to Mutual Cooperation? (pp. 133–159). Palgrave Macmillan, Singapore. https://doi.org/10.1007/978-981-33-4608-6_6[37] Kugiel, P. (2021). From Destroyer to Preserver? The Evolution of India’s Position Towards the Liberal International Order and Its Significance for the EU–India Strategic Partnership (pp. 253–273). Springer, Cham. https://doi.org/10.1007/978-3-030-65044-5_12[38] Dominguez, R., & Sverdrup-Thygeson, B. (2021). The Role of External Powers in EU–Asia Security Relations (pp. 415–435). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-69966-6_19[39] Reiterer, M. (2023). The Indo-Pacific taking centre-stage for the EU’s security policy. EuZ – Zeitschrift Für Europarecht. https://doi.org/10.36862/eiz-euz022[40] Kirchner, E. J. (2022). EU Security Alignments with the Asia-Pacific. Asian Affairs, 53(3), 542–560. https://doi.org/10.1080/03068374.2022.2082165[41] Singh, M. (2021). Multilateralism in a Changing Global Order: Prospects for India–EU Cooperation (pp. 275–290). Springer, Cham. https://doi.org/10.1007/978-3-030-65044-5_13[42] Aspengren, H. C., & Nordenstam, A. (2021). What Strategies Can Do for Strategic Partnerships: Lessons from the EU’s Strategy on India (pp. 67–85). Springer International Publishing. https://doi.org/10.1007/978-3-030-65044-5_4[43] Delivorias, A., & Mácsai, G. (2024). EU-India free trade agreement. In BRIEFING International Agreements in Progress. European Parliament. https://www.europarl.europa.eu/RegData/etudes/BRIE/2024/757588/EPRS_BRI(2024)757588_EN.pdf  [44] Sinha, Aseema, and Jon P. Dorschner. 2009. “India: Rising Power or a Mere Revolution of Rising Expectations?” Polity 42 (1): 74. https://doi.org/10.1057/pol.2009.19.[45] Chandrasekar, Anunita. 2025. “It’s Time to Upgrade the EU-India Relationship.” https://www.cer.eu/insights/its-time-upgrade-eu-india-relationship.[46] Gare, Frédéric and Reuter Manisha. “Here be dragons: India-China relations and their consequences for Europe”. 25 May 2023. https://ecfr.eu/article/here-be-dragons-india-china-relations-and-their-consequences-for-europe/

Energy & Economics
Comparison of Drought and flood metaphor for climate change and extreme weather.

Global Climate Agreements: Successes and Failures

by Clara Fong , Lindsay Maizland

International efforts, such as the Paris Agreement, aim to reduce greenhouse gas emissions. But experts say countries aren’t doing enough to limit dangerous global warming. Summary Countries have debated how to combat climate change since the early 1990s. These negotiations have produced several important accords, including the Kyoto Protocol and the Paris Agreement. Governments generally agree on the science behind climate change but have diverged on who is most responsible, how to track emissions-reduction goals, and whether to compensate harder-hit countries. The findings of the first global stocktake, discussed at the 2023 UN Climate Summit in Dubai, United Arab Emirates (UAE), concluded that governments need to do more to prevent the global average temperature from rising by 1.5°C. Introduction Over the last several decades, governments have collectively pledged to slow global warming. But despite intensified diplomacy, the world is already facing the consequences of climate change, and they are expected to get worse. Through the Kyoto Protocol and Paris Agreement, countries agreed to reduce greenhouse gas emissions, but the amount of carbon dioxide in the atmosphere keeps rising, heating the Earth at an alarming rate. Scientists warn that if this warming continues unabated, it could bring environmental catastrophe to much of the world, including staggering sea-level rise, devastating wildfires, record-breaking droughts and floods, and widespread species loss. Since negotiating the Paris accord in 2015, many of the 195 countries that are party to the agreement have strengthened their climate commitments—to include pledges on curbing emissions and supporting countries in adapting to the effects of extreme weather—during the annual UN climate conferences known as the Conference of the Parties (COP). While experts note that clear progress has been made towards the clean energy transition, cutting current emissions has proven challenging for the world’s top emitters. The United States, for instance, could be poised to ramp up fossil fuel production linked to global warming under the Donald Trump administration, which has previously minimized the effects of climate change and has withdrawn twice from the Paris Agreement. What are the most important