Subscribe to our weekly newsletters for free

Subscribe to an email

If you want to subscribe to World & New World Newsletter, please enter
your e-mail

Defense & Security
Paris, France, Europe, August 23 2025, demonstration in support of the African states of Mali, Burkina Faso and Niger at Place de la République in Paris.

The Alliance of Sahel States launches a unified military force and strengthens regional security

by Nicholas Mwangi

A historic turning point in Sahelian sovereignty, as Burkina Faso, Mali, and Niger bolstered their regional security through a unified military force and in the same week held its second AES summit. The Alliance of Sahel States (AES) has taken a decisive step toward regional self-defense after officially launching a joint military force aimed at combating Islamist insurgency and terrorism across the Sahel. The force was inaugurated on December 20, 2025, during a ceremony held at an air base in Bamako, Mali’s capital. The ceremony was presided over by Mali’s Transitional President, Head of State, Supreme Chief of the Armed Forces, and outgoing President of the AES, Army General Assimi Goïta. The event was the formal handover of the Unified Force of the AES banner, marking the operationalization of a long-declared commitment by Burkina Faso, Mali, and Niger to jointly secure their territories’ sovereignty. The newly established force, known as the FU AES, brings together approximately 5,000 troops drawn from the three member states. It is designed to integrate air power, intelligence sharing, and coordinated ground operations to confront armed groups that have destabilized large parts of the Sahel for over a decade. Addressing the gathering, Malian General Aliou Boï Diarra delivered a deeply symbolic and emotional speech, underscoring the historical and moral significance of the banner. He described the banner as far more than a ceremonial object. “The standard that you are presenting to the unified AES force represents a memory, a will, an irreversible commitment. It profoundly affirms a certainty now deeply engraved in the hearts of our beloved peoples. This is indeed a truly historic and momentous act,” General Diarra said. Diarra declared that the banner embodied sacrifice and struggle rather than decoration: “This sacred standard is not merely a decorative symbol. It is the profound and enduring result of precious blood bravely shed, immense courage valiantly embraced, and fundamental truth profoundly rediscovered.” Paying tribute to the fallen, he added: “To our cherished martyrs, to all innocent civilians, and to the brave soldiers who have fallen in battle, I humbly pay a solemn and heartfelt tribute beneath the eternal snow. They did not die in vain.” Mali’s leader, General Goïta, in his own address, described the launch as a historic turning point for the Sahel. He began by saluting the defense leadership and troops of the region. “On this significant occasion, I would like to extend my sincere congratulations and profoundly salute the exceptional courage, unwavering professionalism, steadfast commitment, and resolute determination of the ministers of defense, the chiefs of general staff, and especially all the brave defense and security forces of the AES area for the remarkable achievements they have made in their relentless fight against armed terrorist groups,” he said. The AES president recalled that since the Niamey Mutual Initiative (NMI) declaration of July 6, 2024, joint military operations have already been underway, noting that they resulted in the neutralization of several terrorist leaders and the destruction of multiple insurgent sanctuaries. According to Goïta, “All these positive results were achieved thanks to meticulous planning, timely and effective intelligence sharing, and above all the comprehensive pooling of our collective efforts and resources.” He further announced key institutional steps consolidating the unified force, including the appointment of a new commander, the establishment of a central command post in the strategic city of Niamey, and the assignment of specialized battalions fully dedicated to AES operations. He stressed that the task ahead would require adaptability to the evolving tactics of armed groups. “It is now critically important for the new commander not only to anticipate the increasingly complex operating methods of terrorist groups, but above all to resolutely continue this crucial fight to secure the entire Sahel region and ensure lasting peace and stability.” General Goïta added that the conflict confronting the Sahel is multidimensional, “This war is not only military. It is also political, economic, and informational.” He identified what he described as three major threats facing Sahelian states: armed terrorist violence, economic terrorism, and media terrorism. In response, he noted that the confederation has adopted a comprehensive strategy that goes beyond battlefield operations. “We have taken measures to counter these threats not only by establishing this unified force, but also by creating AES Television, AES Radio, and AES print media,” he said, framing these platforms as tools to counter disinformation and psychological warfare. The military launch follows a series of symbolic and political moves that underline the bloc’s growing autonomy. Earlier in the year, the AES unveiled a new flag, representing the confederation’s shared identity and its intention to redefine political, economic, and security cooperation outside the shadow of French imperialism and Western neoliberal frameworks. Leaders of the bloc have repeatedly criticized past military partnerships with France and other Western powers, arguing that foreign interventions failed to bring peace while undermining national sovereignty. The AES summit Mali hosted a summit of the Alliance of Sahel States in the same week, which concluded on Tuesday, December 23. During the summit, Burkina Faso’s leader, Captain Ibrahim Traoré, was appointed as the new head of the Alliance of Sahel States. Following the meeting, the Alliance announced that the summit would be followed by a large-scale military operation. Earlier this year, the three countries also introduced a joint AES passport, a major step toward deeper integration. This move came after Burkina Faso, Mali, and Niger formally withdrew from the Economic Community of West African States (ECOWAS), an organization they now openly describe as hostile. The launch of the unified force also takes place amid rising regional tensions. Nigeria and Côte d’Ivoire, both influential ECOWAS members, have been criticized by AES leaders and their supporters for what they see as counter revolutionary postures. In official and popular discourse within the Sahel, these countries are increasingly portrayed as attempting to contain or reverse the radical political shifts unfolding in Bamako, Ouagadougou, and Niamey. What is clear is that Burkina Faso, Mali, and Niger are charting a new path, one that is redefining power, alliances, and resistance in the heart of West Africa.

Defense & Security
U.S. Navy Adm. Alvin Holsey, commander of U.S. Southern Command (USSOUTHCOM), provides remarks at the TRADEWINDS 25 (TW25) closing ceremony at Teteron Barracks in Teteron Bay, Trinidad and Tobago, May 8, 2025. U.S. Army National Guard photo by Spc. Astia

Imperialism by Invitation: Murder, Mafioso Politics and Caribbean-Venezuelan Futurity

by Zophia Edwards , Corey Gilkes , Tamanisha John

Amidst US bombs and lies about Venezuelan drug trafficking as a pretext for regime change, the subordinated position of Caribbean states’ economies plays a role in U.S. aggression. It is no exaggeration to say that for over half a millennium, the Caribbean has been a stage for imperial incursions. In the past two months, the US has increased its military presence in the Caribbean Sea, including carrying out an airstrike campaign, while claiming that these operations are necessary to protect US citizens from illicit drug trafficking allegedly occurring off the coast of Venezuela. As of November 15th, the US military has launched eleven deadly air strikes on small boats in Caribbean waters and eleven on South America’s Pacific Coast, killing over eighty people. In these operations, the US Navy also raided a tuna fishing boat, detaining the fisherfolk on board for several hours before releasing them.[1] To date, the US government has not provided any proof of its claims that the people it publicly executed are trafficking drugs. These extrajudicial killings have struck fear into the hearts of millions of ordinary people across the region, especially the fisherfolk who depend upon traversing the sea for their livelihoods. Meanwhile, Caribbean countries have either blatantly come out in support of the imperial violence at their doorsteps or been hesitant to respond. When these attacks began, Trinidad and Tobago (T&T) as well as Guyana expressed enthusiastic support for US militaristic incursions and extrajudicial murders.[2] As tensions escalated, the Guyanese government attempted to backpedal from its original position. However, the T&T Prime Minister, Kamla Persad Bissessar, has maintained a pro-US stance. PM Persad Bissessar is on record saying, “I have no sympathy for traffickers, the US military should kill them all violently.”[3] This position by the T&T government was reiterated even after the US murdered two of its citizens, Chad Joseph and Rishi Samaroo, in these airstrike campaigns. T&T allowed the US warship, USS Gravely, a guided-missile destroyer, to dock in the country’s capital between October 26-30 and for US military agents to “address shared threats like transnational crime and build resilience through training, humanitarian missions, and security efforts” on T&T soil.[4] The Caribbean Community (CARICOM) - the intergovernmental regional organization - has dragged its feet to take a position, waiting a whole month on October 18, to release a presser wherein it reaffirmed the region as a “zone of peace,” with Trinidad and Tobago excepting itself from this stance. The foot dragging is sinister when it is known for a fact that the US propaganda of conducting “anti-narcotics” operations is/are a ruse. These hostile US military aggressions in the Caribbean Sea and on South America’s Pacific Coast are part of a broader US imperial geopolitical strategy aimed at toppling the government of Venezuelan President, Nicolás Maduro. The aim, as Trump has publicly intimated,[5] is to get the Venezuelan government to grant the US more beneficial access to Venezuela’s resources. One might ask: Why are governments, like Trinidad and Tobago, enabling US imperial terror in the region? And why have CARICOM governments not taken an unequivocal anti-imperialist position? The answer lies in the subordinated position of these states’ economies within the global economy. Caribbean states are historically structured to be neoliberal, pro-imperial, and anti-democratic – while political elites are beholden to enacting external interests. Moreover, internal political dynamics – in terms of racial and class struggles – are also a factor, influencing the timing and intensity of these Caribbean governments’ responses to present US imperial terror. Debunking the Myth of the Venezuela Narco State The first order of business is dispelling the myth that Venezuela is a ‘narco-state.’ US officials have framed the current operations — boat strikes, deployments of destroyers and aircraft — as counter-narcotics efforts designed to stem the flow of illicit drugs from Venezuela to the US. However, the Caribbean route is not among the primary conduits for major volumes of cocaine and methamphetamines into the US. Most trafficking flows of narcotics to the US are overland, through Central America and via Pacific routes.[6] It is no surprise therefore that the US government has not provided any proof of its claims that the people it has extrajudicially murdered in the Caribbean Sea or on South America’s coast are engaged in drug trafficking. Additionally, the scale and nature of force being used are far beyond what traditional interdiction operations require – with the Trump administration claiming that interdiction has not worked, hence deadly air strikes are necessary. In addition to the lack of evidence of a Venezuelan route being key to drug trafficking into the US, there is also no credible proof linking the Maduro government to organized drug trafficking, despite the Trump regime’s claims, which are parroted uncritically by many Caribbean media and politicians. Within the US’s own intelligence establishment, one report explicitly states: “the Maduro regime probably does not have a policy of cooperating with TDA [Tren de Agua] and is not directing TDA movement to and operations in the United States.”[7] The report goes on to say: “Venezuelan intelligence, military, and police services view TDA as a security threat and operate against it in ways that make it highly unlikely the two sides would cooperate in a strategic or consistent way.” These facts stand out, especially given the evidentiary long and sordid history of the US’s leading role in drug trafficking in the Americas, and the US as the #1 supplier of weapons to those involved in the global drug trade in the region. The US government’s real motive is to destabilize and topple the Maduro government in Venezuela, in favor of a regime that undermines Venezuela’s sovereignty. Frantz Fanon, Walter Rodney and many others remind us that capitalist imperialism depends upon neocolonial puppet governments occupied by a predatory elite who facilitate accumulation by extractivism, dispossession, and exploitation. Positioned to usurp Maduro in Venezuela by imposition and not elections, is 2025 Nobel “Peace” Prize winner, María Corina Machado. Machado is a key US ally, Trump admirer, supporter of Israel and its bombing of Gaza, and an overall admirer of repressive regimes in Latin America – including El Salvador’s Nayib Bukele and Brazil’s former president, Jair Bolsonaro. Machado has been begging for foreign military intervention in Venezuela to remove the Maduro government while professing that her administration, if granted power through non-electoral means, intends to open up Venezuela’s doors to foreign exploiters. If the current iteration of US imperial antagonism in the region leads to regime change in Venezuela, the US is poised to have control over the resources in the southern Caribbean – namely Guyana and T&T – as well as on the South American Coast: again, namely Guyana and then Venezuela. This will give the US direct control over shipping routes in the region, as it prepares for a wider economic confrontation with China. Hence, these alleged “anti-narcotics” operations which have taken the lives of over eighty Caribbean and South American people, are just a smokescreen for deeper US geopolitical interests. Dependency and the Character of the State Caribbean states are disregarding the lives of the Venezuelan, Latin American, and their own Caribbean populations using external security narratives, largely because there is a true dictatorship of foreign capital in the region. As US Vice-President JD Vance let slip, places like the Caribbean countries were always intended to remain extractive workstations, not autonomous, functioning nations.…at all.[8] T&T, for example, has long been dependent on oil and gas extraction for the bulk of its national income. However, the country has been experiencing a decline in natural gas and crude oil production over the past decade and the country’s liquefaction complex and petrochemical plants producing ammonia, methanol, and other key exports – which depend upon gas input – have been suffering.[9] Combined with the collapse in energy prices in 2014, this situation has produced a decline in foreign exchange inflows and government revenues.[10] With the demand for US dollars far outstripping the supply, T&T is facing one of the most severe foreign exchange crises in the Caribbean, causing uproar across the working, middle, and upper classes of society alike.[11] As such, the T&T government is desperate for the resuscitation of its flailing oil and gas sector. The T&T government spent decades developing a “Dragon” gas deal, where Shell would lead operations that funnel gas located in Venezuelan waters to T&T, where it can be exported as LNG. This deal, considered by the T&T state to be the lifeline that would save the local economy from collapse, has become a weapon in Washington, DC’s arsenal against Venezuela. In the midst of the extra-judicial killings in the region, the US has revoked licenses approving the deal and re-approved them under new terms meant to ensure the involvement and profits of US companies. The continued structural dependency of T&T on foreign capital and imperial markets renders its misleaders susceptible to these coercive measures to ensure that Caribbean states align with US capitalist imperialist policies. Economic coercion is an important part of the context for Kamla Persad Bissessar’s support for imperialism, but her position cannot be traced to this alone. Persad Bissessar and the educated elite and comprador class she represents come out of some of the “best” primary, secondary, and tertiary educational institutions locally and internationally. Are these elites supposed to provide independent, critical thinkers who would decolonize “post” colonial societies? Are they only unwitting agents of imperialism or are they willing participants? From the time of many states' flag independence, foreign interventions have secured for the local Caribbean elites’ (or comprador classes) party longevity and/or political dominance, and/or visas and dual citizenships, and/or the ability to accumulate wealth for themselves by exploiting the people and land within their countries. As Frantz Fanon’s “Wretched of the Earth” and Walter Rodney’s “How Europe Underdeveloped Africa” detailed, these elites lack the sort of creativity and vitality to independently develop into an industrial bourgeoisie. They therefore turn to propping up foreign entities and dependent economic relations. Consequently, Caribbean state-making and the establishment of territorial statuses in the context of US and European imperialist capitalism has reproduced institutions that are unresponsive to Caribbean people. Whether through hopes of securing or acquiring foreign investment, or due to rank economic blackmail that threatens foreign investments elites through sanctions and other restrictions – many Caribbean states choose to serve US and Western imperialism as an almost “practical” strategy of economic “stability”. However, such imperial service only guarantees continued underdevelopment and economic beggary. Herein, T&T’s misleadership is positioning the country as a beggar to the US and reinforcing US sanctions on Venezuela, which makes it hard for Venezuela to sell its own oil and gas to states that need it, including T&T. Worse still, the US does not want China to remedy this situation between Venezuela and Trinidad. So not only are some Caribbean leaders and party supporters encouraging naked US imperialism cloaked in the deceptive language and rhetoric of “anti-drug trafficking” and “protecting the region,” they are also upholding a condition of dependency of the region on the US, advancing US attempts to subvert Chinese influence in the region, and in the process supporting direct attacks on states in the region’s right to self-determination and sovereignty. Moreover, local internal racial and class dynamics are also shaping the timing and intensity of Caribbean governments responses to US aggression in the region. In the post-WWII construction of party politics in T&T, middle-class parties carried forward the colonial divisions between the predominantly African and Indian segments of the population that multiracial worker movements had fought so hard to overcome. Kamla Persad Bissessar, as leader of the party popularly known as the one representing “Indian interests,” is advancing and exploiting this racial wedge to garner support for her pro-imperial policies. This party has actively engaged in criminalizing poor African communities as well as Venezuelan migrants, while downplaying the fact that the many poor and marginalized Indians are similarly caught in the net of US imperialism. Persad Bissessar and her party affiliates’ own ideas of “purity” mixed with class notions of entitlement merge with the supremacist foundations of US local and foreign politics. It’s bad enough that a Prime Minister — a lawyer — supports extra-judicial murders in violation of International Law, but how does one align with a political ideology that produced people like Senator James Reed, who, circa 1919, openly dismissed dealing with “a nigger from Liberia, a nigger from Honduras, a nigger from India…each (having) votes equal to that of the great United States.” Before one argues that this was long ago, consider what right-wing political commentator Ann Coulter told Vivek Ramaswamy why she’d never vote for him regardless of how his views match hers. We acknowledge that political leaders, seeking re-election, opt for the path of least resistance which in this case means not offending the mighty United States. But this cannot just be naïveté. It is in this context that Kamla Persad Bissessar has broken with even the basic understanding of what CARICOM is, and is astonishingly peddling the idea that each island seeking its own interest is somehow more progressive than banding together as one bloc! In other words, she and those who support her stance have embraced regional colonial divide-and-conquer tactics. The US has always stood in opposition to a unified body in the region. As then US diplomat Charles Whittaker put it: “A strongly federated West Indies might be detrimental to American interests.” As such, they undermined the West Indian Federation in the 1950s and sabotaged the New International Economic Order throughout the 1970s. The Caribbean misleaders proclaiming disunity as strength subscribe to political ideologies that interlock with a particular brand of politics in the West that has been openly Euro-nationalist and imperialist. Hence, at a time when many resource-rich countries are forming partnerships and alternative trading and security blocs, the political misleaders in the Caribbean calling for further fragmentation should warrant deeper investigation. Media, Political Misleadership, and How the State Weaponizes “Security” It is important to clarify that crime does exist in the Caribbean region, just as it exists elsewhere throughout the world. The size of Caribbean countries are also important to note, because though it is true that the amount of drugs flowing through the Caribbean are low relative to the global drug trade, the little that does pass through is indeed wreaking havoc, given the geographical and population sizes of these countries. The increase in guns and violent crime associated with the global drug trade in places like T&T has become a critical factor affecting everyday life for ordinary people there. This context has enabled the T&T government to justify and legitimate US military aggression in the name of “fighting” the drug trade in the region. Thus, most people cheering on the US military are simply desperate for a sense of safety. However, it is precisely this need for safety that is being weaponized — to increase unsafe conditions as new US-produced military weaponry and technologies become even more commonplace in the region. There is a direct and indirect connection between (geo)political and economic decisions made by successive generations of ruling elites in the Caribbean, and North American narratives of crime, which have – going back to the 19th century in some countries – allowed (and made space for) imperial aggression in the region. Over a number of decades, the United States has taken advantage of crises caused by rising violent crime to pursue its own security interests – even though rises in violent crime in the region is directly linked to US imported and manufactured weapons, and US consumer demands for items that the US state deems “illegal.” To establish and maintain US dominance — and the accompanying cheap labor[12] from the surplus populations which exist in a region notorious for high levels of unemployment and underemployment — the US has deployed constant applications of violence, packaged as maintaining “law and order” in the drive to “progress” and “catch up” with the West. It’s no coincidence that modern policing began in the Caribbean as militarized slave patrols in St Lucia.[13] Then, like now, the purpose is the same: protect wealth from the workers who created it. However, the real effectiveness lay in conditioning the exploited to adopt the values of the elites. To date, Western elite definitions of progress and development for the wider working people in the Caribbean region dominate, even as the dependent status of Caribbean economies make this impossible for the majority of the people in the region. Thus, US reliance on expanding its military apparatus for economic growth is justified through the construction of permanent threats that the US supposedly has to “defend” itself against. Another such narrative, like the need to “promote democracy” in Venezuela, is also within this vein of western imperialist propaganda. The US and western imperialists maintain that Venezuela is not a democracy, despite the presence of robust, active citizen’s assemblies and communes, as well as elections that occur under the presence of election observers – including from the US. Nonetheless, the western imperialist narrative maintains that Venezuela is not democratic and thus their people can be bombed for some purported “greater good.” Meanwhile, these same imperialist narratives call genocidal Israel a democracy deserving of “protection” and “defense,” as it exterminates Palestinians and decimates Palestinian land. This propaganda – not analysis based on any facts – readily frames western imperialism as “defensive,” “pro-security,” and “pro-safety” and those not in line with it as “aggressive” and “undemocratic.”[14] In lockstep with imperialists, local political figures too have long used or encouraged the use of dehumanizing language when discussing criminalized people and communities. When the T&T Prime Minister, Police Commissioner, and other influential authority figures refer to human beings as “carcasses,”[15] “pests,” “fleas” or “cockroaches,” the message sent is that these are not citizens or members of society and therefore, not worthy of certain basic courtesies and legal obligations, including the right to life. When this sort of thinking is widespread, issues of social justice fall by the wayside. Instead, heavy, often murderous attacks on real or alleged drug runners who come from poor, precarious, vulnerable communities become justified while the power brokers, bankers and their institutions[16] that launder money do not get so much as a paper weight dropped on them. Likewise, the local and international media is playing a significant role in the unfolding crisis. Save for a few columnists, the local media has been disgraceful, little more than sycophantic stenographers for egregious narratives coming from Washington. Initially, the local media conducted little to no critical research into the many available sources discrediting[17] false allegations connecting the Maduro administration to drug cartels. They parroted language that criminalized the victims of the attacks without presenting any evidence proving that they were guilty of violating any laws. They were silent on the voluminous literature connecting the CIA and the US military to colonial land and resource grabs that violate international and local laws.[18] They also proliferated the myth that Nicolas Maduro “lost” or “rigged” elections in Venezuela, contrary to information provided by election observers. The lack of critical and independent journalism is a clear dereliction of duty, supporting imperialist narratives and providing cover for extrajudicial murder. Conclusion The neoliberal era shortly after many states’ independence extended the life of bourgeois colonial thought in the Caribbean, interpreting the human “firstly, [as] a figure that is homo economics, and, secondly, a figure that can only operate within the field of white supremacy and capitalism.”[19] In this environment, Caribbean resistance weakened, having to establish itself alongside the intensification of neoliberal processes – foremost amongst them being state repression and militarist aggression supported by the US hegemon – so that Caribbean peoples could be definitively integrated into a Western capitalist system as “bottom labor-exporting economies,” whose labor commodification was masked by discourses on ‘growth’ and ‘development.'[20] It is in analyzing the characteristics of Caribbean states and governance within them – including how they interpret “development” – that helps us to answer why so many states elect to do imperial service: Caribbean neocolonial (puppet) states are fundamentally anti-democratic with no real regard for Caribbean life within them. The T&T government’s deliberate facilitation of US imperial aggression in the region mirrors the position of several African states. The post-genocide Tutsi-dominated regime of Paul Kagame in Rwanda, leveraging its image as a victim of colonialism and genocide, justifies domestic repression of Hutus and expansionist military ventures in neighboring states, notably the Democratic Republic of Congo in close alliance with the United States, France, and Israel. In exchange for U.S. and western military, financial, and political backing, Rwanda facilitates imperial access to Congo’s mineral wealth — coltan, gold, and tin — channeling profits both to Western capital and Rwandan elites. Thus, Rwanda functions as a pro-U.S. imperial proxy, advancing the global system of resource extraction and accumulation on behalf of Western powers. In addition, Rwanda along with a growing list of African states, including Ghana, Eswatini, and South Sudan have accepted the terms of bilateral agreements with the US government to receive people who have been criminalized and deported under the Trump regime’s attack on communities racialized as non-white in the US.[21] By enlisting themselves to be locations for the outsourcing of US racist incarceration policies, they are enabling the geographical expansion of the US military industrial prison complex to more and more corners of the world. These Caribbean and African misleaders will go down in history as active enablers and facilitators of the very imperial greed, oppression, and exploitation that the masses have been resisting since the days of direct colonial domination. Only invigorated mass resistance that takes power away from Caribbean neocolonial (puppet) elites engaged in imperial service can rectify these conditions. Global Africans in the Caribbean and around the world must claim power and reclaim movement histories that fought back against capitalist imperialism. Originally published in Pambazuka News and republished in Black Agenda Report References [1] https://www.pbs.org/newshour/world/venezuela-says-u-s-warship-raided-a-… [2] https://www.caribbeanlife.com/trinidad-guyana-us-moves-venezuela/ [3] https://newsday.co.tt/2025/09/03/kamla-says-kill-all-traffickers-as-tru… [4] https://www.cnn.com/2025/10/26/world/us-warship-docks-trinidad-venezeul… [5] https://www.theguardian.com/world/2025/oct/17/trump-maduro-venezuela [6] https://www.unodc.org/unodc/data-and-analysis/world-drug-report-2025.ht… [7] https://static01.nyt.com/newsgraphics/documenttools/32f71f10c36cc482/d9… [8] https://www.youtube.com/watch?v=U1bd-D1PIZg&pp=ygUZIGogZCB2YW5jZSBnbG9i… [9] https://www.finance.gov.tt/2020/03/16/effect-of-the-oil-price-collapse-… [10] https://www.imf.org/external/pubs/ft/scr/2014/cr14271.pdf; https://www.imf.org/en/Publications/CR/Issues/2024/06/04/Trinidad-and-T…. [11] Chamber of Industry and Commerce 2025; University of the West Indies Campus News 2024. [12] https://www.youtube.com/watch?v=BAJgGFtF44A [13] https://www.youtube.com/watch?v=kavkiH9YHag&pp=ygUaanVsaWFuIGdvIHBvbGlj… [14] See, for example, the Trilateral Commission’s “The Crisis of Democracy” in which influential thinkers who shaped US policy complained that decolonising countries were exercising too much democracy, which needed to be contained, leading to the proliferation of NGOs all over the peripheralized world. [15] https://trinidadexpress.com/news/local/kamla-state-resources-won-t-be-wasted/article_5d0c61fd-d633-4dd3-8e3e-6995a454c774.html [16] https://www.youtube.com/watch?v=kcpZPGOksp0 [17] https://www.dea.gov/sites/default/files/2025-07/2025NationalDrugThreatA…; https://static01.nyt.com/newsgraphics/documenttools/32f71f10c36cc482/d9… [18] https://www.goodreads.com/book/show/455652.Dark_Alliance; https://www.versobooks.com/en-gb/products/1628-whiteout?srsltid=AfmBOor…; https://www.betterworldbooks.com/product/detail/the-politics-of-heroin-…; https://www.youtube.com/watch?v=zxbW0CCuT7E [19] Bogues, Anthony. 2023. “Sylvia Wynter: Constructing Radical Caribbean Thought.” BIM: Arts for the 21st Century 11(1): 33–41, p.37. [20] Henry, Paget. 2000. “Caribbean Marxism: After the Neoliberal and Linguistic Turns.” In Caliban’s Reason: Introducing Afro-Caribbean Philosophy, Africana Thought, New York: Routledge, 221-46, p.228. [21] https://www.pbs.org/newshour/world/more-african-nations-are-receiving-t…

Diplomacy
Flag USA and China on Computer Chip . Global chip shortage crisis and China-United States trade war concept.

Leading States in the Race for Artificial Intelligence in the Current International System

by Danna Fernanda Mena Navarro

1. Introduction: AI as a Reconfiguration of the Global Order Artificial intelligence (AI) has become one of the most influential factors shaping the contemporary international system. Major powers are competing to lead the new technological revolution that impacts the economy, security, foreign policy, defense, communications, and scientific innovation. The development of AI depends on three strategic inputs: 1. Human talent (research, data engineering, mathematics, computer science). 2. Computational capacity and access to large volumes of data. 3. Robust innovation ecosystems, with companies, universities, and aligned industrial policies. Global spending on artificial intelligence is expected to exceed USD 52 billion over the next three years, consolidating AI as the central axis of the Fourth Industrial Revolution (IDC, 2023; Stanford AI Index Report, 2024). 2. Talent as a Global Strategic Resource More than 60% of top AI researchers work in the United States, and about half of them are immigrants, primarily from China, India, Europe, and Iran (Stanford AI Index Report, 2024). The so-called brain drain is not merely an academic issue, but a geopolitical one: • States compete to attract talent through visas, high salaries, and access to frontier laboratories. • Innovation in AI depends on who concentrates the largest amount of specialized human capital. The United States dominates due to its ability to attract international researchers, while China compensates through massive investment and domestic talent production. 3. The United States Leads the AI Race for Three Main Structural Reasons 1. Innovation, talent, and industry: The United States leads in high-impact research publications and AI startups (more than 50% worldwide). Private investment exceeded USD 350 billion in 2023 alone. Key companies include Google, Meta, Microsoft, OpenAI, NVIDIA, Tesla, and IBM, among others. 2. Computational infrastructure and chips: The country concentrates the most advanced computational infrastructure and controls cutting-edge chips (such as the NVIDIA H100), a resource that China cannot yet produce at the same level. 3. AI and national security: The United States allocates more than 16 federal agencies and billions of dollars annually to AI development for defense, cybersecurity, and intelligence (White House AI Budget, 2024). 4. China: The Emerging Superpower on the AI Path China ranks second globally in the AI race but follows a more aggressive, centralized, and ambitious strategy. • Massive investment as state policy: China has pledged to invest more than USD 150 billion by 2030 in AI under its Next Generation Artificial Intelligence Development Plan (AIDP) (Government of China, 2017). • Domestic talent production: China trains more AI engineers than any other country. Annual graduates in science and engineering reach 4.7 million, compared to 600,000 in the United States (UNESCO, 2023). However, a significant portion migrates to the U.S. due to better research conditions. • China’s role in the global AI industry: China leads in AI-based facial recognition, with generative AI startups such as Baidu, SenseTime, Alibaba Cloud, and Tencent AI Lab. It produces massive numbers of publications, although with lower scientific impact than those from the United States. AI is widely implemented in governance, security, and smart cities. • The chip dilemma: China depends on advanced semiconductors produced only by Taiwan (TSMC), South Korea (Samsung), and the United States/Netherlands (ASML). • Export controls: Export restrictions imposed on China since 2022 limit its ability to train frontier models, although the country is making radical investments to achieve chip sovereignty. 5. Europe, India, Israel, Canada, and Other Relevant Actors • Europe: The United Kingdom, Germany, France, and the Netherlands generate a solid ecosystem in algorithmic ethics, digital regulation (AI Act), and applied research. • India: The world’s main hub of engineering talent and a global provider of technological services. • Israel: A powerhouse in cybersecurity and military AI, with per-capita innovation comparable to Silicon Valley. • Canada: The birthplace of deep learning (Geoffrey Hinton, Yoshua Bengio) and a strong center for basic research. 6. Africa on the AI Chessboard: Intentions, Challenges, and Opportunities Although Africa does not lead the AI race, its geopolitical role is growing rapidly for four strategic reasons. Africa is a major producer of critical minerals. AI depends on lithium, cobalt, graphite, and rare earth elements, and Africa holds 70% of the world’s cobalt reserves (in the DRC), as well as other strategic minerals in Zambia, Namibia, South Africa, and Mozambique. This places the continent in a key position within the supply chains for batteries, computers, and data centers. There is also a rapid expansion of digital infrastructure. China, through Huawei and ZTE, has built around 70% of Africa’s 4G network, as well as Ethiopia’s first smart data center and technology innovation hubs in Egypt, Kenya, and South Africa. Africa is entering the AI space through fintech, digital health, smart agriculture, and biometric systems. In terms of AI policy, African countries with formal AI strategies include Egypt, Rwanda, Kenya, and South Africa. • Threats and challenges: limited computational infrastructure, a deep digital divide, the risk of dependence on external technological solutions, the use of AI for political surveillance (as seen in Ethiopia and Uganda), and a shortage of specialized talent. 7. China and Africa: The Intersection of AI, Data, and Geopolitics China combines its role in AI with its influence in Africa through investments in digital infrastructure, the sale of surveillance systems, the construction of data centers, and technical training programs. This creates interdependence but also raises concerns: Africa could become dependent on Chinese systems that are difficult to replace. Data may become centralized on foreign platforms, and the risk of a technological debt trap adds to existing financial dependence. 8. AI, Regulation, and Global Governance The rapid expansion of AI calls for international treaties on data use, security standards, limits on military automation, and ethical regulations to protect civil society. Governance will be decisive in determining not only who leads, but also how this technology will be used in the coming decades. In this context, global AI governance has become a new field of geopolitical competition. While the European Union promotes a regulatory approach based on human rights and risk prevention, the United States favors market self-regulation and innovation, and China advances a model of state control and technological sovereignty. Multilateral organizations such as the UN, the OECD, and the G20 have begun discussing common principles, but there is still no binding international regime. The absence of clear rules increases the risks of an algorithmic arms race, the use of AI for mass surveillance, and the deepening of global inequalities in access to and control over technology. 9. Conclusions The United States leads due to innovation, global talent attraction, and computational capacity. China follows closely with a comprehensive state-led strategy and dominance in global digital infrastructure. Europe, India, Israel, and Canada contribute key elements to the global ecosystem. Africa, while not a leader, occupies an increasingly strategic role due to its resources, data, markets, and alliances. The race for AI will define not only the global economy, but also the balance of power in the international system of the 21st century. References -Stanford University.(2024). AI Index Report 2024. Stanford Institute for Human-Centered Artificial Intelligence. https://hai.stanford.edu/ai-index/2024-ai-index-report?utm_source=chatgpt.com -International Data Corporation. (2023). Worldwide Artificial Intelligence Spending Guide. IDC. https://www.idc.com/data-analytics/spending-guide/ -State Council of the People’s Republic of China (2017). Next Generation Artificial Intelligence Development Plan. Government of China https://fi.china-embassy.gov -UNESCO. (2023). Global Education Monitoring Report: science, technology, engineering and mathematics. United Nations Educational, Scientific and Cultural Organization. https://www.unesco.org/en -The White House. (2024). Federal AI Budget and National AI Strategy. Executive Office of the President of the United States. https://www.whitehouse.gov/presidential-actions/2025/12/eliminating-state-law-obstruction-of-national-artificial-intelligence-policy/ -European Commission.(2023).Artificial Intelligence Act. Publications Office of the European Union. https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai -Organisation for Economic Co-operation and Development. (2023). OECD. Artificial Intelligence Policy Observatory. https://www.oecd.org/en/topics/artificial-intelligence.html

Defense & Security
Dugu beach, Donghae-myeon, Nam-gu, Pohang-si, South Korea - October 1, 2021 : South Korean Navy Jangbogo submarine at Dogu Coast for 2021 Armed Forces Day