international agreements on climate change? Montreal Protocol, 1987. Though not intended to tackle climate change, the Montreal Protocol [PDF] was a historic environmental accord that became a model for future diplomacy on the issue. Every country in the world eventually ratified the treaty, which required them to stop producing substances that damage the ozone layer, such as chlorofluorocarbons (CFCs). The protocol has succeeded in eliminating nearly 99 percent of these ozone-depleting substances. In 2016, parties agreed via the Kigali Amendment to also reduce their production of hydrofluorocarbons (HFCs), powerful greenhouse gases that contribute to climate change. UN Framework Convention on Climate Change (UNFCCC), 1992. Ratified by 197 countries, including the United States, the landmark accord [PDF] was the first global treaty to explicitly address climate change. It established an annual forum, known as the Conference of the Parties, or COP, for international discussions aimed at stabilizing the concentration of greenhouse gases in the atmosphere. These meetings produced the Kyoto Protocol and the Paris Agreement. Kyoto Protocol, 2005. The Kyoto Protocol [PDF], adopted in 1997 and entered into force in 2005, was the first legally binding climate treaty. It required developed countries to reduce emissions by an average of 5 percent below 1990 levels, and established a system to monitor countries’ progress. But the treaty did not compel developing countries, including major carbon emitters China and India, to take action. The United States signed the agreement in 1998 but never ratified it and later withdrew its signature.  Paris Agreement, 2015. The most significant global climate agreement to date, the Paris Agreement requires all countries to set emissions-reduction pledges. Governments set targets, known as nationally determined contributions (NDCs), with the goals of preventing the global average temperature from rising 2°C (3.6°F) above preindustrial levels and pursuing efforts to keep it below 1.5°C (2.7°F). It also aims to reach global net-zero emissions, where the amount of greenhouse gases emitted equals the amount removed from the atmosphere, in the second half of the century. (This is also known as being climate neutral or carbon neutral.) The United States, the world’s second-largest emitter, is the only country to withdraw from the agreement, a move President Donald Trump made during his first administration in 2017. While former President Joe Biden reentered the agreement during his first day in office, Trump again withdrew the United States on the first day of his second administration in 2025. Three other countries have not formally approved the agreement: Iran, Libya, and Yemen. Is there a consensus on the science of climate change? Yes, there is a broad consensus among the scientific community, though some deny that climate change is a problem, including politicians in the United States. When negotiating teams meet for international climate talks, there is “less skepticism about the science and more disagreement about how to set priorities,” says David Victor, an international relations professor at the University of California, San Diego. The basic science is that:• the Earth’s average temperature is rising at an unprecedented rate; • human activities, namely the use of fossil fuels—coal, oil, and natural gas—are the primary drivers of this rapid warming and climate change; and,• continued warming is expected to have harmful effects worldwide. Data taken from ice cores shows that the Earth’s average temperature is rising more now than it has in eight hundred thousand years. Scientists say this is largely a result of human activities over the last 150 years, such as burning fossil fuels and deforestation. These activities have dramatically increased the amount of heat-trapping greenhouse gases, primarily carbon dioxide, in the atmosphere, causing the planet to warm. The Intergovernmental Panel on Climate Change (IPCC), a UN body established in 1988, regularly assesses the latest climate science and produces consensus-based reports for countries. Why are countries aiming to keep global temperature rise below 1.5°C? Scientists have warned for years of catastrophic environmental consequences if global temperature continues to rise at the current pace. The Earth’s average temperature has already increased approximately 1.1°C above preindustrial levels, according to a 2023 assessment by the IPCC. The report, drafted by more than two hundred scientists