Development of South Korea’s Submarines and Future Prospects

by World & New World Journal Policy Team

In the 21st century, the maritime security environment in Northeast Asia is changing more rapidly than ever, with information superiority and covert operational capabilities at sea emerging as core components of national security. At the heart of this shift lies the submarine force, which possesses both strategic deterrence and surveillance/reconnaissance capabilities. As China, Japan, and North Korea advance their submarine technology, South Korea finds itself in a situation demanding independent maritime strategic assets to counter these developments. The Republic of Korea Navy (ROKN) submarine force, which initially relied on foreign technology, has now grown into a submarine technology powerhouse capable of indigenous design and construction. The introduction of the KSS-III Dosan Ahn Changho-class submarine, in particular, has equipped South Korea with SLBM operational capability and advanced AIP (Air-Independent Propulsion) and electric propulsion technology, establishing a strategic-level submarine force.  This technological advancement not only strengthens national defense but also elevates the international status of the Korean defense industry, leading to enhanced export competitiveness. Concurrently, amidst the military expansion of surrounding countries, the need for nuclear-powered submarines (SSNs)—which offer far greater strategic survivability and sustained operational capability—is being raised in South Korea. Despite the high cost, the SSN is a strategic asset that provides overwhelming stealth, range, and operational endurance in the long run.  This article will comprehensively examine the importance and technical characteristics of submarines, followed by an analysis of South Korea's submarine force development, its international standing, and comparisons with neighboring countries. Furthermore, it will explore the implications of the nuclear submarine acquisition debate for South Korea's future security strategy. 1. The Importance of Submarines  The submarine is an extremely important weapon system in the defense industry from strategic, technological, and economic perspectives.  1) Strategic Deterrence and Control: Submarines act as a strategic deterrent to covertly check the enemy's maritime activities and protect a nation's sea lines of communication and security. The strategic deterrence of a submarine is based on its 'stealth' and 'lethality'.  - Stealth (Psychological Pressure): A submarine can move and be deployed secretly underwater without being exposed to the enemy, placing psychological pressure on the enemy's maritime operations and strategic weapon deployment during peacetime. Because it is extremely difficult for an attacking enemy to predict or neutralize the submarine's location, the enemy always harbors the fear of a potential strike. - Lethality (Retaliatory Capability): If the enemy attempts an actual invasion or provocation, the submarine can conduct a sudden and precise strike with high-power weapons like torpedoes or missiles. Specifically, a Strategic Nuclear Submarine (SSBN), equipped with strategic weapons like the SLBM (Submarine-Launched Ballistic Missile), provides a 'second-strike capability' to retaliate against the opponent's core targets at any time. - Maximizing Deterrence: The mere existence of strategic submarines maximizes the 'psychological deterrent effect', making the enemy's political and military leaders hesitate to initiate an attack. Due to the nature of submarines being covertly deployed anywhere in the ocean, the enemy is constantly exposed to threats, making it difficult to attempt military provocations recklessly. In essence, the core principle of strategic deterrence is the creation of a 'deterrence effect through uncertainty', combining the submarine's covert and unpredictable operational methods, its powerful striking capabilities, and the psychological fear it instills.  2) Enhancing National Defense and Economic Effects: The development of advanced submarines is central to a nation's naval power. It enhances defense self-reliance by securing indigenous design and construction technologies and promises enormous economic benefits through overseas exports. - Asymmetric Warfare Power: With its stealth and lethality, the submarine wields the most potent deterrent force and asymmetric warfare effect among all maritime forces. When surface fleet power is relatively insufficient, an advanced submarine can effectively check large enemy vessels or aircraft carriers and deny access to maritime domains. - Advanced Mission Capabilities: Advanced submarines are deployed for various missions, including long-duration submerged operations, strategic surprise, and special warfare support, utilizing cutting-edge technologies like next-generation guided missiles and sophisticated sonar/navigation systems that make detection and tracking difficult. - Increased Defense Industry Competitiveness: When advanced submarines are developed and operated with indigenous technology, it not only boosts the nation's defense industry capacity and technological self-reliance but also significantly increases related industry development and economic effects. In short, the advanced submarine is the qualitative and strategic linchpin of national naval power, encompassing defense, offense, intelligence deterrence, and the securing of cutting-edge technology. 3) Driving Advancement in Overall Defense Technology: The development of highly sophisticated weapon systems (e.g., SLBMs, advanced sonar, low-noise technology, etc.) also promotes the advancement of overall cutting-edge defense technologies. - SLBM Development: Developing SLBMs is not just missile technology; it complexly requires materials engineering to withstand the extreme pressure of the underwater launch environment, precise guidance systems, and miniaturized propulsion technology. The technology secured during this process naturally transfers to other fields, such as space launch vehicles and precision strike weapons. - Advanced Sonar Technology: The process of increasing the precision of underwater acoustic detection advances capabilities in signal processing, AI-based pattern recognition, and big data analysis. Such technology can also be utilized in civilian sectors, including marine resource exploration, underwater communication, and seismic detection systems. - Low-Noise Technology Development: The ripple effect of low-noise technology development is even greater. Vibration reduction in propulsion systems, special hull coatings, and hydrodynamic optimal design enhance the competitiveness of the shipbuilding industry as a whole. Propeller noise reduction technology, in particular, contributes to improving the fuel efficiency of commercial vessels and protecting the marine ecosystem. Furthermore, the process of developing these advanced technologies fosters high-level research personnel, strengthens industry-academia-research cooperation networks, and promotes the domestic production of materials, components, and equipment. Consequently, the single weapon system of a submarine has the effect of elevating the nation's overall scientific and technological capabilities to the next level. 4) High Competitiveness and International Credibility: The limited number of nations capable of manufacturing submarines ensures high competitiveness and international credibility in the global defense market. Currently, only about 12 countries are capable of independently designing and building submarines: the U.S., Russia, China, the U.K., France, Germany, Sweden, Italy, Spain, India, Japan, and South Korea. This technical rarity offers several strategic advantages. - Favorable Negotiation Power: Due to the high barrier to entry, a limited supplier market is formed, securing favorable negotiation power during exports. - Proof of Overall Defense Technology: Submarine construction capability serves as proof of comprehensive defense technology, raising the credibility of other weapon systems. South Korea, in particular, has demonstrated strengths in technology transfer and localization by successfully achieving domestic production after introducing German technology. This establishes South Korea as an attractive partner for middle-power countries that desire advanced submarines but find self-development difficult. The interest shown by nations like Indonesia and the Philippines in South Korean submarines is within this context. - Sustainable Economic Effects and Strategic Ties: Submarine projects lead to long-term follow-up businesses, including maintenance, upgrades, and crew training, ensuring sustained economic effects and strengthening strategic ties between nations. As such, the submarine is considered a core capability of the defense industry in terms of national security, industrial competitiveness, technological innovation, and economic benefits. 2. Technical Characteristics of Submarines The technical characteristics of submarines can be broadly divided into three key domains: stealth and survivability, propulsion and power systems, and weapons and combat systems. 2.1. Stealth & Survivability This is the technology area most directly tied to the fundamental purpose of submarines. In underwater environments, radar (radio-wave detection) cannot be used, so detection relies on sonar (sound-wave detection). While radar can detect surface targets from up to 500 km, sonar detection of a quiet, stealthy submarine is typically limited to around 30 km. - Acoustic Quieting Technology is essential for avoiding enemy sonar detection. Submarine noise reduction involves suppressing mechanical noise (machinery vibration), flow noise, structural vibration, and propeller noise through an integrated set of technologies. This is not just a matter of equipment but a comprehensive quieting process that spans the entire lifecycle of a submarine—from design and manufacturing to operation and maintenance. - Non-Acoustic Stealth Technology minimizes physical signatures other than sound—such as magnetic fields, heat/infrared emissions, radar/optical reflections, and surface disturbances—to prevent detection by non-acoustic sensors. Figure 1. Dosan Ahn Chang-ho class (Jangbogo-III) sonar system (Source: Hanwha Ocean) 2.2. Propulsion & Power System This system is key to determining a submarine's range and submerged operational endurance. It is broadly divided into conventional (non-nuclear) and nuclear propulsion. 1) Conventional Submarines (Diesel-Electric) - Diesel-Electric System: This is the traditional method where a diesel engine powers a generator to charge batteries, and an electric motor provides propulsion. It is favored for its cost-effectiveness and quietness, making it the standard for small and medium-sized submarines. However, because the diesel engine requires oxygen from the atmosphere, the submarine must periodically surface or use a snorkel, which severely limits continuous submerged endurance (to a maximum of about 3 days). Submarines equipped with the latest Lithium-ion batteries can extend this submerged time up to 7 days. - Air-Independent Propulsion (AIP): An innovative technology that produces power underwater without relying on an external oxygen supply. The main types include the Fuel Cell (PEMFC), Stirling Engine, and Closed-Cycle Diesel. AIP is used in conjunction with the diesel-electric system and significantly extends submerged endurance, often up to 3 weeks. Because it is cheaper than nuclear power while offering high strategic value, many nations have adopted it. - Hybrid Propulsion System (Cutting-Edge Technology): The integrated operation of three systems—the diesel generator, Fuel Cell AIP (Air-Independent Propulsion), and Lithium-ion batteries—allows for continuous submerged operation for up to 4 weeks. South Korea's Dosan Ahn Changho-class (KSS-III) utilizes the integrated operation of these three systems: a diesel generator, Fuel Cell AIP, and Lithium-ion batteries. Excluding nuclear power, the current cutting-edge technology is considered to be the Fuel Cell AIP + Lithium-ion battery hybrid system. Each propulsion system is selected based on operational range, mission sustainability, cost-effectiveness, and technological sophistication. South Korea is actively pursuing the development of next-generation submarines that combine both AIP and Lithium-ion battery technologies. However, the maximum continuous submerged endurance (up to 4 weeks) is only achievable when operating at low speeds (5–10 knots, or approx. 9–18 km/h). When operating at maximum speed (around 20 knots, or approx. 37 km/h), the battery consumption is extremely high, causing the submerged time to sharply decrease: - Older Submarines: Can sustain maximum speed for only 1–2 hours. - Li-ion/AIP Submarines: Can sustain maximum speed for 3–6 hours. After high-speed maneuvering, the submarine requires snorkeling for recharging, which significantly increases the risk of detection by the enemy. Figure 2. Dosan Ahn Chang-ho class (Jangbogo-III) lithium battery system (Source: Hanwha Ocean) Figure 3. Dosan Ahn Chang-ho class (Jangbogo-III) fuel cell AIP system (Source: Hanwha Ocean) 2) Nuclear-Powered Submarines (SSN/SSBN) Nuclear-powered submarines use nuclear fission reactors to generate steam, which drives turbines and provides virtually unlimited propulsion. Because they do not require refueling for months, their submerged endurance and operational range are effectively unlimited, enabling them to operate anywhere in the world. Only a small group of states—including the United States, Russia, China, the United Kingdom, France, and India—possess such submarines. Nuclear propulsion is used in both strategic ballistic missile submarines (SSBN: nuclear-powered submarines equipped with ballistic missiles carrying nuclear warheads) and nuclear-powered attack submarines (SSN: fast attack submarines powered by nuclear reactors). However, nuclear submarines are extremely expensive to build and operate, require large hull sizes (especially SSBNs), and demand sophisticated reactor noise-management technologies. Compared to conventional submarines, nuclear submarines can operate at much higher sustained speeds for long periods. Their average top speed is typically 25–30 knots (46–55 km/h), while specialized Soviet/Russian designs such as the Alfa-class have demonstrated speeds exceeding 40 knots in trials. This makes nuclear submarines more than twice as fast as most conventional submarines, with the added advantage of being able to maintain high speeds for extended durations without limitations. 2.3. Weaponry & Combat Systems This category encompasses the submarine’s offensive capabilities and intelligence-gathering functions. Submarine weapons and combat platforms can be divided into four major types: 2.3.1. Launch Weapons Launch weapons are categorized as follows: - Torpedoes: Underwater weapons fired from a submarine’s horizontal launch tubes, used to attack underwater targets such as other submarines, surface ships, and mines. - Missiles: This includes anti-ship missiles (ASM) and sea-launched cruise missiles (SLCM) designed to strike surface or land targets. Some missiles are launched through Vertical Launch Systems (VLS). - Nuclear Weapons: The primary example is the SLBM (Sea-Launched Ballistic Missile), equipped with a nuclear warhead. These form the core of a nation’s strategic nuclear deterrence capability. Table 1. Types of Launch Weapons Table 2. Ballistic/Guided Missiles Table 3. Submarine-Launched Weapon Systems Figure 4. Weapon systems of the Dosan Ahn Chang-ho–class (Jangbogo-III): Torpedoes/Mines (Horizontal Launch) and Missiles (Vertical Launch) (Source: Hanwha Ocean) Figure 5. Vertical Launch System of the Dosan Ahn Chang-ho–class (Jangbogo-III) (Source: Hanwha Ocean) 2.3.2. Underwater Drones / Unmanned Underwater Vehicles (UUV/AUV) Unmanned Underwater Vehicles (UUVs) and Autonomous Underwater Vehicles (AUVs) are unmanned underwater platforms deployed from submarines. They can perform missions such as intelligence collection, reconnaissance, mine detection, and even underwater attacks. In the latest technology trends, AUVs serve as important auxiliary assets for submarines, used for tasks such as detecting specific targets, locating and neutralizing naval mines, and tracking enemy submarines. Figure 6. Combat Unmanned Underwater Vehicle (Source: Hanwha Ocean) 2.3.3. Electronic Warfare Systems A submarine’s electronic warfare (EW) systems defend against enemy detection through electronic surveillance countermeasures. By transmitting deceptive or disruptive signals, these systems help conceal the submarine’s presence and significantly enhance survivability. Capabilities such as electronic deception, electronic jamming, and counter sonar/radar measures enable the submarine to evade enemy tracking and maintain strategic advantage. In addition, electronic attack (EA) capabilities can inflict direct damage on enemy military assets by disrupting or degrading their electronic systems. 2.3.4. Naval Mines Naval mines are explosive devices used by submarines to block enemy sea routes or hinder the approach of surface vessels. Submarines can deploy underwater mines or launch them from dedicated systems, allowing them to disrupt maritime traffic and defend against the movement of hostile fleets through area denial tactics. 3. Economic Impact of Submarine Strategy Submarine capabilities are not only crucial for military security but also represent a high-value industry that generates substantial direct and indirect economic effects for the nation. 3.1. Direct Industrial Impact (Manufacturing and Employment) Submarine construction is a highly technology-intensive, large-scale project, creating significant economic effects for the shipbuilding and defense industries: • Development of high-value shipbuilding: Submarines require extremely high precision and complex construction within much tighter spaces than commercial ships. The construction process itself represents the pinnacle of shipbuilding technology, directly enhancing the competitiveness and qualitative growth of the shipbuilding industry. • Job creation: Building a single submarine involves thousands of workers over several years, from design and component production to final assembly and sea trials, creating a large number of highly skilled technical jobs. • Activation of component and partner industries: Submarines consist of numerous precision components (sonar systems, propulsion units, special alloys, batteries, etc.), which stimulates supply chains largely composed of small and medium-sized defense companies and elevates technological capabilities across the sector. 3.2. Indirect Economic Impact (Security and Exports) The existence of a submarine fleet generates invisible economic benefits and opportunities: • Reduction of national security costs: Submarines are one of the most effective tools of asymmetric deterrence — a military strategy where a country at a disadvantage in conventional forces or numbers neutralizes an adversary’s attack intentions and deters war through unique and unpredictable means. Maintaining submarine capabilities helps prevent potential economic damages in crises (trade disruptions, destruction of industrial facilities) and raises the cost of potential aggression, effectively reducing national security expenditures. • Protection of sea lines of communication (SLOCs): As a highly trade-dependent nation, Korea relies critically on maritime routes. Submarines deter hostile naval forces threatening these routes during crises and protect major trade arteries, ensuring the continuity of economic activity. • Opportunities for defense exports (K-Defense): o Demonstrating Korea’s ability to independently design, build, and operate submarines (Dosan Ahn Changho-class / Jangbogo-III KSS-III) establishes technological credibility in global markets. o This capability generates high-value defense export opportunities, not only for the submarines themselves but also for related components, maintenance, and training systems (Korea has already exported submarines to Southeast Asia). In conclusion, submarine capabilities serve as a form of national security insurance while fostering domestic advanced technology industries and opening export markets, providing significant economic value as a future growth engine. 4. History of South Korea’s Submarine Forces Although the history of the Republic of Korea Navy’s submarines is relatively short, it has made significant leaps in both independent technological development and force enhancement. The following outlines the chronological development and progress of Korea’s submarine forces. Figure 7. Timeline of Submarine Acquisition and Operations of the Republic of Korea. Note: SSM: Submersible Ship Midget (small submarine), KSS: Korea Submarine System (the systematic development plan for the ROK Navy’s submarine force) 4.1. Early Stage (1975–1990): Direct Acquisition of Cosmos-class and Foundation of Submarine Forces Starting in 1975, the ROK Navy acquired seven small Italian-made Cosmos-class submarines (70-ton class) for intelligence missions and special operations, laying the foundation for Korea’s underwater capabilities. These submarines were primarily used for special operations, such as special forces infiltration, mine-laying, and intelligence gathering, rather than as conventional warships. Crew members of the Cosmos-class submarines later became key personnel in the development of the Dolphin-class indigenous submarines in the early 1980s. 4.2. Formative Stage (1983–1991): The Dolphin-class Small Submarine Era In the beginning in 1977, the Agency for Defense Development (ADD) started developing a submarine modeled after Italy’s Cosmos-class. Construction took place at Tacoma Korea’s Masan Shipyard, and a total of three submarines were commissioned starting in 1983. This marked Korea’s first domestically built submarines, and the experience gained became the foundation for developing South Korea’s own underwater weapons. Based on operational results from the first submarine delivered in 1984, the second and third units were designed and built, being commissioned in 1990 and 1991, with reinforced pressure hulls and improved armament: SSM-051 1985 commissioned, 2003 decommissioned, SSM-052 1990 commissioned, 2016 decommissioned, SSM-053 1991 commissioned, 2016 decommissioned. The experience with the Dolphin-class played a critical role in advancing domestic submarine construction technology, serving as the stepping stone for the introduction and deployment of medium- to large-sized submarines. Table 4. Specifications of the Dolphin-class Submarines (Source: Namuwiki) 4.3. Development Stage (1992–2006): Introduction and Localization of the Jangbogo-class (Jangbogo-I) In 1987, the ROK Navy signed a contract with the German company HDW for three Type 209 submarines (license for design acquisition), officially launching the Jangbogo-class (KSS-I) 1,200-ton program. Among these, one submarine was delivered as a complete unit from Germany in 1992, while the other two were assembled and constructed at Daewoo Shipbuilding & Marine Engineering’s Okpo shipyard using imported German parts, delivered in 1994 and 1995 respectively. Subsequently, six additional submarines were built, bringing the total to nine in service by 2001. This program was not merely an import project; the core goal was to transfer German technology and secure domestic assembly and construction capabilities. It laid the foundation for Korea’s submarine technology independence and advanced development. Leveraging the experience gained from constructing the Jangbogo-class, Daewoo Shipbuilding & Marine Engineering (DSME) signed a contract in 2011 to build three 1,400-ton submarines for Indonesia. Known as the DSME1400, these submarines are named the Nagapasa-class in the Indonesian Navy, marking Korea’s advancement in export capabilities. Table 5. Specifications of the Jangbogo-class Submarine (Source: Namuwiki). Note: A batch refers to a group of submarines of the same model built in series, with incremental performance improvements applied in each production run. Table 6. Development Stages of the Jangbogo-Class Submarine 4.4. Leap Period (2007–2020): Son Won-il Class (Jangbogo-II) and AIP Technology In 2000, the Republic of Korea Navy signed a contract with Germany’s HDW to acquire three Type-214 submarines under a design-license arrangement, launching a full-scale 1,800-ton Son Won-il–class program with Hyundai Heavy Industries. The first submarine, Son Won-il, was delivered in 2007, and an additional six submarines were subsequently built by Hyundai Heavy Industries and Daewoo Shipbuilding & Marine Engineering (DSME). The key feature of the Son Won-il class is its AIP (Air Independent Propulsion) system, which uses fuel cells to allow submerged operations for 2–3 weeks without surfacing. Construction was divided between Hanwha Ocean (formerly DSME) and HD Hyundai Heavy Industries. The vessels are named Son Won-il, Jeong Ji, An Jung-geun, Kim Dae-geon, Hong Beom-do, Yu Gwan-sun, Yun Bong-gil, Ahn Chang-ho, and Baekdusan. Table 7. Specifications of the Son Won-il Class Submarines (Source: Namuwiki) Table 8. Development Stages of the Son Won-il-Class Submarine   Over time, the armament and electronic systems have progressively advanced. Below is a simplified cross-sectional diagram of the HDW Type 214, which was used as a reference for the construction of the Son Won-il class submarines. The diagram helps to easily understand the complex internal structure by showing the main components. Here, the Fuel Cell Plant represents the AIP (Air Independent Propulsion) technology. Figure 8. Simplified cross-section of the Type 214 Submarine (Source: TKMS) Figure 9. Cross-section of the Son Won-il-class Submarine (Source: Defense Mirror) 4.5. Independent Period (2021–Present): Dosan Ahn Chang-ho Class (Jangbogo-III) Indigenous Design Achievements of Complete Domestic Design In December 2012, the Defense Acquisition Program Administration (DAPA) signed a contract with Daewoo Shipbuilding & Marine Engineering (DSME) for the construction of two Dosan Ahn Chang-ho class submarines. The contract amount for the two submarines was approximately 1.675 trillion KRW (1.14 billion USD). The project was based on the construction experience of the Jangbogo-class and Son Won-il-class submarines, as well as the technology transferred from HDW and the experience in developing the DSME-1400 submarine (Nagapasa-class submarine) based on the Type 209 design. Dosan Ahn Chang-ho (launched in August 2021) is the first submarine fully designed, built, and equipped with its own weapon systems by South Korea. It has a displacement of 3,000 tons, making it a large submarine. It is the first in the world to be equipped with lithium-ion batteries, enabling long-term submerged operations without the need for an AIP system. Strategic Weapon Deployment Capability The most notable feature of the Dosan Ahn Chang-ho class is the vertical launch system (VLS) with 6 launchers (Batch-II will have 10 launchers), which allows the operation of the Hyunmoo-4-4 submarine-launched ballistic missile (SLBM). This capability is considered the most powerful strategic strike capability among non-nuclear nations. Currently, the Dosan Ahn Chang-ho, Kim Jong-seo, and Yun Bong-gil have been commissioned, with a total of 9 submarines planned: 3 from Batch-I, 3 from Batch-II, and 3 from Batch-III. Table 9. Specifications of the Dosan Ahn Chang-ho Class Submarine (Source: Namuwiki)   The following is information on the improvement projects for Batch 2 and Batch 3. Table 10. Development Stages of the Dosan Ahn Chang-ho Class Submarine   Over time, the missile payload and electronic systems continue to evolve. Below is a cross-sectional diagram of the Dosan Ahn Chang-ho-class submarine, including a comparison of its size with the North Korean Romeo-class and the German Type 214 submarines. It also includes the proposed diagram by Daewoo Shipbuilding & Marine Engineering (now Hanwha Ocean) for the BrahMos missile-equipped version, which was part of their bid for the Indian next-generation submarine construction project. Figure 10. Cross-sectional Diagram of the Dosan Ahn Chang-ho-class Submarine (Source: Naval News) 4.6. Comparison of 3 Generations of ROK Submarines Table 11. Development Stages of South Korean Submarines 5. Exports and International Status The history of South Korean submarines follows a trajectory of introduction, indigenization, technological accumulation, advancement, and international expansion. In 2011, South Korea became the first Asian country to export submarines by selling three Jangbogo-class derivative Nagapasa-class submarines to Indonesia for 1.1 billion USD. Currently, South Korea owns 18 submarines, making it the 8th largest submarine-owning country in the world. When it comes to conventional (diesel-electric) submarines, South Korea is regarded as one of the top global powers, along with Germany and Japan. Current Submarine Power Rankings 1. United States (68 nuclear submarines) - Overwhelming leader 2. Russia (45 nuclear submarines + 20+ diesel submarines) 3. China (12 nuclear submarines + 50+ diesel submarines) 4. United Kingdom (11 nuclear submarines) - Entirely nuclear-powered submarines 5. France (10 nuclear submarines + diesel) 6. India (2 nuclear submarines + 15 diesel submarines) 7. Japan (22 diesel submarines) 8. South Korea (18 diesel submarines) 9. Germany (6 diesel submarines, export power) 10. Sweden (5 diesel submarines, technological powerhouse) Detailed Classification by Country A. Nuclear Submarine Exclusives B. Nuclear + Conventional Submarine C. Conventional Submarine   The following are the rankings of the leading countries in conventional submarine exports: 1. Germany - 100 years of tradition, top exporter 2. Japan - Highest technological capabilities 3. South Korea - Only country with VLS/SLBM capability 4. Sweden - Specializes in stealth technology 5. France - Combines nuclear and diesel capabilities The following compares the key features of export submarines from each country. Table 12. South Korean KSS-III Competitor Submarines Export Competitiveness Evaluation Top Exporting Countries 1. Germany - Type 209/214 series, more than 100 units exported 2. France - Scorpène, 16+ units (additional orders in progress) 3. South Korea - 3 units exported, actively competing in various tenders Latest Trends • Lithium-ion Batteries: South Korea (Jang Yeong-sil class), Japan (Taigei class), France (Scorpène Evolved) • VLS (Vertical Launch System): South Korea (SLBM), Sweden (Cruise Missiles) • Stealth Technology: Germany (Diamond hull), Sweden (Ghost), Japan (Low noise) Hanwha Ocean, the builder of the Dosan Ahn Chang-ho-class KSS-III submarines, and the South Korean government are actively engaging with the following countries for submarine exports: • Canada: The Canadian Navy's Submarine Replacement Program (CSCP) is a major project worth up to 40 billion USD (with an acquisition cost of about 14 billion USD and operation and maintenance costs of around 27 billion USD). Canada plans to introduce 12 new submarines. The KSS-III, at 4,000 tons, is considered a strong candidate due to its suitability for Canada’s operational environment (including the Arctic). South Korean defense companies are offering technical cooperation and local construction options in an effort to secure the deal. • Poland: Poland is pursuing the Orka project to modernize its navy, aiming to acquire 3 new submarines project worth about 14 billion USD. The KSS-III is consistently mentioned as one of the main contenders by the Polish government. • Philippines and other Southeast Asian countries: The Philippines is focused on strengthening its naval power to counter China. Other Southeast Asian nations are also looking to enhance maritime security through submarine acquisitions. South Korea, having previously exported submarines (e.g., the Nagapasa-class to Indonesia), is actively pursuing KSS-III sales in the region. 6. Comparison of the Latest Submarine Capabilities of Countries Surrounding South Korea This section examines the key features of the latest submarine technologies of South Korea, North Korea, China, and Japan. Table 13. Comparison of the latest submarines of South Korea and neighboring countries Overall Assessment • Military Ranking: Evaluated as top-tier in Asia in the order of China > Japan > South Korea > North Korea. • Advanced Technology: Japan, South Korea, and China are rapidly advancing in technological innovation, while North Korea focuses on strategic threat capabilities. • Operational Capability: Japan and South Korea excel in maritime route defense and blockade capabilities, whereas China’s strength lies in ocean-going and strategic power projection. Asian military experts particularly regard South Korea’s KSS-III, Japan’s Soryu-class/Taigei-class, and China’s latest submarines as the pinnacle of their respective national defense technologies. North Korea, while still relatively underdeveloped, raises the threat level through the public display of its strategic nuclear-powered capabilities. 7. Future Prospects: Development of Nuclear-Powered Submarines South Korea is considering the development of next-generation submarines over 4,000 tons in the 2030s, with nuclear-powered submarines being a key option under discussion. In the past, in 2003, the basic design for a 4,000-ton reactor was completed, but at that time, cooperation with the United States was essential due to restrictions such as the Korea–U.S. nuclear agreement (“123 Agreement”). Recently, with the revitalization of Korea–U.S. shipbuilding cooperation through Hanwha Ocean and Philly shipyards, the possibility of acquiring nuclear submarine technology has increased. In particular, following the official U.S. approval of South Korea’s nuclear-powered submarine construction at the 2025 APEC Summit, technical, fuel, and policy cooperation with the U.S. is expected to move forward in earnest for South Korea’s project. 1. Scope of Future Cooperation • The U.S. has agreed to share key technologies for South Korea to build nuclear-powered submarines. • Cooperation will also include securing nuclear fuel for propulsion (highly enriched uranium or HALEU – high-assay low-enriched uranium) and the design and fabrication of small reactors for submarine use. • Both countries have agreed to expand mutual investment and technical collaboration in shipbuilding, marine plants, and submarine construction industries. 2. Technology Transfer and Conditions • South Korea has requested U.S. approval and supply for submarine propulsion nuclear fuel, and the U.S. is reported to have approved the use of nuclear fuel for South Korea’s submarine construction. • However, based on currently available information, this does not automatically include the full transfer of submarine reactor design or propulsion systems; the scope and method of technology transfer (joint development vs. full transfer) are still under discussion. • If South Korea transitions to third-country technology transfer or domestic development under U.S. cooperation, there could be restrictions linked to the Non-Proliferation Treaty (NPT) and the 123 Agreement. 3. Potential Timeline • According to the fact sheet released at the APEC Summit, this cooperation is linked to investment in the shipbuilding industry, and South Korea is reported to have pledged around US$150 billion to U.S. shipbuilding. • South Korean government reports indicate the goal is to secure four or more medium-sized (approximately 5,000-ton or larger) nuclear-powered submarines by the mid-2030s. • However, specific milestones such as design completion, project start, construction, and delivery dates have not been officially finalized, and Korean officials have stated that detailed schedules are still under coordination. 8. Comparison of Nuclear Submarines and Conventional Submarines & the Importance of Nuclear Submarines Nuclear submarines can be broadly divided into two types based on their primary missions: 1) Strategic Nuclear Submarine (SSBN: Ship Submersible Ballistic missile Nuclear) • Primary Mission: Equipped with ballistic missiles (SLBMs) carrying nuclear warheads, SSBNs patrol covertly for extended periods to maintain nuclear deterrence. This means deterring adversaries from using nuclear or major conventional attacks by maintaining the capability to retaliate with nuclear weapons, thereby preventing war. • Characteristics: Large in size, prioritizes extreme stealth and long-range operational capability. 2) Torpedo-Attack Nuclear Submarine (SSN: Ship Submersible Nuclear) • Primary Mission: Engage enemy submarines (Sub Hunter) or surface ships (Ship Killer), conduct intelligence, surveillance, and reconnaissance (ISR), support special operations forces, or carry out land-attack missions using cruise missiles. • Characteristics: Smaller and faster than SSBNs, emphasizes agility and maneuverability. Summary: • SSBN: Strategic missions with nuclear missiles. • SSN: Tactical attack missions with torpedoes and cruise missiles. 8.1. Nuclear-Powered Submarines vs. Conventional (Diesel-Electric) Submarines – Propulsion Comparison The most fundamental difference is in the power source: • Nuclear propulsion: Uses a reactor; heat from nuclear fission boils water to produce steam, which drives turbines to generate propulsion and electricity. • Diesel-electric submarines: Operate differently on the surface/snorkeling versus submerged. o Surface / Snorkeling: Diesel engines are run to propel the submarine or charge the batteries. The submarine must surface or use a snorkel to intake air and expel exhaust gases, reducing stealth. o Submerged: Diesel engines are turned off; the submarine runs solely on large charged batteries powering electric motors. This allows for very quiet, stealthy operation, but operational endurance is limited. Once the batteries are depleted, the submarine must surface to run diesel engines and recharge. Table 14. Comparison of Nuclear Submarine and Conventional Submarine Specifications Key Points • A nuclear-powered submarine is similar to an aircraft carrier: it provides long-range, high-endurance capability and serves as a powerful tool for global power projection. It is designed to dominate the open ocean. • A conventional submarine is comparable to a coastal patrol craft or a hunter-killer submarine: a stealthy and cost-effective weapon optimized for controlling regional waters and coastlines. Its greatest advantage is extremely low noise during battery-powered operation, making it a deadly threat in shallow waters—like “a hole in the water.” • Choosing a submarine type is not about absolute superiority, but about selecting the model best suited to a country’s strategic goals, budgetary limits, and geographic operational environment. 8.2. Maintenance Comparison Between Nuclear-Powered and Conventional Submarines Which force should a nation prioritize: Nuclear submarines, the backbone of strategic deterrence thanks to their unlimited underwater endurance, or conventional submarines, which offer excellent cost-effectiveness and are easier to field in larger numbers? One of the core factors in this decision is operational cost-efficiency. Beyond construction cost, the long-term burden of decades of maintenance, training, reactor refueling, and life-cycle logistics must be considered. The comparison below outlines these sustainment requirements. Table 15. Maintenance Comparison: Nuclear vs. Conventional Submarines 8.3. Total Life-Cycle Cost Comparison Between Nuclear-Powered and Conventional Submarines Let us compare two submarines of similar class size as examples: • Dosan Ahn Changho–class (KSS-III, South Korea) — conventional (diesel-electric + AIP) • Virginia-class (SSN, United States) — nuclear-powered Between these two types, the Total Lifetime Cost is 3 to 4 times higher for the nuclear-powered submarine. Below, we analyze the causes of this massive cost difference using concrete figures. Table 16. Total Life-Cycle Cost Comparison: Nuclear Submarine vs. Conventional Submarine 8.4. Importance of Nuclear-Powered Submarines for the Republic of Korea Navy Despite the enormous cost gap shown earlier, the South Korean government has strong reasons for wanting to acquire nuclear-powered submarines. These reasons are rooted in national security, strategic autonomy, and enhanced maritime defense capability. Key strategic motivations include: 1) Responding to North Korea’s SLBM Threat North Korea: Developing the Sinpo-class SSBN (armed with SLBMs). If a North Korean SLBM submarine hides in the deep waters of the East Sea, it becomes impossible to track with conventional submarines. Only nuclear-powered submarines can conduct continuous 24-hour tracking due to their unlimited underwater endurance 2) Monitoring Chinese Submarine Activity: China has ~12 nuclear submarines + ~50 diesel-electric submarines and is increasing activity in the East China Sea and Western Pacific. To monitor Chinese submarines operating in the open ocean, nuclear-powered submarines are essential 3) Strengthening Strategic Deterrence: Current South Korean SLBM range: ~500 km, requiring operations near the Korean Peninsula. A nuclear submarine can launch from anywhere in the Pacific, drastically expanding deterrence. Provides a “survivable second-strike capability”—a retaliatory force that cannot be located or neutralized 4) National Prestige: Nations that operate nuclear submarines are considered major military powers. Only six countries currently possess them. Strengthens technological sovereignty and diplomatic leverage South Korea’s desire to operate nuclear-powered submarines is driven by strategic and security needs that far outweigh cost considerations. For over 30 years, South Korea has pursued nuclear submarine capabilities as part of a long-term defense strategy, aiming to achieve: enhanced nuclear deterrence, increased strategic autonomy, breakthroughs in defense technology, effective countermeasures against the expanding submarine forces of North Korea and China. Nuclear-powered submarines are seen as essential platforms capable of long-duration, high-speed, and highly covert operations—capabilities that are crucial in Korea’s security environment. Figure 11. Conceptual Cross-Section of the Korean Nuclear-Powered Submarine (KSS-N) Conclusion The Republic of Korea began with the small Dolgorae-class submarines in 1983, and in 42 years has risen to become the world’s 8th-largest submarine operator and one of the “Big Three” diesel-electric submarine powers (Germany, Japan, Korea). The Dosan Ahn Chang-ho class (KSS-III), in particular, is the world’s only diesel-electric submarine equipped with 10 VLS cells for SLBMs, and with its combination of AIP and lithium-ion batteries, it possesses some of the strongest underwater endurance and operational capability in the world. It has proven its real-world combat performance by eluding detection from a U.S. aircraft carrier during the RIMPAC exercises, and has demonstrated strong export competitiveness—Korea has already secured a 1.1 billion USD contract with Indonesia, and is competing for additional tenders in Canada, Poland, and the Philippines. Despite the overwhelming cost burden of nuclear-powered submarines, they remain essential for South Korea to counter North Korea’s SLBM-equipped SSBNs, and China’s expanding submarine fleet. Only nuclear-powered submarines can perform unlimited submerged operations and maintain high-speed, long-duration tracking of North Korean SSBNs 24/7. They also allow South Korea to exercise strategic deterrence across the entire Pacific, not just near the Korean Peninsula. While challenges remain—such as restrictions from the U.S.–Korea 123 Nuclear Agreement and various technological barriers—ongoing Korea–U.S. naval cooperation through Hanwha Ocean’s Philadelphia Shipyard significantly increases the likelihood of acquiring nuclear-submarine technology. Securing 4 to 6 nuclear-powered submarines would mark a transformational leap for the ROK Navy and a historic turning point in Korea’s rise as a true maritime power. South Korea’s submarine industry is not just a weapons program—it is an advanced technology sector and a driver of economic growth. It represents a core capability for self-reliant defense and national security. Based on its world-class diesel-electric submarine expertise, if Korea succeeds in acquiring nuclear-powered submarines as well, it will firmly establish itself as one of the world’s top five submarine powers. As history teaches that “those who command the seas command the future”, the continued advancement of South Korea’s submarine capabilities will serve as the foundation for peace and stability on the Korean Peninsula and in Northeast Asia in the 21st century.