from over sixty countries, predicts that the world will reach or exceed 1.5°C of warming within the next two decades even if nations drastically cut emissions immediately. (Several estimates report that global warming already surpassed that threshold in 2024.) An earlier, more comprehensive IPCC report summarized the severe effects expected to occur when the global temperature warms by 1.5°C: Heat waves. Many regions will suffer more hot days, with about 14 percent of people worldwide being exposed to periods of severe heat at least once every five years. Droughts and floods. Regions will be more susceptible to droughts and floods, making farming more difficult, lowering crop yields, and causing food shortages.  Rising seas. Tens of millions of people live in coastal regions that will be submerged in the coming decades. Small island nations are particularly vulnerable. Ocean changes. Up to 90 percent of coral reefs will be wiped out, and oceans will become more acidic. The world’s fisheries will become far less productive. Arctic ice thaws. At least once a century, the Arctic will experience a summer with no sea ice, which has not happened in at least two thousand years. Forty percent of the Arctic’s permafrost will thaw by the end of the century.  Species loss. More insects, plants, and vertebrates will be at risk of extinction.  The consequences will be far worse if the 2°C threshold is reached, scientists say. “We’re headed toward disaster if we can’t get our warming in check and we need to do this very quickly,” says Alice C. Hill, CFR senior fellow for energy and the environment. Which countries are responsible for climate change? The answer depends on who you ask and how you measure emissions. Ever since the first climate talks in the 1990s, officials have debated which countries—developed or developing—are more to blame for climate change and should therefore curb their emissions. Developing countries argue that developed countries have emitted more greenhouse gases over time. They say these developed countries should now carry more of the burden because they were able to grow their economies without restraint. Indeed, the United States has emitted the most of all time, followed by the European Union (EU).   However, China and India are now among the world’s top annual emitters, along with the United States. Developed countries have argued that those countries must do more now to address climate change.   In the context of this debate, major climate agreements have evolved in how they pursue emissions reductions. The Kyoto Protocol required only developed countries to reduce emissions, while the Paris Agreement recognized that climate change is a shared problem and called on all countries to set emissions targets. What progress have countries made since the Paris Agreement? Every five years, countries are supposed to assess their progress toward implementing the agreement through a process known as the global stocktake. The first of these reports, released in September 2023, warned governments that “the world is not on track to meet the long-term goals of the Paris Agreement.” That said, countries have made some breakthroughs during the annual UN climate summits, such as the landmark commitment to establish the Loss and Damage Fund at COP27 in Sharm el-Sheikh, Egypt. The fund aims to address the inequality of climate change by providing financial assistance to poorer countries, which are often least responsible for global emissions yet most vulnerable to climate disasters. At COP28, countries decided that the fund will be initially housed at the World Bank, with several wealthy countries, such as the United States, Japan, the United Kingdom, and EU members, initially pledging around $430 million combined. At COP29, developed countries committed to triple their finance commitments to developing countries, totalling $300 billion annually by 2035. Recently, there have been global efforts to cut methane emissions, which account for more than half of human-made warming today because of their higher potency and heat trapping ability within the first few decades of release. The United States and EU introduced a Global Methane Pledge at COP26, which aims to slash 30 percent of methane emissions levels between 2020 and 2030. At COP28, oil companies announced they would cut their methane emissions from wells and drilling by more than 80 percent by the end of the decade. However, pledges to phase out fossil fuels were not renewed the following year at COP29. Are