Defense & Security
MADRID, SPAIN - OCTOBER, 2023: 3 EF-2000 Eurofighter Typhoons (part of a group of 9) flying over Madrid as part of the Spain Day celebration. October 4, 2023, Madrid, Spain

Global defence spending: What is next for European military procurement?

by Keith Hartley

With its fragmented production process, European defence procurement is inefficient and uncompetitive in comparison to the United States. A new approach, prioritising cross-country collaborations, could improve things, but would not be without its own challenges. Introduced in March 2024, the European Defence Industrial Strategy (EDIS) forms the centrepiece of European Defence Industrial Policy. The strategy aims to strengthen the competitiveness and readiness of the European Defence Technology and Industrial Base (EDTIB) through greater inter-state collaboration. It includes some ambitious targets, all of which are designed to allocate more resources to the EDTIB. For example, by 2030 the goal is for 50% of defence procurement budgets and at least 40% of defence equipment procurement to come through collaboration. There is also a designated €1.5 billion budget for European defence industry ‘readiness’. The background to all of this is British and European rearmament (readiness), largely in response to the increasing threat of Russia (following its acquisition of Crimea and its illegal military operations in Ukraine). European defence spending increased from €343 billion in 2024 to €381 billion in 2025. Figure 1 shows 2024 defence spending as a share of gross domestic product (GDP) by European country. Taking 2% as a target, Italy, Spain and Portugal are below the threshold. Poland – which shares a border with war-torn Ukraine – spent more than double the target last year, at 4.15%. At the same time, last year Russia spent an estimated 7.05% of its GDP on ‘defence’. Figure 1: European defence spending as a share of GDP, 2024. Source: NATO & SIPRI. Note: NATO members have agreed a new benchmark for defence spending, targeting 5% of GDP by 2035. How do inefficiencies in the European defence market affect spending? Inefficiencies within the European defence market shape spending patterns. For example, there are cases of duplication of defence R&D, fragmented national defence markets, ‘off-the-shelf’ procurement from non-EU suppliers, and a general failure to exploit economies of scale and learning. Compared with the US market, for instance, Europe is neither efficient nor competitive. This inefficiency is reflected in Europe producing three different types of combat aircraft: the Eurofighter Typhoon, the French Rafale and the Swedish Gripen. Each type supplies national and export markets: 782 Typhoons, 710 Rafales, and 369 Gripen aircraft had been ordered or delivered as of October 2025. So, if each European nation had agreed to buy one type of combat aircraft, total output would have been around 1,800 units. Common procurement would also have reduced production costs by an estimated 10-20%. In contrast, the American F-35 combat aircraft has a total planned output of 3,556 units – almost twice the total for Europe. What about sixth-generation aircraft? The sixth-generation fighter aircraft market already looks highly competitive. By 2027, Europe plans to build the Future Combat Aircraft System (FCAS), with France, Germany and Spain all taking part in the project. At the same time, the UK is developing the Tempest combat aircraft jointly with Italy and Japan, with the first flight also due in 2027. Meanwhile, across the pond, in March 2025, the United States announced that Boeing would be developing the F-47 Next Generation Air Dominance (NGAD) fighter. It is designed to replace the F-22 aircraft, with the first flight planned in 2028. There have already been 185 orders. For public policy purposes, there are questions as to whether Europe can afford to fund two similar combat aircraft projects. In one sense, the answer must be that Europe and the UK can afford to pay the price of having two separate independent developments. Even so, there are other policy options (with differing costs). On the one hand, European countries could collaborate further and undertake the project with great cost-sharing. On the other hand, they could simply buy American aircraft. Further collaboration is economically and politically attractive. Economically, more nations joining a project would lead to greater sharing regarding R&D and the pooling of production orders. But this assumes all else remains unchanged – which is unlikely. Further collaboration is costly, as each partner nation demands its share of high technology on the project – namely, a share of the advances in airframe, engine and avionics (aviation-specific electronics), and duplicate flight test centres. Similarly, partners will each demand a share of the production work, leading to duplicate final assembly lines and adding to total costs (although these could still be less than a national-level initiative would cost). At the same time, and perhaps most importantly, more collaborative partnerships could lead to cost sharing and cost savings. This is likely to mean lower prices for each partner nation compared with an independent, single-nation solution. But problems can also come from further collaboration. The number of partner nations will rise from three to six, increasing transaction costs. More difficult will be the process of selecting the ‘winning project’ and the inevitable ‘national champion’ – namely, a choice between BAE Systems in the UK and Dassault of France. In an ideal world, sharing design work between two world-class firms should produce an outstanding design. But in reality, the outcome is likely to be a compromise, with equal sharing of development work on the aircraft, which might not be an efficient solution. Even so, some inefficiencies are the price of further collaboration. An alternative solution would be for European governments to buy American units. The options here are to buy off-the-shelf, either completely or with some form of ‘offset’ (a type of compensation arrangement made between a supplier and the purchasing government) offering varying amounts of work to the importing nation. Again, these options involve different benefits and costs. For example, direct imports involve foreign currency payments while an offset provides some jobs and the retention of domestic industrial capability for the importing nation. Another possibility is a negotiation similar to the F-35, where the UK was a ‘level 1 partner’ with a 15% share of the programme. A similar deal might be negotiated for the purchase of the US F-47, with the UK enjoying similar benefits. Where next in an ideal world for European defence? European defence industrial policy must address the choice of the next-generation combat aircraft. A simple solution would be to continue with the FCAS and UK-led Tempest projects as separate independent ventures. But the new EDIS framework, with its commitment to European solutions, suggests a better option would be to seek a new collaboration between the FCAS and Tempest. These seem like similar aircraft, and creating a new collaboration involving six partner nations could be beneficial. Such a collaboration would offer cost savings in both R&D and production. Fixed R&D costs would be shared between six nations rather than three, and production orders would be considerably increased (possibly even doubled). This could allow for further economies of scale and learning, and at least a 10% unit cost savings (PwC, 2021; Mueller, 2025). Indeed, production numbers for the FCAS have been estimated at 200-300 units and a merger with the Tempest could double this to 400-600 units (Mueller, 2025). There would, however, still be transaction costs associated with the six-part collaboration. This is not a unique problem. For example, the Airbus Atlas military transport aircraft is a seven-nation collaboration, and the Eurofighter Typhoon involves four partner countries. Conclusion A possible merger between the FCAS and Tempest programmes might be a way forward for both projects. It would create a large military-industrial-political complex whose true economic benefits and costs would still need to be assessed. It would also be a centrepiece of the new European defence industrial policy, and might attract new export customers from the European Union (EU) and elsewhere. A more ambitious target is the formation of a European Army, Navy and Air Force. But this would require a single European decision-making mechanism replacing the current arrangement of individual European Member States. It would allow common procurement policies and large-scale purchasing for land, sea and air weapons. This is certainly a long run dream but could be one worth pursuing. Removing the inefficiencies in European defence markets described above by creating a single European market for defence equipment could create substantial gains, both economically and in terms of security.

Energy & Economics
Automated AI industry robot and robotic arms assembly in factory production. Concept of artificial intelligence for industrial revolution and automation manufacturing process NLP

Seven emerging technologies shaping the future of sustainability and innovation

by World & New World Journal

Introduction Technological innovation is accelerating at an unprecedented pace, reshaping how societies generate energy, transport people and goods, produce food, fight disease, and explore space. Across multiple sectors, groundbreaking solutions are emerging in response to global challenges such as climate change, public health threats, energy insecurity, and resource scarcity. This article examines seven transformative technologies — from wireless electric-vehicle charging roads and regenerative ocean farming to graphene applications and disease-eliminating robots — each demonstrating how science and engineering are redefining sustainability, resilience, and human capability in the 21st century. 1. Wireless Electric Vehicles Charging Roads Electric Vehicles (EVs) have become key technology to decarbonise road transport, a sector that accounts for over 15% of global energy-related emissions. The increase of their sales globally exceeded 17 million in 2024, and it is forecasted to surpass the 20 million units by 2025. (IEA, 2025) Source: IEA analysis based on country submissions and data from the European Automobile Manufacturers Association (ACEA), European Alternative Fuels Observatory (EAFO), EV Volumes and Marklines. Despite this growth, several concerns continue to slow down their widespread adoption. Limited charging infrastructure, battery-related autonomy issues, high purchase costs, slow charging times, and the environmental impact of the battery productions remain major obstacle. The broader EV industry, however, is actively developing new technologies to overcome these challenges. (Automotive Technology, 2025) In this context, one of the most pressing challenges is energy supply – specifically, the need for better batteries and more accessible charging points. To address this bottleneck, a promising new trend has emerged: wireless roads capable of charging EVs while they drive. This technology could fundamentally transform the charging experience and significantly reduce dependence on stationary chargers. The idea is simple, a system that supplies power to EVs while driving, using embedded inductive coils (wireless charging) or conductive rails on the road, in other words a dynamic or in-motion charging on the road. In fact, this technology already exists and there are several examples worth mentioning: - South Korea: introduced in 2013, the first road-powered electric vehicle network, in which electrical cables were buried below the surface and wirelessly transfer energy to the electric vehicles via magnetic resonance. An electrified road has the advantage of eliminating the plug-in infrastructure and vehicles usually require a smaller battery, reducing weight and energy consumption. In 2009, KAIST introduced the OLEV (online electric vehicle), a type of EV that uses wireless dynamic charging through inductive coils embedded in the road. The OLEV public transport buses were later used in the 2013 first electric road in the city of Gumi, which consisted of a network of 24 km, by 2015 the number of OLEV buses increased to 12 (Anthony, 2013) and another bus line was launched in Sejong that same year. (SKinno News, 2021)- Sweden: a 1.6 km road linking Stockholm Arlanda airport to a logistic site outside the capital city was a pilot project achieved in 2016. (The Guardian, 2018), (Carbonaro, 2022) However, the Swedish government didn’t stop there and by 2020 they built a wireless road for heavy trucks and buses in the island city of Visby, and they are planning to expand it to the 13-mile E20 highway – logistic hub between Hallsberg and Örebro – and even have a plan of further 3,000 km of electric roads in Sweden by 2035. (Min, 2023), (Dow, 203)- USA: a quarter mile (400 m) section of road through the Corktown area of Detroit was changed to a wireless electric road. Electreon was the company in charge of the project. (Paris, 2024), (6abc Philadelphia, 2025)- France, Norway and China: Electreon – a leading provider of wireless charging solutions for EVs – has partnered and gained projects for wireless highways in France – a section of the A10 highway (Electric Vehicle Charging & Infrastructure, 2023) –, Norway – evaluation of wireless charging for AtB’s BRT routes in Trøndelag (Foster, Electreon to install the first wireless electric road in Norway, 2023) – and China – not wireless but in an 1.8 km electrified highway in Zhuzhou. (Foster, China demonstrates electrified highway, 2023) While all these examples show a “tendency” to switch into wireless roads, it is important to highlight three points to keep that are decisive and have slowed down the transition: in first place, these wireless roads are being targeted mainly for freight trucks and buses, the second point is the initial cost of the infrastructure is high and third point is the technology that should be added to the EVs. 2. Fire Suppression Using Sound Waves Seth Robertson and Viet Tran, engineering students from George Mason University in Virginia designed a fire extinguisher that uses sound waves to put out flames. Their device emits low-frequency sound waves that disrupt the conditions necessary for a fire to sustain itself, meaning that no foam, powder, chemicals or water are needed to extinguish a fire, just sound. In order to understand how it can be possible to extinguish fire with sound it is necessary to remember that a fire needs heat, fuel and oxygen to survive, if one of these elements does not appears, there is no fire, under this principle, Robertson and Tran’s prototype uses sounds to separate the oxygen from the flame, as a result, the fire extinguish. The interesting part is that the sound must have the right frequency, specifically between 30 to 60 Hz – low frequency sounds. The sound waves will act as pressure waves moving the air molecules back and forth, and in the right frequency, the movement will disrupt the flames’ structure, separating the oxygen molecules and the fire will simply die out with the lack of these molecules. Potential applications include small kitchen fires or small fires, while unfortunately, large-scale structural or wildland fires still remain a challenge, mostly due to the environmental factors, like wind, air density and flame intensity, that can be a hurdle in uncontrolled environments. Moreover, the generation of low-frequency sound waves powerful enough to suppress fires requires a significant amount of energy. Nonetheless, an early prototype consists of an amplifier to generate low-frequency sound and a collimator to focus the sound waves directly on the fire, and as mentioned before, one limitation is that specialized equipment is required to produce the high-pressure sound waves. Still, research has been carried out recently and it is expected that this technology could be a non-destructive and less damaging method for firefighters soon. https://www.youtube.com/watch?v=uPVQMZ4ikvM 3. Regenerative Ocean Farming Regenerative ocean farming is a climate-friendly model of aquaculture where seaweed and/or shellfish are grown in a way that requires no freshwater, feed or fertilizer, as the crops naturally filter nutrients from the water and capture carbon and nitrogen. This farming model can benefit coastal ecosystems and communities by increasing food security, creating jobs, improving water quality, protecting coastlines, supporting ocean justice (Urban Ocean Lab, 2023) and most importantly, mitigating climate change. Ocean farming can rely on a polyculture system – cultivate a mix of shellfish and seaweeds – or just a single species system. While the climate conditions determine the species to grow, it does not affect the system itself. The system follows a vertical layer farming way, in which farms use ropes that extend vertically from the surface to the seabed, in addition to the use of different levels and cages for scallops, oysters or clams, for example, as shown in Figure 2. Other species like kelp, abalone, purple sea urchins or sea cucumbers can also be harvested. Figure 2: Ocean farming diagram. Source: Urban Ocean Lab The big advantage is the maximization of the ocean space, producing more food in a smaller footprint, in addition to the use of the benefits of the species – seaweed and shellfishes – which are both natural filters that help to clean the water and absorb excess nutrients, combating ocean acidification and reducing marine pollution (Hassan, 2024) naturally. Moreover, the versatility of these species allows them to use them in other areas, such as biofuels, soil fertilizers, animal feed or cosmetics and not only for human food. Around the world, there are several projects that have adopted this methodology (Hassan, 2024): 1. GreenWave (USA): increased biodiversity by 50%, reduced nitrogen level in water by 20% and created sustainable job opportunities for locals.2. Ocean’s Halo (Ireland): annual harvest of 500 tons of kelp, creation of 20 jobs in rural areas and carbon footprint reduction by 30%3. Kitasaku Marine (Japan): Nori production increased by 25%, coastal water quality improved by 15% and local support of 50 locals.4. Catalina Sea Ranch (USA): harvested 1 million pounds of mussels annually, increased local biodiversity by 20% and created 10 new jobs.5. Blue Ventures (Madagascar): harvested 146 tonnes of red seaweed, plus they have created a sea cucumber market with a value of $18,000 and 700 farmers have been trained to farm in the ocean. (Blue Ventures Conservation, 2015)6. Havhøst (Ocean Harvest) (Denmark): they are growing seaweed, mussels and the European flat oyster in 30 communities along the Danish coast. In addition, they focus on educational activities to introduce ocean farming to more people. (Waycott, 2022) Overall ocean farming creates a positive environmental impact; it provides a sustainable food source and economic opportunities for the local people and the industry. Of course it faces challenges, but it has become a way to mitigate climate change and protect the ocean. 4. Wave Energy Generators There are two types of waves. Surface waves are generated by a combination of wind passing over the sea’s surface raising up water and gravity pulling it back down. In a technical way, warm air rises and expands, creating areas of low pressure compared to places with cooler air. Air then moves from high-pressure areas to low-pressure areas. This movement of air is wind and when it rushes across the surface of the Earth it creates waves in oceans. (Lumley, 2025) On the other hand, underwater waves are sound waves produced by earthquakes or volcanic eruptions; these waves travel by compressing and expanding the water. (Kadri, 2025) In both cases temperature variations and other factors can affect the nature of the waves. For instance, wave energy or wave power harnesses the ocean’s waves to generate energy by converting a wave’s kinetic energy into electricity. Wave power is a form of renewable and sustainable energy which has potential cost benefits over solar and wind but faces technological challenges limiting its large-scale adoption in electricity generation and water desalination. (Lumley, 2025) The nature of the waves makes wave energy the world’s largest source of energy with a potential of annual global production of 29,500 TWh, according to the Intergovernmental Panel on Climate Change (IPCC, 2012). In addition, it works well in tandem with other renewables such as wind. (Ocean Energy Europe, s.f.) In terms of technology itself, wave energy has relied on the next devices: 1. Point absorbers: floating buoys that capture the vertical movement of waves, which then is harnessed through a cable anchored to the seabed. The vertical movement of the waves is subsequently transformed into electricity via converters (alternators, generators or hydraulic systems). These are usually mounted on the seabed in shallower water and are connected to the floating buoys.2. Oscillating water columns (OWCs): a partially submerged, hollow structure connected to an air turbine through a chamber. These devices use the rise and fall of the waves to compress air, the air is forced to move back and forth in the chamber and creates a strong air flow that powers the turbine, generating electricity.3. Overtopping devices: a floating structure made of segments linked together, which lifts up and down with the waves. These devices harness wave energy by allowing waves to flow into a reservoir, which then releases the water through turbines to generate electricity. Design, flow dimensions, turbine efficiency and structural elements influence their efficiency. Source: BKV Energy Despite its huge potential and considering it as a clean energy source with no GHG emissions, the main concern related to wave energy is the marine life affectation – including habitat alteration, noise pollution or collision risks for marine life. On the other hand, high costs, complex design, maintenance and technological constraints also have become a problem, still, the potential of this continuous energy is huge compared to the more limited wind energy, for example. (Lumley, 2025) Despite all that, there are some active projects being developed in different parts of the world, for example: Azura Wave Power (tested in Hawaii), Anaconda WEC (UK’s prototype), CalWave (in California), CETO (tested in Australia and expected to be tested in Spain too), Crestwing (tested in Denmark), HiWave-5 (Swedish-based tested in Portugal), the Wave Energy Program (in India) or the Ocean Grazer WEC (developed in The Netherlands), among many others. (Wikipedia, 2019) 5. SpinLaunch SpinLaunch is a spaceflight technology development company working on mass accelerator technology to move payloads to space. This innovative space company is known for their Meridian Space and their Suborbital Accelerator. The Meridian Space is a low-cost, highly differentiated LEO satellite communications constellation which offers speed, reliability and flexibility (SpinLaunch, 2025). The company has partnered, and investments have been achieved in order to launch 280 satellites (Berger, 2025) as part of their satellite constellation, which will satisfy the needs in any area needed such as maritime, national security, communications, corporate networks, aviation, military, etc. The highlight of these satellites is their mass that is only 70 kg, and its facility to be launched in one or two rockets. On the other hand, SpinLaunch is aiming to build a kinetic launch system that uses centrifugal force instead of traditional rockets and spins a rocket around at speeds up to 4700 mph (7,500 km/h) before sending it upward toward space. At 60 km or so altitude, the rocket would ignite its engines to achieve orbital velocity. To achieve this, they have built a Suborbital Accelerator prototype, in Spaceport America, New Mexico. This prototype is a 33-meter vacuum chamber that can launch payloads from 800 to 5000 mph. Several tests have already been carried out, being the 10th the latest on September 27th, 2025. (Young, 2025) SpinLaunch hopes to have a 100-meter Orbital Lauch system by 2026. The engineering behind these systems is as follows: both systems are circular accelerators, powered by an electric drive that uses a mechanical arm to sling payloads around in circles to reach incredibly high speeds of up to 5,000 mph. They then release the payload through a launch tube and spaceward. (Young, 2025) The company claims that their method is cheaper as it eliminates 70% of the fuel compared to the traditional rocket launch, in addition, the infrastructure is less, and it is more environmentally friendly than the traditional methods. However, the limitations are seen in the payload weight (no more than 400 kg per payload) and their resistance (payloads must be able to withstand up to 10,000 G’s of force during the centrifugal acceleration process) Source: SpinLaunch. 6. Disease-Eliminating Robots “Disease-eliminating robots” encompass a diverse set of robotic and AI-driven systems designed to prevent, monitor, and treat infectious diseases while minimizing human exposure to risk. These technologies operate at multiple scales — from environmental disinfection in hospitals to microscopic interventions inside the human body. Environmental disinfection robots are among the most established applications. Devices such as Xenex and UVD Robots utilize pulsed ultraviolet (UV-C) light to destroy viral and bacterial DNA, effectively sterilizing hospital rooms within minutes (UVD Robots, 2023; Xenex, 2024). Others deploy vaporized hydrogen peroxide (VHP) to disinfect enclosed environments like train carriages and operating rooms (WHO, 2022). These systems substantially reduce hospital-acquired infections (HAIs) and cross-contamination risks. In medical and clinical settings, robotics contribute to precision and safety. Surgical robots such as Intuitive Surgical’s da Vinci and Ion platforms enable minimally invasive operations with reduced infection risk and faster recovery times (Intuitive Surgical, 2024). At the microscopic level, nanorobots are under development for targeted drug delivery, capable of navigating the bloodstream to deliver chemotherapy agents directly to tumor sites, thereby minimizing systemic side effects (Lee et al., 2023). Meanwhile, biofilm-removing microbots are being engineered to eradicate bacterial colonies on medical implants and dental surfaces (Kim et al., 2022). Automated systems are also emerging for precise injections, such as intravitreal therapies for ocular diseases, helping reduce clinician workload and human error (Zhou et al., 2024). Beyond clinical contexts, robots support public health surveillance and disease prevention. Prototypes like MIT’s “Luigi” sewage-sampling robot autonomously collect wastewater data to monitor community-level infections and anticipate outbreaks (MIT News, 2025). In precision agriculture, AI-guided robotic systems detect infected crops early, controlling plant disease spread and protecting global food security (FAO, 2023). Collectively, these robotic systems demonstrate the increasing convergence of automation, biotechnology, and artificial intelligence in safeguarding human and environmental health. By taking on tasks that are dangerous, repetitive, or biologically hazardous, disease-eliminating robots represent a pivotal advancement in the global strategy for infectious disease control and public health resilience. 7. Graphene Graphene is the world’s thinnest material, consisting in a single layer of carbon atoms arranged in a hexagonal honeycomb lattice. Despite its thinnest it is stronger than steel and diamond. In addition, graphene is flexible, transparent, conductive, light, selectively permeable and a 2D material. In summary it is a versatile material with many different applications and that has gained attention since its isolation in 2004 by Russian and Nobel prize scientists Andre Geim and Konstantin Nocoselov. (Larousserie, 2013) The characteristics of graphene make them an important player in the energy, construction, health and electronics sectors. In a deeper analysis, its high conductivity is valuable for battery life, autonomy and energy efficiency. Its lightness is suitable for manufacturing drone batteries, which reduce their weight, and the drone’s weight too. Graphene’s transparency and flexibility could be used in screen devices including cell phones, televisions or vehicles – Samsung already produced a flat screen with graphene electrodes. In addition, its high resistance and excellent heat and electric conductivity make them valuable for the light industry. Other sectors that are beneficial from graphene include the construction and manufacturing sector. For example, adding 1 g of graphene to 5 kg of cement increases the strength of the latter by 35%. Another example refers to Ford Motor Co., that is adding 0.5% of graphene to increase their plastic strength by 20%. (Wyss, 2022) Graphene has become a promising material, and it has been studied and tested to be used as a replacement or equivalent of silicon in microelectronics. It has been used in sports, like tennis rackets made by Head or in electric cars concepts like BASF and Daimler-Benz Smart Forvision. Bluestone Global Tech partnered with mobile phone manufacturers for the first graphene-based touchscreen to be launched in China. (Larousserie, 2013) Paint with graphene for a better thermal regulation in houses; bones, prosthesis, hearing aids or even diagnosis of diseases could also rely on graphene. (Repsol, 2025) Nowadays, its costs are high, but the graphene is going through a moment of intense academic research that surely in some years will end up with even more promising results and applications. Conclusion Together, these seven emerging technologies form a powerful snapshot of the future. Their diversity — spanning transportation, renewable energy, aquaculture, aerospace, robotics, and advanced materials — reflects the multi-sectoral nature of today’s global challenges. Yet they share a common purpose: to create more sustainable, efficient, and resilient systems capable of supporting a rapidly changing world. Wireless charging roads challenge the limits of mobility; ocean farming and wave energy reimagine how we use marine ecosystems; SpinLaunch and graphene redefine what is physically possible; and disease-eliminating robots transform public health. These innovations are still evolving, but they show that the solutions to some of humanity’s most pressing problems already exist — they simply need investment, scaling, and political will. By embracing these technologies and continuing to pursue scientific discovery, societies can accelerate the transition toward a cleaner energy future, safer communities, healthier ecosystems, and a more equitable and technologically advanced world. References 6abc Philadelphia. (2025, Juky 11). Electric vehicle tech: The rise of wireless charging roads. Retrieved from YouTube: https://www.youtube.com/watch?v=9NzJO67JIUE Abing, H. (n.d.). The Sonic Fire Extinguisher That’s Changing Firefighting. Retrieved from Rareform Audio: https://www.rareformaudio.com/blog/sonic-fire-extinguisher-sound-waves Anthony, S. (2013, August 6). World's first road-powered electric vehicle network switches on in South Korea. Retrieved from ExtremeTech: https://www.extremetech.com/cars/163171-worlds-first-road-powered-electric-vehicle-network-switches-on-in-south-korea Automotive Technology. (2025). What Are the Biggest Challenges Facing Electric Vehicle Adoption Today? Retrieved from Automotive Technology: https://www.automotive-technology.com/articles/what-are-the-biggest-challenges-facing-electric-vehicle-adoption-today BBC Earth. (2023, March 3). Are Underwater Farms the Future of Food? | Our Frozen Planet | BBC Earth. Retrieved from YouTube: https://www.youtube.com/watch?v=93nk2xIRcbk&t=11s Berger, E. (2025, April 4). SpinLaunch—yes, the centrifuge rocket company—is making a hard pivot to satellites. Retrieved from Ars Technica: https://arstechnica.com/space/2025/04/spinlaunch-yes-the-centrifuge-rocket-company-is-making-a-hard-pivot-to-satellites/ Blue Ventures Conservation. (2015). Community-based aquaculture. Pioneering viable alternatives to fishing. Retrieved from Blue Ventures: https://blueventures.org/wp-content/uploads/2021/03/BV-Aquaculture-Factsheet-2015.pdf Carbonaro, G. (2022, June 24). Wireless charging for electric cars is already here - but the technology isn’t for everybody yet. Retrieved from euro news: https://www.euronews.com/next/2022/06/24/wireless-charging-roads-for-electric-cars-ev-technology-is-here-fiat-stellantis Dow, C. (203, May 16). Sweden will build the world's first EV charging road. Retrieved from TopGear: https://www.topgear.com/car-news/electric/sweden-will-build-worlds-first-ev-charging-road Electric Vehicle Charging & Infrastructure. (2023, July 20). Electreon, together with Vinci, wins tender for first wireless electric road in France. Retrieved from Electric Vehicle Charging & Infrastructure: https://www.evcandi.com/news/electreon-together-vinci-wins-tender-first-wireless-electric-road-france Ellen MacArthur Foundation. (2024, March 20). 3D Ocean Farming | Transforming tradition. Retrieved from YouTube: https://www.youtube.com/watch?v=6PqvHaaL6EQ&t=225s Emergent Team. (n.d.). Using Sound Waves to Put Out Fire: The Story of Two George Mason University Students. Retrieved from Emergent: https://www.emergent.tech/blog/sound-waves-to-put-out-fire FAO. (2023). AI and Robotics in Precision Agriculture: Combating Plant Diseases. Foster, J. (2023, March 29). China demonstrates electrified highway. Retrieved from Electric Vehicle Charging & Infrastructure: https://www.evcandi.com/news/china-demonstrates-electrified-highway Foster, J. (2023, June 28). Electreon to install the first wireless electric road in Norway. Retrieved from Electric Vehicle Charging & Infrastructure: https://www.evcandi.com/news/electreon-install-first-wireless-electric-road-norway George Mason University. (2015, February 6). Pump Up the Bass to Douse a Blaze: Mason Students' Invention Fights Fires. Retrieved from YouTube: https://www.youtube.com/watch?v=uPVQMZ4ikvM Greenwave. (2025). Regenerative Ocean Farming. Retrieved from Greenwave: https://www.greenwave.org/our-model Hassan, T. (2024, October 15). Vertical Ocean Farming. Retrieved from AgriNext Conference: https://agrinextcon.com/vertical-ocean-farming-sustainable-and-shellfish/ IEA. (2025). Electric Vehicles. Retrieved from IEA: https://www.iea.org/energy-system/transport/electric-vehicles Intuitive Surgical. (2024). da Vinci and Ion Robotic Systems Overview. IPCC. (2012). Renewable Energy Sources and Climate Change Mitigation. Retrieved from IPCC: https://www.ipcc.ch/site/assets/uploads/2018/03/SRREN_Full_Report-1.pdf Kadri, U. (2025, April 7). Wave energy’s huge potential could finally be unlocked by the power of sound – new research. Retrieved from The Conversation: https://theconversation.com/wave-energys-huge-potential-could-finally-be-unlocked-by-the-power-of-sound-new-research-253422 Kim, J. et al. (2022). “Microbotic Eradication of Biofilms on Medical Implants.” Nature Biomedical Engineering, 6(11), 1215–1226. Larousserie, D. (2013, November 22). Graphene - the new wonder material. Retrieved from The Guardian: https://www.theguardian.com/science/2013/nov/26/graphene-molecule-potential-wonder-material Lee, S. et al. (2023). “Nanorobotic Drug Delivery Systems for Cancer Therapy.” Science Advances, 9(4), eabq1234. Lumley, G. (2025, March). What Is Wave Power? Retrieved from BKV Energy: https://bkvenergy.com/learning-center/what-is-wave-energy/ MIT News. (2025). “Luigi: A Robot for Wastewater Epidemiology.” Min, R. (2023, July 06). Sweden is building the world's first permanent electrified road for EVs to charge while driving. Retrieved from euro news: https://www.euronews.com/next/2023/05/09/sweden-is-building-the-worlds-first-permanent-electrified-road-for-evs NOAA. (n.d.). 3D Ocean Farming. Retrieved from NOAA: https://oceantoday.noaa.gov/fullmoon-3doceanfarming/welcome.html Ocean Energy Europe. (n.d.). Wave energy. Retrieved from Ocean Energy Europe: https://www.oceanenergy-europe.eu/ocean-energy/wave-energy/#:~:text=Wave%20energy%20technology Paris, M. (2024, January 31). Wireless charging: The roads where electric vehicles never need to plug in. Retrieved from BBC: https://www.bbc.com/future/article/20240130-wireless-charging-the-roads-where-electric-vehicles-never-need-to-plug-in Porter, A. (2024, June 20). What is Aquaculture? An Overview of Sustainable Ocean Farming. Retrieved from PBS: https://www.pbs.org/articles/a-guide-to-hope-in-the-water-and-aquaculture Repsol. (2025). An innovative and revolutionary material. Retrieved from Repsol: https://www.repsol.com/en/energy-move-forward/innovation/graphene/index.cshtml SKinno News. (2021, July 8). Charging while driving – electrified road for electric vehicles. Retrieved from SKinno News: https://skinnonews.com/global/archives/6253 SpinLaunch. (2025). Pioneering The Next Generation of Satellite Broadband. Retrieved from SpinLaunch: https://www.spinlaunch.com/meridianspace The Guardian. (2018, April 12). World's first electrified road for charging vehicles opens in Sweden. Retrieved from The Guardian: https://www.theguardian.com/environment/2018/apr/12/worlds-first-electrified-road-for-charging-vehicles-opens-in-sweden Urban Ocean Lab. (2023, November). What is Regenerative Ocean Farming? Retrieved from Urban Ocean Lab: https://urbanoceanlab.org/resource/regenerative-ocean-farming-factsheet UVD Robots. (2023). Next-Generation UV-C Disinfection Systems for Hospitals. Waycott, B. (2022, January 10). Regenerative ocean farming is trending, but can it be a successful business model? Retrieved from Global Seafood Alliance: https://www.globalseafood.org/advocate/regenerative-ocean-farming-is-trending-but-can-it-be-a-successful-business-model/ WHO. (2022). Guidelines on Hydrogen Peroxide Disinfection in Healthcare Settings. Wikipedia. (2019, June). List of wave power projects. Retrieved from Wikipedia: https://en.wikipedia.org/wiki/List_of_wave_power_projects Wyss, K. (2022, November 29). Graphene is a proven supermaterial, but manufacturing the versatile form of carbon at usable scales remains a challenge. Retrieved from The Conversation: https://theconversation.com/graphene-is-a-proven-supermaterial-but-manufacturing-the-versatile-form-of-carbon-at-usable-scales-remains-a-challenge-194238 Xenex. (2024). LightStrike Germ-Zapping Robot: Clinical Outcomes and Use Cases. Young, C. (2025, October 18). SpinLaunch just catapulted a NASA payload into the sky for the first time. Retrieved from Interesting Engineering: https://interestingengineering.com/innovation/spinlaunch-catapulted-a-nasa-payload Zhou, Y. et al. (2024). “Automated Injection Robots for Ophthalmic Care.” Frontiers in Medical Robotics, 5(2), 45–57.

Energy & Economics
Brazil and USA relations, chess pawns with national flags - 3D illustration

Brazil’s Seven Strengths that Enable Brazil to challenge the US & US President Trump

by World & New World Journal

 I. Introduction On October 6, 2025, Brazilian President Luiz Inacio Lula da Silva had a phone call with US President Donald Trump. Two leaders spoke for 30 minutes. During the call, they exchanged phone numbers in order to maintain a direct line of contact, and President Lula reiterated his invitation for Trump to attend the upcoming climate summit in Belem, according to a statement from Lula’s office. At the UN General Assembly in New York on September 23, 2025, two leaders had a brief, unscheduled meeting. President Trump commented that he had “excellent chemistry” with his Brazilian counterpart. Even Trump told reporters that President Lula liked me, I liked him. This Trump’s comment has been interpreted by some analysts as a potential thawing in recent frozen US-Brazil relations. This apparently friendly call and comments from President Trump may signal a turnaround in relations between the two leaders, which have been strained in recent months. Trump and Lula have been at loggerheads since July 2025, when the US leader imposed 50 percent tariffs on Brazilian exports. In announcing those tariffs on Brazil, Trump cited what he described as a “fraudulent” prosecution of former Brazilian President Jair Bolsonaro. In addition to sky-high tariffs, Trump tried to further pressure Lula to drop the Bolsonaro case by hitting Brazilian supreme court justices with visa bans and slapping financial sanctions on the judge overseeing the case – Alexandre de Moraes. Ultimately, however, Brazil went ahead with Bolsonaro’s prosecution, and the former president was convicted. Why did President Trump suddenly soften his stance towards Lula now? Trump’s softer tone may have been prompted by hard economic realities in US, according to Pantheon Macroeconomics’ chief economist, Andres Abadia. The US depends heavily on Brazil for its coffee and meat imports, and both have taken a hit amid the tariff war. The result: prices have shot up. Brazil is the largest source of imported coffee for the US – responsible for $1.33billion out of the $7.85billion total coffee imports by the US in 2023, according to the Observatory of Economic Complexity. But since the 50 percent tariffs kicked in, Cecafe, Brazil’s council of coffee exporters, said that exports to the US fell by 46 percent in August 2025 and had dropped 20 percent more by September 19, 2025. Amid that supply crunch, coffee prices in the US rose 21 percent in August 2025 compared with a year earlier, even as overall food price inflation hovered at about 3 percent, according to the US Bureau of Labor Statistics. “The prospect of higher coffee prices,” Abadia said, “would be definitely bad for President Trump.”[1]  Brazil is also the US’s third-largest source of imported meat behind Australia and Canada, according to the US Department of Agriculture. “As with coffee, higher beef prices would hit President Trump,” Abadia told Al Jazeera. Beef and veal prices rose by almost 14 percent in August 2025 compared with a year earlier, according to the US Bureau of Labor Statistics. According to a new survey published on September 29, 2025, by the New York Times and Siena University, President Trump’s approval ratings have fallen recently, with 58 percent of respondents saying they think the country is headed in the wrong direction. “Inflation is definitely biting in the US,” says Abadia. “And anything that can be done to ease the pain, especially as we approach the holiday season, would be seen as positive.” [2] By contrast, Brazil appears to have weathered Trump’s tariffs better than the US has expected: Its overall exports grew in September 2025, compared with a year earlier, as it expanded its offerings to other markets, including China and Argentina. Lula’s feud with Trump has boosted his popularity, and Washington’s interventions in Brazilian politics have put the country’s conservatives on the back foot. Before next year’s presidential election, Lula is currently polling ahead of his top opponents, although the 79-year-old President has not formally announced his bid.  Abadia believes that there is an opportunity for rapprochement between the two leaders. The most fertile area for compromise may lie in rare earth minerals. Brazil has the world’s third-largest reserves behind China and Vietnam. And for now, they remain largely untapped. “Critical minerals are one area where bilateral interests align,” he said. “The US wants to diversify away from China and play an important role in the Brazilian market.” [3] Trump has shown a clear interest in rare earths, placing them at the heart of his deal with Ukraine, for instance. Brazil, on its part, wants to emerge as an exporter and supplier of these minerals. “Clearly,” noted Abadia, “that would be a positive for cooperation.”  [4] With these episodes in mind, this paper examines why Brazil can challenge US President Trump and force him to soften his position on Brazil. In doing so, this paper explores seven strengths that enables Brazil to challenge the US as well as US President Trump. Brazil’s seven strengths are as follows: 1. niobium; 2. rare earth; 3. agriculture; 4. oil; 5. ethanol; 6. aircraft industry; 7. leader of BRICS. II. Overview of Brazil Brazil, officially the Federative Republic of Brazil, is the largest country in South America. Brazil is also the world’s fifth-largest country by area and the seventh-largest by population, with over 213 million people. The country is a federation composed of 26 states and a Federal District, which hosts the capital, Brasília. Its most populous city is São Paulo, followed by Rio de Janeiro. Brazil has the most Portuguese speakers in the world and is the only country in the Americas where Portuguese is an official language. [5] Brazil is a founding member of UN, the G20, BRICS, G4, Mercosur, Organization of American States, Organization of Ibero-American States, and the Community of Portuguese Language Countries. Brazil is also an observer state of the Arab League and a major non-NATO ally of the US.  Brazil is a rising global power. As Figure 1 shows, Brazil is the 8th largest economy in the world in PPP terms and the largest economy in Latin America.    Figure 1: Brazil is the 8th largest economy in the world (source: IMF) Brazil is one of the world giants of mining, agriculture, and manufacturing, and it has a strong and rapidly growing service sector. Brazil is a leading producer of a host of minerals, including iron ore, tin, bauxite (the ore of aluminum), manganese, gold, quartz, and diamonds and other gems, and it exports vast quantities of steel, automobiles, electronics, and consumer goods. Brazil is the world’s primary source of coffee, oranges, and cassava (manioc) and a major producer of sugar, soy, and beef. The city of São Paulo, in particular, has become one of the world’s major industrial and commercial centers.[6] However, Brazil has a lot of domestic problems. Income inequality is very high. As Figure 2 shows, Brazil is one of world’s highest unequal countries along with other Latin American and African countries. The most common tool used to measure different types of inequality is the Gini Coefficient. The Gini Coefficient represents inequality on a scale where 0 equals perfect equality (where everyone has the same wealth, for example). At the other end of the scale, 100 equals a situation of perfect inequality: One person has all the wealth, and no one else has any. Fortunately, income inequality in Brazil, as measured by the Gini index, has dropped. Income inequality in Brazil reached the lowest level in 2024 since the historical series began in 2012, according to Brazilian Institute of Geography and Statistics. Last year, the Gini index dropped to 0.506, a 2.3% decrease from the 0.518 recorded in both 2023 and 2022. [7] Nonetheless, Brazil’s income inequality is still very high.   Figure 2: which countries are most unequal. (source: Statista) Moreover, crime rate in Brazil has been very high. Brazil had the seventh-highest crime rate in the world in 2020. Brazil’s homicide rate was 23.6 homicides per 100,000 inhabitants in 2020. Brazil’s most massive problem remains organized crime, as it has expanded in recent years, and violence between rival groups is common. Drug trafficking, corruption, and domestic violence are all pervasive issues in Brazil. [8] Luckily the ranking of Brazil’s crime rate was down in 2024. As Figure 3 & Table 1 show, Brazil became a country with the 15th highest crime rate in the world   Figure 3: Crime rate by country, 2024 (source: World population review) Table 1: Highest crime rate countries in the world, 2024 (source: World population review)   III. Brazil’s Seven Strengths that challenge the US and US President Trump 1. Brazil’s Dominance of Niobium in the world Brazil is one of the world giants of mining. It is a leading producer of a host of minerals, including iron ore, tin, bauxite, manganese, gold, quartz, and diamonds. In particular, Brazil leads the world in reserves and production of niobium as Figure 4 & 5 show.   Figure 4: niobium reserves worldwide by country, 2021 (source: USGS)   Figure 5: production of niobium worldwide by country, 2024 (source: Statista) Brazil holds an overwhelming lead, accounting for 90% of global niobium reserves and approximately 85% of its global production. Canada is the sole major producer, supplying most of the remaining 15%. As Figure 6 shows, in 2023, the Brazilian company Companhia Brasileira de Metalurgia e Mineracao (CBMM) supplied 76% of global niobium production, followed by the Chinese-owned CMOC, which supplied 11%. The world’s largest deposit is located in Araxa, Brazil and is owned by CBMM. The reserves are enough to supply current world demand for about 500 years, about 460 million tons. Another pyrochlore mine in Brazil is owned and operated by the CMOC and contains 18 million tons, based on a grade of 1.34% niobium oxide. Canadian production is from one mine. Much smaller production, usually as mixed Nb–tantalum (Ta) ores, comes from Australia and sub-Saharan Africa. The US has had negligible niobium production since 1959, and imported about 9.4 kt (thousand tons) of niobium in 2023. [9]    Figure 6: Niobium mine supply, 2000 to 2023. source: SFA (Oxford) Niobium (Nb, formerly known as columbium) is a rare metal that is included on the 2022 US Geological Survey’s Critical Minerals List. This light gray crystalline metal is primarily used in alloys with iron (Fe) as ferro niobium to increase the strength, corrosion resistance, and temperature resistance of steel. It is also found in specialty superconducting magnets such as those found in medical MRI instruments. The extraordinary properties of niobium have rendered it indispensable across a broad spectrum of industrial and technological applications. Its significance became evident in the mid-1930s when niobium was first employed to stabilize stainless steel against corrosion. Later, in the late 1950s and early 1960s, niobium's breakthrough role as a microalloying element (MAE) for steel, typically in the range of 0.05–0.15 wt.%, further solidified its importance. The importance of niobium as an MAE is underscored by its ability to enhance material properties such as high heat and corrosion resistance, increased strength, reduced density, exceptional conductivity, and enhanced biocompatibility. Its presence is essential in the construction of steel structures, including bridges, buildings, pipelines, offshore platforms, and automotive components, where it is predominantly employed as an MAE (∼90 %). [10] Furthermore, niobium plays a central role in the production of superalloys, holding significant importance in aerospace and power generation technologies. Its exceptional conductive properties also find applications in the healthcare industry, such as in MRI machines and in research institutions. Currently, niobium is finding exciting new applications in the transition to low-carbon energy solutions, and it is already a key component in wind turbines. Ongoing research into niobium-based rechargeable batteries holds the potential for further advancements in sustainable energy technologies, and it is being explored for use in solar panels and smart glass that can filter sunlight radiation and control the amount of light and heat entering buildings. [11]  From its applications in defense systems, where its unique properties are irreplaceable, to its pivotal role in green technologies and infrastructure, niobium’s economic and strategic significance is undeniable. Niobium is essential for the advancement of low-carbon and green technologies. Its classification as a critical mineral stems from both its vital applications and the concentrated nature of its supply. One of its most impactful uses is in steelmaking. The addition of just 0.1% niobium to steel produces high-strength, low-alloy (HSLA) variants, allowing for the construction of lighter, more durable structures. This reduces the quantity of material required, as well as contributes to lower carbon emissions. HSLA steels are particularly valuable for building pipelines, wind turbine towers, and hydrogen gas transmission infrastructure. [12] Niobium’s contribution to renewable energy systems is also important. Its excellent strength-to-weight ratio makes it vital for wind turbine frames, while in solar and hydrogen technologies, it boosts the efficiency of solar cells and enhances the longevity of hydrogen fuel cells. In sustainable manufacturing, niobium supports the production of high-performance components via 3D printing, reducing both weight and material waste. [13] The criticality of niobium is largely due to its concentrated supply. Approximately 90% of global niobium production comes from Brazil, with Canada as the only other significant producer. The US has had no domestic production since 1959, and both the US and EU rely wholly on imports. Beyond its scarcity, niobium is difficult to substitute. It is a core material in the defense and aerospace sectors, used in jet engines, missiles, and military systems where few or no viable alternatives exist. Niobium plays a crucial role in advanced materials and high-performance applications, with demand primarily driven by its use in steel, strategic industries, and emerging technologies. Steel alone accounts for 85–90% of global niobium consumption, serving as a microalloying element to enhance strength, toughness, and weldability. As global regulations increasingly push industries towards lighter and stronger materials, average niobium intensities in steel manufacturing are rising.  Currently China is the world’s largest consumer of niobium, with demand propelled by its infrastructure development and car production growth. Steel remains the backbone of niobium usage, with high-strength, low-alloy (HSLA) and structural steels accounting for the majority share through to 2035. Nevertheless, demand from other sectors, such as aerospace and electronics, is steadily increasing. In particular, interest in niobium for use in batteries is growing, although its uptake heavily depends on the successful commercialization of early-stage niobium-based technologies. Despite steel’s continued dominance, emerging applications begin to expand niobium’s demand profile. The CBMM, the world’s leading niobium producer, primarily shaped the supply landscape. The company’s strategy centers on aligning production with demand, allowing it to scale output flexibly in response to market needs. This responsive model, however, could pose challenges for new niobium projects seeking investment, as CBMM’s dominant position reduces incentives for alternative supply. Anticipating a significant rise in demand—particularly from battery markets, which are projected to account for 25% of company revenues by 2030—CBMM has already increased its output of battery-grade niobium. [16] Niobium’s potential in the battery space hinges on its ability to compete with established technologies. Niobium-based anodes offer high-speed charging and long cycle life, often exceeding tens of thousands of cycles. However, their lower energy density than graphite or silicon anodes poses a challenge, especially for electric vehicle applications where energy density is critical. To achieve broader adoption, niobium battery technologies must overcome this performance gap and significantly reduce costs through economies of scale or further technological innovation. In May 2018, President Trump recognized a group of 35 ‘basic’ minerals considered necessary to US national and economic security, which are to be produced nearby. This order follows Trump’s ‘America first’ initiative to reduce US dependence on imported natural resources, with a US Geological Survey (USGS) report reasoning that 20 of the 23 elementary minerals are sourced from China. Niobium is one of these minerals and was recognized as both critical and essential mineral, indicating its significance to the US, even though it’s not an easy mineral to extract and process. [17] Niobium’s qualities make it one of the top 8 strategic raw materials considered indispensable. Niobium has been deemed important to the US’s national welfare in part due to their inherent military and industrial potential. Jeffery A. Green, the president of a bipartisan government-relations firm in Washington DC and a former US Air Force commander, wrote in Defense News that, “with no access to such minerals, including niobium, our precision-guided missiles will not hit their targets, our aircraft and submarines will sit unfinished in depots, and our war-fighters will be left without the equipment they need to complete their missions.”  The scarcity of niobium means that the vast majority is currently imported. The report notes that niobium has not been mined in the US since 1959. Niobium is now imported from Brazil and Canada only. [18] Vacuum-grade niobium’s role in aerospace is not a newfound revelation. Its unparalleled resilience against extreme thermal stresses, withstanding temperatures over 2,400 degrees Celsius, renders it indispensable for critical components in hypersonic vehicles. Beyond its inherent properties, niobium’s crucial role lies in its use for crafting heat-resistant superalloys essential for hypersonic missiles and the broader aerospace sector. Its low density compared to other refractory metals contributes to a high strength-to-weight ratio, which is essential for reducing the weight of aerospace components. This reduction in weight directly impacts fuel efficiency and payload capacity, two critical factors in aerospace design. For example, companies like SpaceX and Hermeus rely on niobium C103 for their spacecrafts, which require extremely high temperatures that surpass that of other superalloys. [19] For decades, niobium has played a pivotal role in the US aerospace industry, with its notable use in the innovative designs of the iconic Gemini and Apollo programs of the 1960s and 70s. However, despite its significance, the US depends entirely on niobium imports, with no substantial domestic mining since 1959. This dependence introduces a severe risk to its supply chain. Of the estimated 8,800 metric tons imported annually in 2022, a significant majority comes from Brazil (66%) and Canada (25%). This heavy reliance on just two primary sources—both neighbors of the US—exposes the US to considerable national security and economic vulnerabilities. The situation becomes even more precarious considering China’s dominant position in the niobium sector and its growing footprint in the hemisphere.  China has recognized the potential of niobium for over a decade. In 2011, a consortium of five Chinese firms acquired a 15 percent stake in CBMM. This engagement intensified in 2016 when China Molybdenum Co. Ltd. (now known as CMOC) secured ownership of the Chapadão and Boa Vista mines, further strengthening China’s position in the niobium market. The importance of niobium was further highlighted in the Brazilian political arena in 2018. Then presidential candidate Jair Bolsonaro emphasized niobium’s role in Brazil’s economic independence. Despite Bolsonaro’s campaign rhetoric focusing on safeguarding this critical commodity from foreign control and advocating for its national governance, Chinese influence in the Brazilian niobium sector continued to grow. By 2020, Chinese entities controlled approximately 26 percent of Brazil’s niobium production. This control not only ensures China’s preferential access and influence over pricing dynamics in the niobium supply chain, but also positions it advantageously in a global context.  China managed to maintain and even strengthen its position at the subnational level under President Bolsonaro. CMOC, for example, provided $1.2 million in Covid-19 aid to the city of Catalão, demonstrating China’s strategic engagement beyond mere commercial interests. China’s influence over Brazil’s niobium production conforms to a pattern of growing ownership and sway over the regional mining industry, a trend with substantial environmental, political, and security implications. Such tactics could force nations into making diplomatic compromises, ceding trade advantages, or grappling with economic dilemmas, thereby solidifying China’s geopolitical standing. The US is not immune to this exposure; the US Geological Survey in 2022 identified niobium as the second most critical of 50 minerals, falling behind only gallium in its criticality to US national security and economic growth. [22] Facing such formidable challenges, the US cannot afford to remain a passive observer. Safeguarding its strategic interests and maintaining its global position demands a comprehensive and multifaceted critical mineral strategy, in particular in securing niobium supplies. Incorporating Brazil into the 13-nation Mineral Security Partnership (MSP) could significantly fortify the global niobium supply chain. The MSP represents a concerted multinational endeavor to develop environmental, social, and governance (ESG) standards and bolster investments in critical mineral supply chains, an initiative that aligns well with the strategic interests of both Brazil and the broader international community. Brazil’s inclusion would make it the first Latin American country to enter the partnership, signaling its regional leadership and increase in international stature. The integration of Brazil into this partnership is particularly strategic, considering its substantial niobium reserves, in addition to its other critical mineral deposits. This move would add a robust layer of security against potential supply disruptions. [23] President Luiz Inácio Lula da Silva’s government, with its strong emphasis on ESG standards, is likely to find the MSP’s principles congruent with its policy priorities. The MSP’s emphasis on elevating global standards in these areas could resonate with Lula’s progressive agenda, potentially making Brazil’s participation both beneficial and attractive. Moreover, Brazil’s inclusion in the MSP would facilitate its adherence to a framework that advocates for the diversification and stabilization of mineral supply chains. This alignment could be important in mitigating China’s dominant influence in the niobium market. By joining the MSP, Brazil would not only assert its role in the global mineral economy but also contribute to a more balanced and less vulnerable critical mineral supply landscape, including niobium. [24] 2. Brazil has the third largest rare earth reserves in the world According to US Geological Survey in 2024, China holds the largest rare earth reserves with 44 million metric tons, followed by Vietnam and Brazil. As Table 2 shows, Brazil holds the third largest rare earth reserves with 21 million metric tons. Other countries with significant reserves include India, Russia, and Australia. [25] However, as Figure 7 shows, Brazil ranked  12th position in the world in the production of rare earth minerals. Table 2: world mine production and reserves of rare earth minerals (source: USGS in 2024)    Figure 7: Global rare earth production by country, 2024 (source: USGS) Surprisingly, Brazilian rare earth exports hit a record high in 2025, according to data from the Brazil National Mining Agency (ANM). Almost the entire volume was shipped to China. Exports of raw rare earth materials—part of a group of minerals deemed strategic for the global energy transition—reached $7.5 million between January 1 and June 30, 2025. That figure is ten times higher than the $705,900 recorded in the same period last year, more than double the $3.6 million exported in all of 2024, and higher than in any other full year since official records started in 1997.  Though the total exports remains small, the surge in exports underscores the growing strategic value of these materials. Rare earth elements are critical in high-tech industries, used in wind turbine components and batteries, particularly for hybrid and electric vehicles. They have also become a flashpoint in US-China trade tensions, which began with President Donald Trump’s tariff war. At one point, China restricted exports of critical minerals to the US in retaliation. With this background, President Trump said in May 2025 that the US needed Greenland “very badly,” renewing his threat to annex the Danish territory. Greenland is a resource-rich island with a plentiful supply of critical minerals, a category that also includes rare earths elements, under its ice sheet. Trump also signed a “rare earth deal” with Ukraine in May 2025. The tussle over rare earths precedes the current Trump administration. China for years has built up near-total control of the materials as part of its wider industrial policy. [27] The International Energy Agency said 61% of mined rare earth production comes from China, and the country controls 92% of the global output in the processing stage. There’s two types of rare earths, categorized by their atomic weights: heavy and light. Heavy rare earths are more scarce, and the United States doesn’t have the capabilities for the tough task of separating rare earths after extraction. “Until the start of the year, whatever heavy rare earths we did mine in California, we still sent to China for separation,” Gracelin Baskaran, director of the Critical Minerals Security Program at the Center for Strategic and International Studies, told CNN. [28] However, the Trump administration’s announcement of sky-high tariffs on China in April, 2025 derailed this process. “China has shown a willingness to weaponize” America’s reliance on China for rare earths separation, Baskaran said. The US has one operational rare earth mine in California, according to Baskaran. [29] China holds a near-monopoly control over the global processing of rare earths. In 2023, China produced 61% of the world's raw magnet rare earth elements, which are essential in high-tech industries such as electronics, electric vehicles and defense. Its dominance is even more pronounced in refining these materials, making up 92% of the global refined supply. The export controls by China could have a major impact, since the US is heavily reliant on China for rare earths. Between 2020 and 2023, 70% of US imports of rare earth compounds and metals came from the country, according to a US Geological Survey report. [30] The US and Australia have signed a deal intended to boost supplies of rare earths and other critical minerals, as the Trump administration looks for ways to counter China’s dominance of the market. Australian Prime Minister Anthony Albanese said the deal would support a pipeline of $8.5bn (A$13bn; £6.3bn) "ready-to-go" projects that would expand his country's mining and processing abilities. It includes $1bn to be invested by the two countries in projects in the US and Australia over the next six months, a framework text says. The US and Australia have been working on these issues since Trump’s first term, but Albanese said the latest agreement would take the partnership to the next level. [31] Under this situation, to counter China’s dominance of rare earths, the Trump administration identified Brazil as a potential strategic partner in rare earth production. Despite holding the world’s third-largest reserves—behind China and Vietnam—Brazil accounts for 0.005% of global output in 2024, according to the USGS, as Figure 7 shows. [32] Accordingly, Brazil's rare earths sector is gaining momentum, with key industry players outlining the country’s potential to become a vital player in the global energy transition. During the Brazil Lithium and Critical Minerals Summit held in Belo Horizonte on June 4-5, 2025, over 300 senior executives and international delegations from China, US, Australia, Canada, the UK, Japan, France, Italy, Portugal, and Argentina discussed Brazil’s abundant resources and the need for strategic partnerships to explore potential reserves and ensure energy security.  [33] 3. Brazil: the world giant of agriculture Brazil is one of the world giants of agriculture. Brazil is the world’s largest producer of sugarcane, soy, coffee, orange,  açaí, guaraná, and Brazilian nut. Brazil is also the second-largest producer of ethanol, and third-largest biodiesel producer. Brazil is also one of the top 5 producers of maize, tobacco, papaya, and pineapple. Brazil is one of the top 10 world producers of avocado, cocoa, cashew, tangerine, guava, mango, rice, tomato, and sorghum. In addition, Brazil is one of the top 15 world producers of grape, melon, apple, peanut, fig, peach, onion, palm oil, and natural rubber.  A. Soybean  According to USDA (United States Department of Agriculture), as Table 3 & 4 shows, Brazil is the world’s largest soybean producing & exporting country in 2024. This is the results of the increase in production of soybean in Brazil as Figure 8 shows. Table 3: World’s Top 10 soybean producing countries, 2024-25 (source: USDA)     Table 4: World’s Top 10 soybean exporting countries, 2023-24 (source: USDA)     Figure 8: Soybean production in Brazil (source: Joana Colussi & Fram Progress) Historically, the US was the world’s largest soybean exporter. In 2013, Brazil surpassed the US in soybean shipments for the first time. Since then, Brazil’s share of the global soybean trade has increased steadily, with Brazilian soybean exports reaching a record 3,744 million bushels in 2023, according to the Foreign Trade Secretariat (Secex). At the same time, American soybean exports were reduced to 1,789 million bushels, half the Brazilian soybean export volume, according to the US Department of Agriculture (see Figure 9). [34]  Figure 9: Total soybean exports by US and Brazil (source: Farmdoc Daily, IL, USA) Over the last 20 years, Brazilian soybean exports jumped fourfold (431%), from 705 million bushels in 2004 to 3,744 million bushels in 2023. This jump occurred mainly in the second decade. Soybeans have become Brazil’s primary agricultural export commodity by volume, accounting for more than 60% of the soybeans grown domestically. The Brazilian soybean crop for the 2022/23 marketing year was 5,680 million bushels, a historic record, according to Brazil’s food supply and statistics agency. [35] Revenues from Brazilian soybean exports totaled a record $53.2 billion in 2023 versus $46.5 billion in the previous year, according to the Foreign Trade Secretariat (Secex). Considering the soybean complex, which also includes soybean oil and soybean meal, the revenue reached $67.3 billion in 2023, representing 40% of the total export revenue for the country. For the first time since the 1997/98 season, Brazil displaced Argentina as the leading global exporter of soybean meal due to severe drought, which cut Argentine soybean yields by half. [36] On the other hand, over the past 20 years, US soybean exports have increased 94% from 922 million bushels in 2004 to 1,789 million bushels in 2023. The US soybean exports have plateaued since 2016, with an average annual volume of 1,993 million bushels. The roughly doubling of exports occurred over the first decade and stagnated in the second decade. Revenues from soybean exports totaled $27.9 billion in 2023 versus $34.4 billion in 2022, according to the USDA. On average over the past five years, the US has exported 49% of total soybean production. The soybean crop for the 2022/23 marketing year reached 4,160 million bushels, slightly lower than the previous year. [37] The dynamics of global soybean trade remain heavily influenced by China, which accounts for approximately 60% of worldwide soybean imports. China predominantly sources its soybean supplies from Brazil and the US. For many years, the US was the top supplier, but in the past 15 years China has depended more on imports from South America, especially from Brazil. From 2019-2023, 73% of Brazil’s exported soybeans have headed to China, versus a 51% average for the US (see Figure 10).   Figure 10: China’s share of US and Brazil soybean exports (source: Farmdoc Daily, IL, USA) Shifting dynamics from China, the top global soybean buyer and consumer, has played a central role in the divergence between the US and Brazil as top global soybean producers.  In 1995, US soybeans accounted for 49% of Chinese soybean imports, with soybeans sourced from Brazil only totaling 2%. The US drought in 2012 kicked off a massive rise in Chinese imports of Brazilian soybeans. As a result, Brazil surpassed US in soybean shipments in 2013 for the first time. By 2024, 71% of China’s soybean imports were sourced from Brazil, with a only 21% sourced from the US. [38] As China purchased more soybeans from Brazil, Brazilian growers expanded acreage to meet export demand as Figure 8 shows. Moreover, the trade war between US and China in 2018 shifted more soybean production to Brazil at the expense of US soybean acreage as China imposed higher tariffs on US soybean. In 2018, Brazil’s soybean accounted for 82% of Chinese soybean imports while US only 18%. In the middle of another trade war between US and China in 2025, China stopped buying US soybeans. Accordingly, this trend of Brazil’s dominance over the US in soybean exports to China is likely to continue even though China resumed to buy US soybeans in accordance with Trump-Xi trade deal reached on October 30, 2025 in South Korea. [39] B. Meats  In the production of animal proteins, Brazil is today one of the largest countries in the world. In 2024, Brazil was the world’s second largest producer of beef and the world’s largest beef exporter as Table 5 and Figure 11 show.  Table 5: Top 10 beef producing countries in the world, 2024-25 (source: USDA)     Figure 11: As of December 2024, top 10 beef exporters in the world (source: AuctionPlus) In 2024, the global beef export market was dominated by five key players, each nation with significant shares of the market. Brazil led the beef market, commanding a substantial 27.8% of global beef exports. Following Brazil, Australia held a notable 14.7% share, positioning itself as a major player in global beef trade. India, another significant contributor, was responsible for 12.7% of the beef exports. The US also played a critical role, contributing 9.1% to the international beef export figures. Argentina rounded out the top five, with 6.6% of the beef market share. These five countries collectively shaped the dynamics of the global beef market, influencing pricing and supply chains. [40] Brazil sets record for beef exports in 2024 worth US$ 12.8 billion. A total of 2.89 million tons were exported, an increase of more than 26% compared to 2023. The volume exported generated US$ 12.8 billion, approximately 22% more than the amount earned in 2023. China maintained its position as the main destination for Brazilian beef, with 1.33 million tons exported, generating revenue of US$ 6 billion. Next came the US, which imported 229 thousand tons, totaling US$ 1.35 billion. Other important markets include United Arab Emirates (132 thousand tons and US$ 604 million), European Union (82.3 thousand tons and US$ 602 million), Chile (110 thousand tons and US$ 533 million) and Hong Kong (116 thousand tons and US$ 388 million). [41] In addition to beef, according to Statista (2025), Brazil was the world’s largest poultry meat  exporter as Figure 12 shows. Moreover, Brazil has been the world’s largest chicken exporter during the period of 2020-25, as Table 6 shows. Chicken meat exports reached 5.294 million tons in 2024, generating $9.928 billion in revenue.   