the commitments made under the Paris Agreement enough? Most experts say that countries’ pledges are not ambitious enough and will not be enacted quickly enough to limit global temperature rise to 1.5°C. The policies of Paris signatories as of late 2022 could result in a 2.7°C (4.9°F) rise by 2100, according to the Climate Action Tracker compiled by Germany-based nonprofits Climate Analytics and the NewClimate Institute. “The Paris Agreement is not enough. Even at the time of negotiation, it was recognized as not being enough,” says CFR’s Hill. “It was only a first step, and the expectation was that as time went on, countries would return with greater ambition to cut their emissions.” Since 2015, dozens of countries—including the top emitters—have submitted stronger pledges. For example, President Biden announced in 2021 that the United States will aim to cut emissions by 50 to 52 percent compared to 2005 levels by 2030, doubling former President Barack Obama’s commitment. The following year, the U.S. Congress approved legislation that could get the country close to reaching that goal. Meanwhile, the EU pledged to reduce emissions by at least 55 percent compared to 1990 levels by 2030, and China said it aims to reach peak emissions before 2030. But the world’s average temperature will still rise more than 2°C (3.6°F) by 2100 even if countries fully implement their pledges for 2030 and beyond. If the more than one hundred countries that have set or are considering net-zero targets follow through, warming could be limited to 1.8˚C (3.2°F), according to the Climate Action Tracker.   What are the alternatives to the Paris Agreement? Some experts foresee the most meaningful climate action happening in other forums. Yale University economist William Nordhaus says that purely voluntary international accords like the Paris Agreement promote free-riding and are destined to fail. The best way to cut global emissions, he says, would be to have governments negotiate a universal carbon price rather than focus on country emissions limits. Others propose new agreements [PDF] that apply to specific emissions or sectors to complement the Paris Agreement.  In recent years, climate diplomacy has occurred increasingly through minilateral groupings. The Group of Twenty (G20), representing countries that are responsible for 80 percent of the world’s greenhouse gas pollution, has pledged to stop financing new coal-fired power plants abroad and agreed to triple renewable energy capacity by the end of this decade. However, G20 governments have thus far failed to set a deadline to phase out fossil fuels. In 2022, countries in the International Civil Aviation Organization set a goal of achieving net-zero emissions for commercial aviation by 2050. Meanwhile, cities around the world have made their own pledges. In the United States, more than six hundred local governments [PDF] have detailed climate action plans that include emissions-reduction targets. Industry is also a large source of carbon pollution, and many firms have said they will try to reduce their emissions or become carbon neutral or carbon negative, meaning they would remove more carbon from the atmosphere than they release. The Science Based Targets initiative, a UK-based company considered the “gold standard” in validating corporate net-zero plans, says it has certified the plans of  over three thousand firms, and aims to more than triple this total by 2025. Still, analysts say that many challenges remain, including questions over the accounting methods and a lack of transparency in supply chains. Recommended Resources This timeline tracks UN climate talks since 1992. CFR Education’s latest resources explain everything to know about climate change.  The Climate Action Tracker assesses countries’ updated NDCs under the Paris Agreement. CFR Senior Fellow Varun Sivaram discusses how the 2025 U.S. wildfires demonstrate the need to rethink climate diplomacy and adopt a pragmatic response to falling short of global climate goals. In this series on climate change and instability by the Center for Preventive Action, CFR Senior Fellow Michelle Gavin looks at the consequences for the Horn of Africa and the National Defense University’s Paul J. Angelo for Central America. This backgrounder by Clara Fong unpacks the global push for climate financing.

Energy & Economics
The image displays mineral rocks alongside US currency and flags of Ukraine and the USA, highlighting the complex relationship involving economics, power, and resources.