Figure 12: Poultry meat exports worldwide leading countries, 2025| Statista  Table 6: Market share of global chicken meat exports, 2020-2025 (source: WATTPoultry) Over the past 50 years, Brazil has exported nearly 100 million tons of chicken meat to more than 150 nations. Today’s top markets include China, Japan, the United Arab Emirates, Saudi Arabia, and European Union—reflecting global recognition of Brazil’s quality standards and food safety. A significant portion of these exports are halal products aimed at Muslim consumers. More than 2 million tons are shipped annually, making Brazil the world’s largest exporter of halal chicken. [42] According to Euromeat News on February 18, 2025, the top 10 biggest exporters of halal meat to the Organization of Islamic Cooperation (OIC) countries account for a total trade value of $14.04 billion. Brazil is the largest exporter of halal meat to OIC countries with a trade value worth $5.19 billion, followed by Australia with $2.36 billion and India with $2.28 billion on the second and third spots respectively. The biggest importer of halal-certified food is Saudi Arabia, followed by Malaysia, UAE, Indonesia, and Egypt. Share [43] According to SIAL Daily, an Italian newspaper, countries like Brazil and Australia dominate exports of halal-certified meat, especially to Middle Eastern countries. Brazil is the largest exporter of halal products, particularly meat, supplying significant quantities to many countries in the Middle East and Southeast Asia. [44] Overall, Brazilian meat & soybean exports have dominated the world. As a result, citizens in the world have problems preparing for meals without Brazilian products. 4. Brazil, one of top 10 producer of oil in the world Brazil is one of top 10 influential oil country in the world. In 2024, Brazil was the world’s 9th largest crude oil producer as Table 7 shows. Brazil was also the world’s 10th largest crude oil exporting country, as Table 8 shows. Brazil company ‘Petrobras’ is the world’s 7th largest oil company, as Figure 13 shows.  Table 7: Top 10 crude Oil Producing Countries in the world, 2024 (source: 2024 Statistical Review of World Energy Data - Energy Institute )     Figure 13: Top 10 oil companies in the world, 2024 (source: Macrotrends)  Table 8: Top 10 crude oil exporting countries in the world, 2025 (source: https://www.seair.co.in/blog/crude-oil-exports-by-country.aspx)   Moreover, as Figure 14 shows, Brazil is one of net oil exporting countries. Figure 14 shows the trade balance in crude petroleum for 2023. Colors represent the difference between each country’s export and import values. Shades of green indicate a trade surplus (exports largest than imports), while shades of red represent a trade deficit (imports largest than exports).   Figure 14: Global trade balance of crude oil, 2023 (source: The Observatory of Economic Complexity: OEC) In 2023, countries with the largest trade surpluses in crude petroleum were Saudi Arabia ($181 billion), Russia ($122 billion), and United Arab Emirates ($96.2 billion).  In 2024, Brazil exported $44.8 billion of crude petroleum, and the main destinations of Brazil’s crude petroleum exports were China ($20 billion), followed by the US ($5.77 billion), Spain ($4.78 billion), and Netherlands ($3.21 billion). In 2024, Brazil imported $8.69 billion of crude petroleum, and the main origins of Brazil’s crude petroleum imports were Saudi Arabia ($1.93 billion), the US ($1.45 billion), Angola ($1.01 billion), and Guyana ($859 million). [45] Brazil exported more crude oil to the world and US than it imported in 2024. Oil trade surplus with the world and US was $36.11 billion and 4.32 billion, respectively. 5. Brazil, the world’s largest producer of sugarcane ethanol Ethanol is a renewable fuel made from various plant materials collectively known as “biomass.” More than 98% of US gasoline contains ethanol to oxygenate the fuel. Typically, gasoline contains E10 (10% ethanol + 90% gasoline), which reduces air pollution. As Table 9 shows, the US was no. 1 producer of fuel ethanol in the world. In 2024, the US produced an estimated 16.2 billion gallons of the biofuel. Brazil was the world’s second-largest ethanol producing country, with an output of 8.8 billion gallons that same year. Table 9: Annual ethanol fuel production by country, 2015-2024   (source: Annual Ethanol Production | Renewable Fuels Association. https:// ethanolrfa.org/markets-and-statistics/annual-ethanol-production) However, the US and Brazil have different ethanol industry. Brazil has sugarcane-based ethanol industry, while the US has corn-based industry. Brazil is the leading producer of sugarcane ethanol, followed by such countries as India, Thailand, and Colombia. While the US produces the most ethanol globally, its production is primarily from corn, not sugarcane.   Brazil has the largest and most successful bio-fuel programs in the world, involving production of ethanol fuel from sugarcane, and it is considered to have the world’s first sustainable biofuels economy. [46]  Brazil’s sugar cane-based industry is more efficient than US corn-based industry. Sugarcane ethanol has an energy balance seven times greater than ethanol produced from corn. Brazilian distillers are able to produce ethanol for 22 cents per liter, compared with the 30 cents per liter for corn-based ethanol. US corn-derived ethanol costs 30% more because the corn starch must first be converted to sugar before being distilled into alcohol. [47]   Although Brazil has sugarcane-based ethanol industry, its corn ethanol industry has also been expanding rapidly, with production reaching 6 billion liters in 2023, representing an 800% surge over the past five years. [48] Brazil is also a significant developer of the second-generation ethanol, from sugarcane waste or “bagasse.” This gives it the advantage of being able to produce significantly more ethanol from the same land and, as technology advances, producers are also able to extract more energy from the bagasse. Second generation ethanol, known as an advanced biofuel, is particularly in demand because it meets growing sustainability related regulatory requirements. This all sounds promising – but it is not to say that the Brazilian ethanol industry is without its challenges. Its great advantages have been the strength of its domestic sugarcane and ethanol production, the availability of a strong internal market and its flexibility. It has also been helped by legislation and regulation. As both the domestic and international ethanol markets change, these advantages continue to prove useful. [49]    Figure 15: US fuel ethanol exports to Brazil (source: Renewable Fuels Association) https://ethanolrfa.org/media-and-news/category/news-releases/article/2025/08/rfa-supports-u-s-investigation-of-punitive-brazil-trade-practices The trade volume of fuel ethanol between Brazil and US is low. US exports to Brazil averaged 3,800 barrels per day—or just 2.7% of total US ethanol exports—from January to May, 2024, according to USDA data. As Figure 15 shows, exports to Brazil in 2024 were valued at USD 53 million, down from a peak of USD 761 million in 2018, according to the USTR investigation notice. The US imported just 491 barrels per day from Brazil during the first five months of 2024, equivalent to 81% of total US ethanol imports.  [50] Overall, Brazil shipped about 300 million liters of ethanol to the US in 2024, with the trade flow relying heavily on incentives paid for low-carbon fuels in California. But exports are just a tiny fraction of the size of the domestic market, where so-called flex-fuel cars can run either on 100% ethanol or a mixture of biofuel and gasoline. Historically, most of Brazil’s production has been absorbed by the domestic fuel market where it is sold as either pure ethanol fuel (E100; hydrous ethanol) or blended with gasoline (E27; anhydrous ethanol). Brazil has been a pioneer in using ethanol as motor fuel in what are known as flex fuel engines. [51] 6. Brazil, a major aircraft manufacturer & exporter  The Brazilian aeronautical industry, led by Embraer (Empresa Brasileira de Aeronáutica S.A.), is an outstanding example of successful national industrial production. The commercial aircraft company, which is among Brazil’s main exporters, is recognized as the only large national company with active international insertion in a high technological intensity sector. This leadership position is the result of a historical trajectory that dates back to the 20th century, from the pioneering achievements of Santos Dumont with the creation of the 14-bis airplane to the continuous efforts over the years to develop a sustainable aeronautical industry in Brazil. The initial incentives for the development of the aeronautical industry in Brazil occurred under the government of Getúlio Vargas, through the national-developmentalist model, when two state-owned companies were created: Fábrica do Galeão and Fábrica de Aviões de Lagoa Santa, with the support from the private sector. During the same period, the Aeronautics Technical Center (CTA) and the Institute of Research and Development (IPD) emerged. The two institutions were considered the foundations for the establishment of a modern aeronautical industry in Brazil. Later, the CTA and the Ministry of Aeronautics argued for the creation of a state-owned company in the aeronautical sector, which led to the foundation of Embraer in 1969.  [52] In a post-World War II context, in which aircraft development became more expensive and complex, Embraer faced two challenges during its early years: the growing technological complexity and the greater concentration of the production structure. To overcome these challenges, Embraer developed a strategy which focused on creating its own technologies and intensifying its international operations through exports, resulting in the expansion of its production capabilities and an active global insertion. From the 2000s onwards, Embraer continued to stand out in the development of high-performance technological aircraft and expanded its operations to executive aircraft and the defense sector, transforming itself into an aerospace conglomerate. According to Flight Global, which publishes the ranking of the 100 largest aerospace companies, Embraer reached 3rd place in the ranking of sales of commercial aircraft, behind Airbus and Boeing in 2022. Embraer has divisions for commercial, executive, military, and agricultural aviation; it also maintains an incubator for aerospace technologies and businesses. While Embraer continues to produce aircrafts for the defense sector, it is best known for the ERJ and E-Jet families of narrow-body short to medium range airliners, and for its line of business jets, including the market-leading Phenom 300. As of May 2024, Embraer has delivered more than 8,000 aircraft, including 1,800 E-Jet planes. [53] On the other hand, concerning aircraft exports, Brazil ranked 7th in 2022, behind France, Germany, Canada, Spain, US, and Ireland. And Brazil ranked 9th in the world in the aircraft/spacecraft exports in 2023. [54] Moreover, as Table 10 shows, according to Aerotime, Embraer is the 7th largest aircraft manufacturer in the world in 2025. [55] Table 10: Top 10 Aircraft Manufacturers in the World, 2025 (source: Aerotime)   7. Brazil, the leader of BRICS BRIC was originally a term coined by British economist Jim O’Neill and later championed by his employer Goldman Sachs in 2001 to designate the group of emerging markets. The first summit in 2009 featured the founding countries of Brazil, Russia, India, and China, where they adopted the acronym BRIC and formed an informal diplomatic club where their governments could meet annually at formal summits and coordinate multilateral policies. In April 2010, South Africa attended the second BRIC summit as a guest. South Africa joined the organization in September 2010, which was then renamed BRICS, and attended the third summit in 2011 as a full member. Iran, Egypt, Ethiopia, and the United Arab Emirates attended their first summit as member states in 2024 in Russia. Indonesia officially joined BRICS as a member state in early 2025, becoming the first Southeast Asian member. The acronym BRICS+ (in its expanded form, BRICS Plus) has been informally used to reflect new membership since 2024. [56] As Figure 16 shows, BRICS now consists of 20 countries. The 10 BRICS members are the founding five — Brazil, Russia, India, China, and South Africa — plus Egypt, Ethiopia, Indonesia, Iran, and the United Arab Emirates. The 10 BRICS partners are Belarus, Bolivia, Cuba, Kazakhstan, Malaysia, Nigeria, Thailand, Uganda, Uzbekistan, and Vietnam.  Figure 16: BRICS PLUS as of July 2025 (source: Geopolitical Economy) Some in the West consider BRICS the alternative to the G7. Others describe the organization as an incoherent joining of countries around increasing anti-Western and anti-American objectives. BRICS has implemented competing initiatives such as the New Development Bank, the BRICS Contingent Reserve Arrangement, BRICS PAY, the BRICS Joint Statistical Publication and the BRICS basket reserve currency. [57] BRICS has been growing in size and influence, and this has frightened some Western politicians. Donald Trump is particularly rattled. After he returned to the White House for his second term as US president, Trump threatened very high tariffs on BRICS, and falsely said he had destroyed the organization. Although Trump threatens BRICS, it grows stronger, resisting US dollar. [58] The US government’s fear of BRICS is rooted in the Global South-led organization’s increasing power. As Figure 17 shows, 20 BRICS members and partners already represent more than two-fifths of the global economy: 43.93% of world GDP, when measured at purchasing power parity (PPP). The BRICS 20 also have a combined population of 4.45 billion, meaning that they represent 55.61% of the global population — the majority of the world.   Figure 17: BRICS share of global GDP (source: IMF) One of the key issues discussed at the 2025 BRICS summit in Brazil was de-dollarization — the attempt to create alternatives to the US dollar as the global reserve currency. Brazil’s left-wing President Lula da Silva has long been an advocate of de-dollarization. [58]“The world needs to find a way that our trade relations don’t have to pass through the dollar,” Lula said at the BRICS summit. “Obviously, we have to be responsible about doing that carefully. Our central banks have to discuss it with central banks from other countries,” the Brazilian leader explained, according to Reuters. He added, “That’s something that happens gradually until it’s consolidated.” [60] Lula agreed that de-dollarization is “complicated” and will be a slow, gradual process, but he maintained that it is necessary. At the 2025 BRICS summit, the Brazilian president even reiterated his call for the creation of a new global currency to challenge the US dollar. [61] Lula declared that “BRICS is an indispensable actor in the struggle for a multipolar, less asymmetrical, and more peaceful world.” He lamented that the US-dominated international financial system benefits the rich colonial countries at the expense of the poor, formerly colonized ones. At the BRICS summit on July 6, 2025, the 20 BRICS members and partners signed a lengthy joint statement. The Rio de Janeiro Declaration was 31 pages long and consisted of 126 points, encompassing a wide variety of subjects. The joint declaration made many references to BRICS initiatives to encourage de-dollarization. The declaration called to strengthen the BRICS bank, the New Development Bank, to “support its growing role as a robust and strategic agent of development and modernization in the Global South.” In particular, the document emphasized the need for the New Development Bank to “expand local currency financing.” [62] Dilma Rousseff, the former Brazilian president from Lula’s left-wing Workers’ Party, has been the Chair of the New Development Bank. In her remarks at the BRICS summit, Dilma emphasized that the New Development Bank is promoting financing in local currencies. “Any business or government that borrows in foreign currency becomes subject to decisions made by the Federal Reserve or other central banks in Western developed nations,” she said, warning of exchange-rate risk and currency volatility. As a positive example of an alternative, the BRICS website noted that Dilma “pointed to a project in Brazil funded directly in renminbi, without the need for dollar conversion.” [63] The BRICS declaration similarly urged further development of the Contingent Reserve Arrangement (CRA), which could serve as an alternative to the US-dominated International Monetary Fund (IMF), by providing short-term liquidity to developing countries facing balance-of-payments crises. Another initiative discussed in the declaration was the New Investment Platform (NIP), which seeks to facilitate investments in local currencies, instead of US dollars, Euro, or British pounds. The declaration addressed the BRICS Interbank Cooperation Mechanism (ICM), which is working on “finding acceptable mechanisms of financing in local currencies.” The joint statement also highlighted the work of the BRICS Cross-Border Payments Initiative and BRICS Payment Task Force (BPTF), which it noted identify “the potential for greater interoperability of BRICS payment systems,” as part of “efforts to facilitate fast, low-cost, more accessible, safe, efficient, and transparent cross-border payments among BRICS countries and other nations and which can support greater trade and investment flows.” [64] As a leader of BRICS to push for de-dollarization, Brazil has deepened its bond with China. Growing ties between Brazil and China were a reality well before Donald Trump came into office. But as US president Trump tried to intervene in Brazil’s judiciary and politics and imposed one of the highest tariffs in the world, enthusiasm for collaboration between the two governments seems to be at an all-time high.  “Our ties are at their best moment in history,” China’s President Xi Jinping said in August 2025 after holding an hour-long call with Brazilian President Lula da Silva. “China supports the Brazilian people in defending their national sovereignty and also supports Brazil in safeguarding its legitimate rights and interests,” he added. Xi also told Lula that China “stands ready to work with Brazil to set an example of unity and self-reliance among major countries in the Global South.” [65] China has been a key commercial partner for South America, and the tie with Brazil has for years been the strongest—it’s China’s top trade partner in the region and one of its main foreign investment destinations. In recent years the breadth of the relationship widened, even under former President Jair Bolsonaro, who used anti-China rhetoric and wanted to see Brazil more aligned with the United States. During Lula’s third term, the connection between China and Brazil has strengthened further. 2025 has seen significant developments. In July 2025, Brazil hosted the 17th BRICS summit, and Brazil and China co-announced the construction of a bi-oceanic railway corridor between Brazil and Peru’s Pacific coast. In addition, Chinese car maker BYD rolled out the first electric car built entirely in Brazil, at its new factory in Camaçari, Bahia, its first outside Asia. [66] In the context of the US-China rivalry, Washington is anxious. According to US media, Brazil’s hosting the BRICS summit meeting was a factor in the Trump administration’s imposition of tariffs. On the other side of US politics, Senate Democrats recently wrote a letter to Trump  saying “a trade war with Brazil would make life more expensive for Americans, harm both US and Brazilian economies, and drive Brazil closer to China.” [67] China has been Brazil’s top trading partner since 2009, when it overtook the US. As Figure 18 shows, the trade volume between Brazil and China doubled the volume between Brazil and US in 2024. China is the world’s biggest soybean importer, and gets most of its supply from Brazil. In 2024, 28% of Brazil’s exports went to China. In 2023, Brazil was China’s main supplier of soy, beef, cellulose, corn, sugar and poultry.   Figure 18: Brazil’s trade with China vs USA (source: ComexStat & Americas quarterly) The balance of trade between Brazil and China has historically been favorable to Brazil, although China has increased its exports in recent years. And when the US tariffs took effect, China authorized 183 new Brazilian coffee companies to sell to its market, and did the same with other products. A recent new step between Brazil and China is to negotiate for the adoption of mechanisms to track the origin of agricultural products, particularly soy and beef. The goal is to create a system where both countries recognize the same environmental certifications, so that products can be tagged, for example, as “carbon-neutral beef.” There’s also talk of China importing Brazilian ethanol for the production of “sustainable aviation fuels.” [68] Commodities comprise the vast majority of exports, but the trade relationship between Brazil and China is no longer based solely on them. The manufacturing industry represented 23% of Brazil’s exports to China in the first quarter of 2025, an increase of 6 percentage compared to the same period in 2024, according to the Brazil-China Business Council.   The kinds of exchanges have been changing, too, from government to government, to company to company, to company to client. Beyond BYD’s new factory in Camaçari, expected to be fully functional by the end of 2026, green energy and telecommunications services see strong Chinese investment, and Chinese companies operating in fields like delivery apps are expected to be active in Brazil in the coming years. [69] By contrast, as Table 11 shows, US-Brazil trade has been limited compared to China-Brazil trade. Brazilian exports to the US are less than 2% of Brazil’s GDP in 2024, while Brazilian exports to China are more than 4% of Brazil’s GDP. Brazil economy is too large to be bullied by the US. Moreover, Brazil’s strong ties to China guarantees Brazil’s economic independence from the US.  Table 11: Bilateral trade between Brazil and China & US, 2024(source: SECEXMDIC)   IV. Conclusion This paper explained Brazil’s seven strengths that enabled Brazil to challenge the US as well as US President Trump. Brazil has important strategic assets such as niobium and rare earth. Brazil holds the world’s largest niobium reserves, as well as the world’s third largest rare earth reserves. Brazil also has been the world giant of agriculture that has exported the largest amount of soybean and beefs & chicken to the world. In addition, Brazil is the world’s 9th largest crude oil producer and the world’s 10th largest crude oil exporting country. Moreover, Brazil is the world’s largest producer of sugarcane ethanol, as well as the world second largest ethanol producer, leading Bazil to its energy independence. Furthermore, Brazil is a major aircraft manufacturer & exporter. Embraer, a Brazilian company, reached 3rd place in the ranking of sales of commercial aircraft, behind Airbus and Boeing in 2022. Concerning aircraft exports, Brazil ranked 7th in 2022, behind France, Germany, Canada, Spain, United States, and Ireland. And Brazil ranked 9th in the world in the aircraft/spacecraft exports. More importantly, Brazil has been a leader of BRICS that has wielded huge geopolitical influence around the world. On top of that, Brazil has strengthened its ties with China which has been another BRICS leader. Because of these seven strengths, Brazil has not relied on the US for its economy. Rather Brazil has been able to resist US President Trump’s pressure and threats.  Brazil has been different from Mexico which depends on US for its trade and overall economy. Mexico’s total exports in 2024 were valued at US$618.98 billion, according to the United Nations COMTRADE database on international trade. Mexico’s total exports to the US in 2024 was valued at US$503.26 billion, constituting 81% of Mexico’s total exports and 27.5% of Mexico’s GDP. [70] Brazil’s exports to the US hit a record $40.3 billion in 2024, but it made up 1.9% of Brazil’s GDP in 2024. [71] Thus, Brazil sharply contrasts with Mexico in terms of its economic dependence on the US.  Brazil has also been different from Japan in terms of its security dependence on the US. Japan has heavily depended on the US for its security. As Figure 19 show, as of March 2025, approximately 53,000 US military servicemen have been stationed in Japan. By contrast, as Table 12 shows, there are 58 US soldiers in Brazil as of March 2025. Even 58 US servicemen in Brazil are not stationed there. They are temporarily in Brazil for a moment. Moreover, unlike Japan where there are several military bases in Japan, including major installations like Futenma air station in Okinawa and Yokota air base in Tokyo, there are no US military bases in Brazil. Thus, Brazil has not depended on the US for its security. Accordingly, Brazil sharply contrasts with Japan in terms of its security dependence on US.   Figure 19: US troops overseas (source: https://usafacts.org/articles/where-are-us-military-members-stationed-and-why/) Table 12: Number of US military personnel (source: https://usafacts.org/articles/where-are-us-military-members-stationed-and-why/)  On the other hand, the US has a growing military presence in Australia, primarily through the marine rotational force in Darwin, which involves thousands of US marines rotating annually for training exercises. These rotations, which have happened since 2012, have grown from an initial 200 marines to nearly 2,500 each year. In addition, the US planned to host up to four nuclear-powered submarines at a future base in Australia, beginning as early as 2027. Moreover, Australia has been a member of Quad and AUKUS that are anti-Chinese alliance.  On the economic front, however, Australia exported a total $517.0 billion in merchandise goods in 2024, with $23.8billion of this going to the US. Australian goods exports to US made up 5% of its total goods exports in 2024 and were 0.9% of Australia’s annual GDP. [72]  In 2024, as Figure 20 shows, around 35% of Australia’s merchandise exports by value went to China. China is also Australia’s largest export market for services with a 13.3% share. China is also Australia’s largest import partner with AUD 116 billion in 2024, followed by the US at AUD 93 billion, and Japan at AUD 32 billion. China has been Australia’s largest trading partner since 2009, when it replaced Japan. Thus, Australia is situated in-between Japan (with heavy security dependence on the US) or Mexico (with extreme economic reliance on the US) and Brazil (with economic and security freedom from the US) in terms of its economic and security dependence on US. Australia straddles a middle path between the US and China. Australia depends on China for its economy, while it strengthens its security ties with the US.  Figure 20: Australia’s exports to China, 2024 (source: Australian Bureau of Statistics) In conclusion, Brazil’s seven strengths have made Brazil achieve both economic and security independence from the US. Thus, Brail was able to resist US pressures and threats. Even Brazil has been able to challenge the US. Brazil’s pursuit of de-dollarization and multipolar world order are good examples of such efforts. References[1] “Is Donald Trump trying to dial back tensions with Brazil?” Alex Kozul-Wright. 7 Oct 2025. AlJazeera. https://www.aljazeera.com/economy/2025/10/7/is-donald-trump-trying-to-dial-back-tensions-with-brazil[2] “Is Donald Trump trying to dial back tensions with Brazil?” Alex Kozul-Wright.[3] “Is Donald Trump trying to dial back tensions with Brazil?” Alex Kozul-Wright.[4] “Is Donald Trump trying to dial back tensions with Brazil?” Alex Kozul-Wright.[5] For more information on Brazil, see Wikipedia.[6] see Wikipedia[7] For more information about income inequality in Brazil, see “Income Inequality Drops Again and Hits Lowest Level on Record in Brazil.” May.8.2025. Folha De S. Paulo.[8] For more information, see https://worldpopulationreview.com/country-rankings/crime-rate-by-country[9] For more information, see https://www.mbmg.mtech.edu/pdf-publications/fs23.pdf[10] Moisés Gómez, Jinhui Li, Xianlai Zeng. “Niobium: The unseen element - A comprehensive examination of its evolution, global dynamics, and outlook.” Resources, Conservation and Recycling. Vol. 209 (October 2024), p.1[11] Moisés Gómez, Jinhui Li, Xianlai Zeng., p. 2.[12] For more information, see https://www.sfa-oxford.com/market-news-and-insights/niobium-swing-producer-cbmm-driving-the-future-of-advanced-materials/[13] See https://www.sfa-oxford.com/market-news-and-insights/niobium-swing-producer-cbmm-driving-the-future-of-advanced-materials/[14] For more information, see https://www.sfa-oxford.com/market-news-and-insights/niobium-swing-producer-cbmm-driving-the-future-of-advanced-materials/[15] See https://www.sfa-oxford.com/market-news-and-insights/niobium-swing-producer-cbmm-driving-the-future-of-advanced-materials/[16] See https://www.mining-technology.com/news/cbmm-opens-niobium-production-facility/?cf-view[17] For more information, see https://niobiumcanada.com/why-is-niobium-a-critical-mineral-resource-for-the-united-states/[18] https://niobiumcanada.com/why-is-niobium-a-critical-mineral-resource-for-the-united-states/[19] “Hypersonic hegemony: niobium and the Western Hemisphere’s role in the US-China power struggle.” Guido L. Torres, Laura Delgado Lopez, Ryan C. Berg, and Henry Ziemer. CSIS. March 4, 2024.[20] “Hypersonic hegemony: niobium and the Western Hemisphere’s role in the US-China power struggle.” Guido L. Torres, Laura Delgado Lopez, Ryan C. Berg, and Henry Ziemer.[21] “Hypersonic hegemony: niobium and the Western Hemisphere’s role in the US-China power struggle.” Guido L. Torres, Laura Delgado Lopez, Ryan C. Berg, and Henry Ziemer.[22] “Hypersonic hegemony: niobium and the Western Hemisphere’s role in the US-China power struggle.” Guido L. Torres, Laura Delgado Lopez, Ryan C. Berg, and Henry Ziemer.[23] “Hypersonic hegemony: niobium and the Western Hemisphere’s role in the US-China power struggle.” Guido L. Torres, Laura Delgado Lopez, Ryan C. Berg, and Henry Ziemer.[24] “Hypersonic hegemony: niobium and the Western Hemisphere’s role in the US-China power struggle.” Guido L. Torres, Laura Delgado Lopez, Ryan C. Berg, and Henry Ziemer.[25] For more information, see USGS website: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-rare-earths.pdf[26] https://valorinternational.globo.com/business/news/2025/08/05/brazils-rare-earth-exports-hit-record-but-remain-modest.ghtml[27] “What are rare earth minerals, and why are they central to Trump’s trade war?” Ramishah Maruf. CNN. June 3, 2025.[28] “What are rare earth minerals, and why are they central to Trump’s trade war?” Ramishah Maruf.[29] “What are rare earth minerals, and why are they central to Trump’s trade war?” Ramishah Maruf.[30] “What are rare earth minerals, and why are they central to Trump’s trade war?” Ramishah Maruf[31] “US and Australia sign rare earths deal to counter China's dominance.” Natalie Sherman. BBC News. October 20, 2025.[32] https://valorinternational.globo.com/business/news/2025/08/05/brazils-rare-earth-exports-hit-record-but-remain-modest.ghtml[33] https://www.spglobal.com/commodity-insights/en/news-research/latest-news/metals/060625-brazils-rare-earth-projects-seek-partnerships-to-enhance-energy-security [34] For more information, see https://farmdocdaily.illinois.edu/2025/09/us-soybean-harvest-starts-with-no-sign-of-chinese-buying-as-brazil-sets-export-record.html[35] https://farmdocdaily.illinois.edu/2025/09/us-soybean-harvest-starts-with-no-sign-of-chinese-buying-as-brazil-sets-export-record.html[36] https://farmdocdaily.illinois.edu/2025/09/us-soybean-harvest-starts-with-no-sign-of-chinese-buying-as-brazil-sets-export-record.html[37] https://farmdocdaily.illinois.edu/2025/09/us-soybean-harvest-starts-with-no-sign-of-chinese-buying-as-brazil-sets-export-record.html[38] https://soygrowers.com/news-releases/how-does-u-s-soybean-production-compare-to-brazil/[39] https://soygrowers.com/news-releases/how-does-u-s-soybean-production-compare-to-brazil/[40] For more information, see https://pulse.auctionsplus.com.au/aplus-news/insights/whos-got-beef-and-wheres-it-going[41] https://pulse.auctionsplus.com.au/aplus-news/insights/whos-got-beef-and-wheres-it-going[42] https://www.thepoultrysite.com/news/2025/08/brazil-marks-50-years-as-top-global-chicken-exporter[43] “Top 10 exporters shipped halal meat worth $14.04 bn to OIC countries.” EuroMeat News. February 18, 2025.[44] For more information, see https://newsroom.sialparis.com/topics/news/middle-east-food/[45] For more information, see https://oec.world/en/profile/bilateral-product/crude-petroleum/reporter/bra[46] D. Budny; P. Sotero (April 2007). "Brazil Institute Special Report: The Global Dynamics of Biofuels" (PDF). Brazil Institute of the Woodrow Wilson Center. [47] The Economist, March 3–9, 2007 "Fuel for Friendship" p. 44[48] The flourishing ethanol industry in Brazil, Brazilian Farmers.[49] https://www.hfw.com/insights/bioenergy-series-the-evolution-of-the-brazilian-ethanol-industry/ [50] https://ethanolrfa.org/media-and-news/category/news-releases/article/2025/08/rfa-supports-u-s-investigation-of-punitive-brazil-trade-practices[51] https://www.czapp.com/analyst-insights/trump-targets-brazil-over-ethanol-tariffs-amid-falling-us-exports/[52] For more information, see "The Remarkable Story of Brazilian Jet Maker Embraer." Bloomberg. July 5, 2024.[53] "Embraer Delivers 1800th E-Jet". Embraer. Archived from the original on 2 May 2024. Retrieved 21 July 2024.[54] https://worldpopulationreview.com/country-rankings/aircraft-and-spacecraft-exports-by-country[55] https://www.aerotime.aero/articles/largest-airlines-aircraft-manufacturers[56] "Expansion of BRICS: A quest for greater global influence?" (PDF). Think Tank, European Parliament. 15 March 2024.[57] For more information, see Wikipedia.[58] https://geopoliticaleconomy.com/2025/07/10/trump-threat-brics-us-dollar-western-imperialism/[59] https://geopoliticaleconomy.com/2025/07/10/trump-threat-brics-us-dollar-western-imperialism/[60] https://geopoliticaleconomy.com/2025/07/10/trump-threat-brics-us-dollar-western-imperialism/[61] https://geopoliticaleconomy.com/2025/07/10/trump-threat-brics-us-dollar-western-imperialism/[62] https://geopoliticaleconomy.com/2025/07/10/trump-threat-brics-us-dollar-western-imperialism/[63] https://geopoliticaleconomy.com/2025/07/10/trump-threat-brics-us-dollar-western-imperialism/[64] https://geopoliticaleconomy.com/2025/07/10/trump-threat-brics-us-dollar-western-imperialism/[65] https://www.americasquarterly.org/article/brazil-deepens-bond-china/[66] https://www.americasquarterly.org/article/brazil-deepens-bond-china/[67] https://www.americasquarterly.org/article/brazil-deepens-bond-china/[68] https://www.americasquarterly.org/article/brazil-deepens-bond-china/[69] https://www.americasquarterly.org/article/brazil-deepens-bond-china/[70] https://trading economics.com /mexico/exports-by-country[71] https://www.publicnow.com/view/8D388094BA5934BD1B86E434070AA54216D7E628?1756817187 & SECEXMDIC[72] See Australian Bureau of Statistics; https://www.abs.gov.au/articles/australias-trade-united-states-america