Why Zelensky – not Trump – may have ‘won’ the US-Ukraine minerals deal

by Eve Warburton , Olga Boichak

한국어로 읽기 Leer en español In Deutsch lesen Gap اقرأ بالعربية Lire en français Читать на русском Last week, the Trump administration signed a deal with Ukraine that gives it privileged access to Ukraine’s natural resources. Some news outlets described the deal as Ukrainian President Volodymyr Zelensky “caving” to US President Donald Trump’s demands. But we see the agreement as the result of clever bargaining on the part of Ukraine’s war-time president. So, what does the deal mean for Ukraine? And will this help strengthen America’s mineral supply chains? Ukraine’s natural resource wealth Ukraine is home to 5% of the world’s critical mineral wealth, including 22 of the 34 minerals identified by the European Union as vital for defence, construction and high-tech manufacturing. However, there’s a big difference between resources (what’s in the ground) and reserves (what can be commercially exploited). Ukraine’s proven mineral reserves are limited. Further, Ukraine has an estimated mineral wealth of around US$14.8 trillion (A$23 trillion), but more than half of this is in territories currently occupied by Russia. What does the new deal mean for Ukraine? American support for overseas conflict is usually about securing US economic interests — often in the form of resource exploitation. From the Middle East to Asia, US interventions abroad have enabled access for American firms to other countries’ oil, gas and minerals. But the first iteration of the Ukraine mineral deal, which Zelensky rejected in February, had been an especially brazen resource grab by Trump’s government. It required Ukraine to cede sovereignty over its land and resources to one country (the US), in order to defend itself from attacks by another (Russia). These terms were highly exploitative of a country fighting against a years-long military occupation. In addition, they violated Ukraine’s constitution, which puts the ownership of Ukraine’s natural resources in the hands of the Ukrainian people. Were Zelensky to accept this, he would have faced a tremendous backlash from the public. In comparison, the new deal sounds like a strategic and (potentially) commercial win for Ukraine. First, this agreement is more just, and it’s aligned with Ukraine’s short- and medium-term interests. Zelenksy describes it as an “equal partnership” that will modernise Ukraine. Under the terms, Ukraine will set up a United States–Ukraine Reconstruction Investment Fund for foreign investments into the country’s economy, which will be jointly governed by both countries. Ukraine will contribute 50% of the income from royalties and licenses to develop critical minerals, oil and gas reserves, while the US can make its contributions in-kind, such as through military assistance or technology transfers. Ukraine maintains ownership over its natural resources and state enterprises. And the licensing agreements will not require substantial changes to the country’s laws, or disrupt its future integration with Europe. Importantly, there is no mention of retroactive debts for the US military assistance already received by Ukraine. This would have created a dangerous precedent, allowing other nations to seek to claim similar debts from Ukraine. Finally, the deal also signals the Trump administration’s commitment to “a free, sovereign and prosperous Ukraine” – albeit, still without any security guarantees. Profits may be a long time coming Unsurprisingly, the Trump administration and conservative media in the US are framing the deal as a win. For too long, Trump argues, Ukraine has enjoyed US taxpayer-funded military assistance, and such assistance now has a price tag. The administration has described the deal to Americans as a profit-making endeavour that can recoup monies spent defending Ukrainian interests. But in reality, profits are a long way off. The terms of the agreement clearly state the fund’s investment will be directed at new resource projects. Existing operations and state-owned projects will fall outside the terms of the agreement. Mining projects typically work within long time frames. The move from exploration to production is a slow, high-risk and enormously expensive process. It can often take over a decade. Add to this complexity the fact that some experts are sceptical Ukraine even has enormously valuable reserves. And to bring any promising deposits to market will require major investments. What’s perhaps more important It’s possible, however, that profits are a secondary calculation for the US. Boxing out China is likely to be as – if not more – important. Like other Western nations, the US is desperate to diversify its critical mineral supply chains. China controls not just a large proportion of the world’s known rare earths deposits, it also has a monopoly on the processing of most critical minerals used in green energy and defence technologies. The US fears China will weaponise its market dominance against strategic rivals. This is why Western governments increasingly make mineral supply chain resilience central to their foreign policy and defence strategies. Given Beijing’s closeness to Moscow and their deepening cooperation on natural resources, the US-Ukraine deal may prevent Russia — and, by extension, China — from accessing Ukrainian minerals. The terms of the agreement are explicit: “states and persons who have acted adversely towards Ukraine must not benefit from its reconstruction”. Finally, the performance of “the deal” matters just as much to Trump. Getting Zelensky to sign on the dotted line is progress in itself, plays well to Trump’s base at home, and puts pressure on Russian President Vladimir Putin to come to the table. So, the deal is a win for Zelensky because it gives the US a stake in an independent Ukraine. But even if Ukraine’s critical mineral reserves turn out to be less valuable than expected, it may not matter to Trump.