Defense & Security
Missiles in front EU flag. Air defense systems European Union. Cruise missiles in Europe. Concept weapons development in Europe. Stockpiles strategic missiles. Concrete wall in foreground. 3d image

Nuclear Sharing Between the U.S. and the EU. Benefits and Challenges.

by Krzysztof Śliwiński

Abstract This paper examines the NATO nuclear sharing arrangement, focusing on its benefits and challenges within the U.S.-EU security framework. Nuclear sharing involves the U.S. deploying B61 nuclear bombs in select European NATO countries, with host nations providing delivery systems and infrastructure while the U.S. retains full control, ensuring compliance with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The arrangement strengthens NATO's deterrence posture, promotes alliance cohesion, and supports non-proliferation by dissuading the development of independent nuclear arsenals. Recent geopolitical tensions, especially Russia's invasion of Ukraine, have intensified calls for expanding sharing to countries like Poland, enhancing deterrence on NATO's eastern flank. Exercises such as Steadfast Noon validate operational readiness and signal resolve. Critics, however, highlight legal and escalation risks, potential NPT violations, and domestic opposition in host countries. Despite these issues, nuclear sharing remains a crucial component of Euro-Atlantic security, adapting to evolving threats while balancing deterrence, alliance unity, and non-proliferation goals.  Key Words: International Security, Weapons of Mass Destruction, Nuclear Sharing, Alliances Introduction Nuclear sharing is a cornerstone of NATO's deterrence strategy, designed to distribute the benefits, responsibilities, and risks of nuclear deterrence across the Alliance. Under these arrangements, the United States deploys a limited number of B61 nuclear gravity bombs at bases in several European NATO member states. At the same time, those host countries provide the necessary infrastructure, security, and dual-capable aircraft (DCAs) to deliver weapons in a crisis. The weapons remain under full U.S. custody and control at all times, in compliance with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). A nuclear mission can only be authorised after explicit political approval from NATO's Nuclear Planning Group (NPG), which includes all NATO members, and the U.S. President (and potentially the UK Prime Minister). This setup ensures collective decision-making and underscores the U.S.'s extended deterrence commitments to its allies, helping prevent nuclear proliferation by giving non-nuclear states a stake in the Alliance's nuclear posture without independent arsenals.[1] The arrangements originated in the Cold War era, with the first U.S. atomic weapons arriving in Europe in 1954. By the 1960s, they were formalised through the NPG to allow non-nuclear allies input on nuclear policy. Today, approximately 100 B61 bombs are forward-deployed in Europe, hosted by five NATO countries: Belgium, Germany, Italy, the Netherlands, and Turkey. Seven NATO allies contribute DCA, including F-16s and F-35s, which serve dual roles in conventional operations and as potential nuclear delivery platforms. France and the UK maintain independent nuclear forces that complement the US-led sharing but operate outside the formal NATO structure. While the question references the EU, nuclear sharing is strictly a NATO framework; all host countries are EU members except Turkey, creating significant overlap but no direct EU-level involvement.[2] These arrangements serve multiple purposes: they enhance Alliance cohesion, provide tools for managing escalations in conflicts, and signal resolve to adversaries, such as Russia. Recent geopolitical tensions, including Russia's invasion of Ukraine, have prompted discussions about expanding sharing to strengthen deterrence on NATO's eastern flank.[3] Poland, a NATO member since 1999, has long advocated for a stronger role in the Alliance's nuclear mission amid heightened Russian threats, particularly following the 2022 invasion of Ukraine. In June 2023, Polish Prime Minister Mateusz Morawiecki first publicly expressed interest in hosting U.S. nuclear weapons under NATO's sharing policy, arguing it would bolster deterrence without violating the NPT. This push intensified in early 2025, driven by concerns over U.S. reliability under the second Trump administration and Russia's aggressive posture.[4]   On March 13, 2025, President Andrzej Duda explicitly urged the U.S. to deploy nuclear warheads on Polish territory, stating in interviews that NATO infrastructure—including nuclear assets — should "shift east" to match the eastward expansion of the Alliance's borders since 1999. He emphasised that such a move would enhance security guarantees and deter future Russian aggression, while also praising France's potential extension of its "atomic umbrella" as a complementary option. Duda's proposal carried domestic political weight, positioning Poland's conservative opposition as pro-U.S. ahead of the May 2025 presidential election, where candidates debated transatlantic ties versus European autonomy.[5] Proponents argue Poland is an ideal candidate: it spends 4.7% of GDP on defence (exceeding NATO's 2% target), has built one of Europe's strongest militaries, and hosts significant U.S. rotational forces. Analysts suggest that deployment could involve adapting Polish F-35s for DCA roles or constructing secure storage facilities. However, logistical and political hurdles remain, including a potential Russian backlash and the need for NPG consensus.[6] As of October 2025, however, no U.S. nuclear weapons have been deployed to Poland, and the proposal remains under discussion without a formal U.S. commitment. Instead, Poland has deepened integration through participation in NATO's annual Steadfast Noon nuclear exercise, which began on October 13, 2025, across Belgium, the Netherlands, and the North Sea — testing procedures for credibility and safety. Poland joined as a full participant alongside Finland, Germany, and the U.S., signalling growing involvement in nuclear planning but stopping short of hosting assets. Alternatives like a dedicated U.S. "nuclear umbrella" declaration for Poland have been floated to avoid escalation without physical deployment.[7] What academics say Academic experts agree that Nuclear sharing is a cornerstone of NATO's defence strategy. This arrangement refers to an agreement according to which the United States deploys non-strategic nuclear weapons on allied territory while maintaining ownership and peacetime custody.[8]This allows selected NATO members to participate in nuclear planning and provide delivery systems, creating a framework that extends American nuclear deterrence across the Alliance. The operational structure of nuclear sharing involves dual-key arrangements in which both U.S. and host-nation authorisation are required for weapon employment. The United States maintains absolute control and custody of its nuclear weapons forward-deployed in Europe, while Allies provide military support for the DCA mission with conventional forces and capabilities. Nuclear sharing arrangements play a vital role in the Alliance's interconnection and remain a key component of security guarantees and the indivisibility of security across the entire Euro-Atlantic area.[9] These arrangements are coordinated through NATO's Nuclear Planning Group, ensuring multilateral consultation on nuclear policy and targeting decisions. Currently, only five European NATO members have signed bilateral nuclear-sharing agreements with the U.S. These are: Belgium, Germany, Italy, the Netherlands, and Turkey, under which the U.S. stores B61 nuclear gravity bombs at their airbases and their dual-capable aircraft can deliver them in a NATO context. These arrangements, dating back to the Cold War and reaffirmed in subsequent treaties, involve approximately 100 U.S. warheads as of 2025.[10] Nuclear sharing serves multiple strategic purposes within the alliance framework. It strengthens extended deterrence by visibly integrating allied forces into NATO's nuclear posture, thereby reassuring front-line states of American commitment.[11] Experts claim that these arrangements helped prevent nuclear proliferation by reducing incentives for European allies to develop independent arsenals during the Cold War.[12] Additionally, nuclear sharing distributes the political and operational burdens of nuclear responsibility across participating members rather than concentrating them solely with the United States. However, nuclear sharing faces significant criticisms. Legal scholars argue that forward-deploying U.S. weapons on non-nuclear states potentially contravenes the Non-Proliferation Treaty's spirit, creating ongoing diplomatic tensions with Russia and other nations.[13] Domestic opposition within host countries and concerns about the escalation of crises further complicate these arrangements.[14] Despite these challenges, nuclear sharing remains integral to NATO's deterrence strategy, particularly as renewed great-power competition has reinforced alliance solidarity and commitment to collective defence in the contemporary security environment. Benefits of Nuclear Sharing Firstly, official sources from NATO and the U.S. government consistently highlight the benefits of their efforts in preserving peace, deterring aggression, fostering unity, and aligning with global non-proliferation norms. The primary official argument for nuclear sharing is its role in bolstering NATO's deterrence posture against evolving threats, particularly from nuclear-armed adversaries like Russia. NATO's 2022 Strategic Concept and related documents emphasise that the Alliance's nuclear capabilities, including U.S. forward-deployed weapons, serve to "preserve peace, prevent coercion and deter aggression". [15] The 2024 Washington Summit Declaration reaffirms this, stating that "nuclear deterrence is the cornerstone of Alliance security" and that NATO's capabilities provide the "supreme guarantee" for all members.[16] By integrating U.S. nuclear assets with European contributions, such as DCA from seven Allies, these arrangements complicate adversaries' planning and enhance crisis management. As noted in NATO's factsheet, "nuclear sharing provides military and political tools for deterrence and can be used to manage escalation in a crisis," with DCA serving as a "visible and valuable instrument for strategic communications" to signal resolve.[17] Accordingly, in a security environment marked by Russia's integration of nuclear forces into its military strategy and threats against Allies, nuclear sharing ensures credible deterrence without provoking conflict. NATO’s former Secretary General Jens Stoltenberg argued that "the purpose of NATO's nuclear weapons is not to provoke a conflict but to preserve peace, deter aggression and prevent coercion," underscoring that arrangements like those involving Germany are vital for the "security of the whole alliance".[18] The U.S. State Department echoes this rationale, claiming that with NATO "numerically outgunned on the central front," nuclear sharing maintains a "nuclear deterrent posture sufficient to deter the Soviet aggression," a logic that persists against modern threats.[19] Against this backdrop, exercises like Steadfast Noon[1] Further strengthen this by simulating nuclear scenarios, ensuring "the credibility, effectiveness, safety and security of the nuclear deterrent mission".[20] Overall, according to official sources, these mechanisms help preserve stability in the Euro-Atlantic area, reduce reliance on nuclear weapons, and adapt to challenges posed by actors such as China and North Korea. Secondly, nuclear sharing fosters unity and shared responsibility among NATO members, distributing the benefits, risks, and political burdens of deterrence more evenly among them. NATO's publications explicitly state that these arrangements "ensure that the benefits, responsibilities and risks of nuclear deterrence are shared across the Alliance," demonstrating "unity and cohesion amongst all Allies" through joint decision-making in the Nuclear Planning Group (NPG).[21] This shared approach, as NATO sources claim, reinforces the indivisibility of security, as outlined in NATO's nuclear policy: "Nuclear sharing arrangements play a vital role in the interconnection of the Alliance and remain one of the main components of security guarantees and the indivisibility of security of the whole Euro-Atlantic area".[22] The 2024 Summit Declaration commits to "modernising its nuclear capabilities" and "strengthening its nuclear planning capability," ensuring broader participation to "demonstrate Alliance unity and resolve".[23] By involving European Allies in Allied dual-capable aircraft (DCA) missions and infrastructure, nuclear sharing is intended to help mitigate disparities in capabilities, promote equitable burden-sharing, and prevent fragmentation within the Alliance. Thirdly, NATO posits that nuclear sharing supports non-proliferation efforts. Contrary to criticisms, official sources argue that nuclear sharing advances non-proliferation by reducing incentives for Allies to pursue independent nuclear programs. NATO's review of the NPT at 50 years notes that these arrangements "have contributed to security in Europe and non-proliferation as Allies under the U.S. nuclear umbrella have not felt pressure to develop their own weapons".[24] Codified during the 1960s negotiations, they comply fully with the Treaty, as both the U.S. and the USSR ensured that no prohibitions were placed on such setups.[25] The U.S. State Department details this compromise, which allowed for "wartime nuclear sharing" without requiring peacetime transfer, thereby reassuring allies like West Germany and dissuading proliferation.[26] Post-Cold War reductions — over 90% in NATO's nuclear stockpile — align with NPT Article VI disarmament goals while maintaining deterrence.[27] This balance facilitates peaceful nuclear cooperation under the IAEA (International Atomic Energy Agency) safeguards, thereby strengthening the global nuclear non-proliferation regime.[28] Finally, according to the U.S. State Department, nuclear sharing underscores the U.S. commitment to European security, countering fears of "decoupling" where allies doubt American resolve. The State Department describes it as addressing whether the U.S. would "sacrifice Chicago to save Hamburg," by making nuclear weapons available for Europe's defence.[29] NATO's policy affirms that U.S. strategic forces, supplemented by forward-deployed assets, provide the "supreme guarantee," with Allies contributing to ensure integration across domains.[30] To sum up, official arguments portray nuclear sharing as indispensable for deterrence, cohesion, non-proliferation, and transatlantic solidarity. These arrangements, according to Western policy-makers and experts, have sustained European stability for decades, with ongoing modernisation ensuring their relevance in an unpredictable world. Nuclear Sharing in the Face of an Ongoing War in Ukraine Nuclear sharing has allegedly bolstered NATO's overall deterrence posture, helping to prevent Russian escalation in Ukraine, including potential nuclear use. NATO's nuclear capabilities, including U.S. forward-deployed weapons in Europe, are described as essential to "preserve peace, prevent coercion and deter aggression" in the face of Russia's nuclear threats and integration of nuclear forces into its strategy.[31] This has indirectly supported Ukraine by signalling to Russia that any significant escalation — such as nuclear strikes or attacks on NATO territory — would invoke a collective response, thereby limiting Russia's options in the conflict. Russia's invasion has been accompanied by nuclear sabre-rattling to deter Western intervention, but nuclear sharing has helped counter this by maintaining credible deterrence without direct NATO involvement in Ukraine.[32] In that sense, the already mentioned exercises like Steadfast Noon simulate nuclear scenarios, reinforcing the "credibility, effectiveness, safety and security" of the deterrent, which has been crucial amid threats from Russia, China, and North Korea. Analysts note that this has made Russian nuclear signalling less credible over time, allowing the West to provide advanced weapons to Ukraine that were initially considered taboo.[33] However, Russia's threats have still delayed and limited the scale of Western aid, such as restrictions on long-range strikes into Russia, due to fears of crossing "red lines".[34] As mentioned before, nuclear sharing agreements have arguably fostered greater unity among NATO allies, enabling sustained military and economic support for Ukraine. By sharing the "benefits, responsibilities and risks of nuclear deterrence," nuclear sharing demonstrates Alliance solidarity and the "indivisibility of security" in the Euro-Atlantic area.[35] This has reassured European allies, particularly those near Russia, allowing them to commit resources to Ukraine without fearing abandonment. For example, Poland's push to join nuclear sharing reflects heightened threat perceptions from the war, aiming to strengthen deterrence and defence in a hostile environment. NATO's support, including intelligence sharing and strategic communications, has, at least in the eyes of Western policy-makers, deterred Russian use of chemical, biological, or nuclear weapons in Ukraine.[36] Without reassurance from nuclear sharing of U.S. commitment — countering fears of "decoupling" — it might have been harder for Europe to maintain this level of involvement.[37] From Russia's perspective, nuclear sharing exacerbates tensions, viewing it as part of NATO's eastward expansion that provoked the invasion.[38] Putin has used this to support claims behind "Russia's Special Military Operation" in Ukraine, framing Ukraine's potential NATO integration as a threat that could place U.S. nuclear weapons near Russia's borders, similar to the Cuban Missile Crisis in reverse. This rationale has fueled Russian nuclear threats, which aim to limit Western aid and prolong the conflict by raising escalation fears.[39] The war has heightened nuclear risks, with some analysts arguing it presents greater dangers than the Cuban Missile Crisis due to the potential for miscalculation.[40] Russia's deployment of tactical nuclear weapons in Belarus as a counter to NATO's sharing arrangements has further escalated postures.[41] Recent decisions by the U.S., UK, and France to allow Ukraine to use long-range missiles against Russian targets have prompted Putin to warn of a direct NATO-Russia war, indirectly tying into nuclear sharing's role in deterrence dynamics.[42] This has possibly complicated peace efforts, as Russia perceives Western escalation as existential, making negotiations harder. As mentioned earlier, nuclear sharing has arguably helped mitigate proliferation risks during the war. By providing a shared nuclear umbrella, it reduces the incentives for allies like Poland and Germany to pursue independent nuclear programs, thereby supporting the NPT.[43] Possibly then, the invasion has not sparked widespread proliferation, partly because NATO's deterrent reassures members. Interestingly, however, the debates over a "European nuclear deterrent" independent of the U.S. — spurred by uncertainties such as potential shifts in U.S. policy under Trump — could undermine this if not managed effectively.[44] The war has also renewed focus on modernising nuclear sharing, with NATO committing to enhancing capabilities at the 2024 Washington Summit.[45] This has indirectly affected Ukraine by diverting Russian resources and attention, though some argue it prolongs the stalemate without a decisive victory. In summary, nuclear sharing has possibly acted as a stabilising force for NATO, enabling robust support for Ukraine and deterring Russian nuclear escalation. However, it has also contributed to heightened tensions and Russian intransigence, complicating pathways to peace. As the war persists into 2025, proposals to expand sharing (e.g., to Poland) reflect its evolving role in countering ongoing threats. Conclusion The "Steadfast Noon" exercises are arguably a clear signal to any potential adversary, including Russia, that NATO is prepared to defend all its members against any threats, including nuclear ones. Such exercises involve the use of American non-strategic nuclear weapons stationed in Europe, although no real combat weapons are used during the drills. The exercises serve not only to practice deterrence against possible nuclear attacks but also to prepare for the potential use of nuclear weapons by NATO if necessary. The fact that these exercises involve nuclear deterrence indicates that NATO's defence strategy includes readiness to escalate to a nuclear response if provoked by a nuclear attack. The locations of these nuclear weapons are not publicly disclosed. Still, there is speculation about their presence in countries like Poland, particularly in light of recent secret agreements that allow foreign troops to enter Polish territory. On the other hand, one should also consider potential downsides, especially for countries in Central and Eastern Europe. Nuclear sharing for potential allied use in wartime poses significant risks despite its deterrence aims. One major downside is its incompatibility with the NPT, which violates Articles I and II.[2] Enabling the indirect transfer of control to non-nuclear states undermines global non-proliferation efforts and draws criticism from states such as China. This arrangement also heightens proliferation risks, as peacetime training and exercises normalise nuclear readiness, potentially inspiring similar setups in Asia-Pacific regions like Japan and South Korea, escalating regional tensions.[46] Security concerns include increased escalation dangers, where limited nuclear use could spiral into full-scale war, especially amid vulnerabilities at host bases like Incirlik in Türkiye during political instability. Expanding sharing, such as to Poland, fuels arms races with Russia and exposes more European sites to attacks, without adding credible deterrence given NATO's conventional superiority. Politically, it breeds divisiveness within NATO, fostering resentment among allies and diverting resources from conventional forces, while eroding U.S. control and complicating disarmament. Domestically, host nations face public backlash and moral burdens from anti-nuclear norms, straining alliance cohesion. Russia's objections in NPT forums further highlight how sharing provokes international backlash, risking broader conflicts. Notes [1] On Monday (October 13 2025), NATO began its annual nuclear deterrence exercise Steadfast Noon. The exercise is a long-planned, routine training activity and part of NATO’s broader efforts to maintain readiness and ensure transparency around its nuclear posture. It is not linked to any current world events, and no live weapons are used.[2] Article I - Each nuclear-weapon State Party to the Treaty undertakes not to transfer to any recipient whatsoever nuclear weapons or other nuclear explosive devices or control over such weapons or explosive devices directly, or indirectly; and not in any way to assist, encourage, or induce any non-nuclear-weapon State to manufacture or otherwise acquire nuclear weapons or other nuclear explosive devices, or control over such weapons or explosive devices. Article II - Each non-nuclear-weapon State Party to the Treaty undertakes not to receive the transfer from any transferor whatsoever of nuclear weapons or other nuclear explosive devices or of control over such weapons or explosive devices directly, or indirectly; not to manufacture or otherwise acquire nuclear weapons or other nuclear explosive devices; and not to seek or receive any assistance in the manufacture of nuclear weapons or other nuclear explosive devices. See more at: https://www.un.org/en/conf/npt/2005/npttreaty.html References [1] NATO’s Nuclear Sharing Arrangements. (2022, February). NATO. https://www.nato.int/nato_static_fl2014/assets/pdf/2022/2/pdf/220204-factsheet-nuclear-sharing-arrange.pdf[2] Kristensen, H. M., Korda, M., Johns, E., & Knight-Boyle, M. (2023, November 8). Nuclear weapons sharing, 2023. Bulletin of the Atomic Scientists. https://thebulletin.org/premium/2023-11/nuclear-weapons-sharing-2023/[3] Johns, E. (2025, October 10). Incomplete Upgrades at RAF Lakenheath Raise Questions About Suspected US Nuclear Deployment. Federation of American Scientists. https://fas.org/publication/incomplete-upgrades-lakenheath-questions-nuclear/[4] Johns, E. (n.d.). Poland’s bid to participate in NATO nuclear sharing. IISS. Retrieved October 14, 2025, from https://fas.org/publication/incomplete-upgrades-lakenheath-questions-nuclear/[5] Poland’s president urges U.S. to move nuclear warheads to Polish territory, FT reports. (2025, March 13). Reuters. https://www.reuters.com/world/polands-president-urges-us-move-nuclear-warheads-polish-territory-ft-reports-2025-03-13/[6] Poland’s president vows to spend 4.7% of GDP on defence this year. (2025, February 5). Euronews. https://www.euronews.com/my-europe/2025/02/05/polands-president-vows-to-spend-47-of-gdp-on-defence-this-year[7] NATO’s annual nuclear exercise Steadfast Noon begins. (2025, October 13). NATO. https://www.nato.int/cps/en/natohq/news_238367.htm[8] von Hlatky, S., & Lambert-Deslandes, É. (2024). The Ukraine war and nuclear sharing in NATO. International Affairs, 100(2), 467-485. https://academic.oup.com/ia/article-abstract/100/2/509/7617216?redirectedFrom=fulltext[9] NATO’s nuclear deterrence policy and forces. (2025, October 13). NATO. https://www.nato.int/cps/fr/natohq/topics_50068.htm?selectedLocale=en#:~:text=Nuclear%20consultation,are%20members%20of%20the%20NPG[10] NATO’s Nuclear Sharing Arrangements. (2022, February). NATO. https://www.nato.int/nato_static_fl2014/assets/pdf/2022/2/pdf/220204-factsheet-nuclear-sharing-arrange.pdf[11] von Hlatky, S., & Lambert-Deslandes, É. (2024). The Ukraine war and nuclear sharing in NATO. International Affairs, 100(2), 467-485. https://academic.oup.com/ia/article-abstract/100/2/509/7617216?redirectedFrom=fulltext[12] Khalessi, D. (2015). Strategic ambiguity: Nuclear sharing and the secret strategy for drafting articles I and II of the nonproliferation treaty. The Nonproliferation Review, 23(1-2), 81-103. https://doi.org/10.1080/10736700.2016.1155865 [13] Park, K. C., & Choo, J. (2022). NATO's nuclear sharing strategy and its implications for establishing a new strategy for strengthening extended deterrence on the Korean Peninsula. International Area Studies Review, 26(1), 51-78. https://doi.org/10.18327/jias.2022.1.26.1.51 [14] Smith, M. A. (2004). To neither use them nor lose them: NATO and nuclear weapons since the cold war. Contemporary Security Policy, 25(3), 485-514. https://doi.org/10.1080/1352326042000330637[15] NATO’s nuclear deterrence policy and forces. (2025, October 13). NATO. https://www.nato.int/cps/en/natohq/topics_50068.htm[16] Washington Summit Declaration. (2024, July 10). NATO. https://www.nato.int/cps/en/natohq/official_texts_227678.htm[17] NATO’s Nuclear Sharing Arrangements. (n.d.). NATO. Retrieved October 20, 2025, from https://www.nato.int/nato_static_fl2014/assets/pdf/2022/2/pdf/220204-factsheet-nuclear-sharing-arrange.pdf[18] Germany’s support for nuclear sharing is vital to protect peace and freedom. (2020, May 11). NATO. https://www.nato.int/cps/en/natohq/opinions_175663.htm[19] Ford, C. A. (2019, December 9). Challenges of Policymaking in Responsible Nuclear Weapons Stewardship. US Department of State. https://2017-2021.state.gov/challenges-of-policymaking-in-responsible-nuclear-weapons-stewardship/[20] NATO’s annual nuclear exercise Steadfast Noon begins. (2025, October 13). NATO. https://www.nato.int/cps/en/natohq/news_238367.htm[21] NATO’s Nuclear Sharing Arrangements. (n.d.). NATO. Retrieved October 20, 2025, from https://www.nato.int/nato_static_fl2014/assets/pdf/2022/2/pdf/220204-factsheet-nuclear-sharing-arrange.pdf[22] NATO’s nuclear deterrence policy and forces. (2025, October 13). NATO. https://www.nato.int/cps/en/natohq/topics_50068.htm[23] Washington Summit Declaration. (2024, July 10). NATO. https://www.nato.int/cps/en/natohq/official_texts_227678.htm[24] Durkalec, J. (2018, June 29). The Nuclear Non-proliferation Treaty at fifty: a midlife crisis. NATO. https://www.nato.int/docu/review/articles/2018/06/29/the-nuclear-non-proliferation-treaty-at-fifty-a-midlife-crisis/index.html[25] NATO’s Nuclear Sharing Arrangements. (n.d.). NATO. Retrieved October 20, 2025, from https://www.nato.int/nato_static_fl2014/assets/pdf/2022/2/pdf/220204-factsheet-nuclear-sharing-arrange.pdf[26] Ford, C. A. (2019, December 9). Challenges of Policymaking in Responsible Nuclear Weapons Stewardship. US Department of State. https://2017-2021.state.gov/challenges-of-policymaking-in-responsible-nuclear-weapons-stewardship/[27] See more at: https://www.iaea.org/sites/default/files/publications/documents/infcircs/1970/infcirc140.pdf[28] See more at: https://www.iaea.org/[29] Ford, C. A. (2019, December 9). Challenges of Policymaking in Responsible Nuclear Weapons Stewardship. US Department of State. https://2017-2021.state.gov/challenges-of-policymaking-in-responsible-nuclear-weapons-stewardship/[30]NATO’s nuclear deterrence policy and forces. (2025, October 13). NATO. https://www.nato.int/cps/en/natohq/topics_50068.htm[31] NATO’s nuclear deterrence policy and forces. (2025, October 13). NATO. https://www.nato.int/cps/en/natohq/topics_50068.htm [32] Nuclear Stability and Escalation Risks in Europe. (2023, September 1). Foreign Policy Research Institute. https://www.fpri.org/article/2023/09/nuclear-stability-and-escalation-risks-in-europe/[33] Ibidem.[34] Kimball, D., & Bugos, S. (2022, February 28). Russia’s War on Ukraine and the Risk of Nuclear Escalation: Answers to Frequently Asked Questions. Arms Control Association. https://www.armscontrol.org/issue-briefs/2022-02/FAQ-russia-ukraine[35] NATO’s support for Ukraine. (2025, October 14). NATO. https://www.nato.int/cps/en/natohq/topics_192648.htm[36] Dickinson, P., Arick, R., & Lander Finch, N. (2025, October 15). How the US and Europe can deter and respond to Russia’s chemical, biological, and nuclear threats. Atlantic Council. https://www.atlanticcouncil.org/in-depth-research-reports/report/how-the-us-and-europe-can-deter-and-respond-to-russias-chemical-biological-and-nuclear-threats/[37] Dalton, T. (2022, April 8). Nuclear Nonproliferation After the Russia-Ukraine War. Georgetown Journal of International Affairs. https://gjia.georgetown.edu/2022/04/08/nuclear-nonproliferation-after-the-russia-ukraine-war/[38] Magnier, E. J. POST. X. Retrieved October 21, 2025, from https://x.com/ejmalrai/status/1796511588465201374[39] Ukraine: how nuclear weapons continue to increase the risks, two years on. (n.d.). ICAN (International Campaign to Abolish Nuclear Weapons). Retrieved October 21, 2025, from https://www.icanw.org/ukraine_two_years_how_nuclear_weapons_increase_the_risks[40] Kimballl, D., & Bugos, S. (2022, February 28). Russia’s War on Ukraine and the Risk of Nuclear Escalation: Answers to Frequently Asked Questions. Arms Control Association. https://www.armscontrol.org/issue-briefs/2022-02/FAQ-russia-ukraine [41] Kayali, L., Jungholt, T., & Fritz, P. (2024, July 4). Europe Is Quietly Debating a Nuclear Future Without the US. POLITICO. https://www.politico.com/news/magazine/2024/07/04/europe-us-nuclear-weapons-00166070[42] Katchanovski, I. (n.d.). POST. X. Retrieved October 21, 2025, from https://x.com/I_Katchanovski/status/1858244090909127000[43] Dalton, T. (2022, April 8). Nuclear Nonproliferation After the Russia-Ukraine War. Georgetown Journal of International Affairs. https://gjia.georgetown.edu/2022/04/08/nuclear-nonproliferation-after-the-russia-ukraine-war/[44] Samuelki, O. (2025, March 11). Europe going nuclear would be a catastrophic mistake. https://www.aljazeera.com/opinions/2025/3/11/europe-going-nuclear-would-be-a-catastrophic-mistake[45] NATO’s support for Ukraine. (2025, October 14). NATO. https://www.nato.int/cps/en/natohq/topics_192648.htm[46] Analysis of the Incompatibility of NATO’s Nuclear Sharing Arrangements with the Treaty on the Non-Proliferation of Nuclear Weapons. (2024). China Arms Control and Disarmament Association China Institute of Nuclear Industry Strategy. https://www.cinis.com.cn/zhzlghyjzy/yjbg/1446912/2024072914514738359.pdf 

Energy & Economics
Mersin, Turkey-09 12 2024: A cold Coca Cola or pepsi  bottle or metal can with water droplets on it. Coca Cola on black background

The geopolitical impact on global brands: Coca-Cola and Pepsi in the Middle East and Muslim markets

by World & New World Journal

Coca-Cola and Pepsi are among the most recognized and consumed soft drinks in the world, with Coca-Cola leading as the global favorite (World Population Review, 2025). However, in recent years, geopolitics has shaped their presence in certain regions, particularly in the Middle East and Muslim-majority countries. The reason behind this is interesting, these brands are often seen or associated with the United States (Hebblethwaite, 2012), a nation whose fame in these regions has always been questioned and been controversial, and whose policies in the region have long sparked controversy and criticism. Overview of Coca-Cola and Pepsi in the US Coca-Cola was born on May 8th, 1886, when Dr. John Pemberton delivered his newly perfected syrup to Jacob’s Pharmacy in downtown Atlanta, USA. After 139 years, what started as medicine evolved into the iconic soft drink that is enjoyed in more than 200 countries and territories every day (The Coca Cola Company, 2025). On the other hand, a few years later, in 1893, Brad’s drink, later rebranded as Pepsi-Cola, was invented in New Bern, North Carolina, USA by Caleb Brandham, as an aid in digestion (History of the Birthplace, 2018). Pepsi’s presence worldwide also covers more than 200 countries and territories and can be said it is Coca-Cola’s closest rival. While these brands have built a reputation, they have a long history, their competition has been fierce to the dominance of their market across the globe. The term “Cola Wars” represents this fierce competition. Cola wars gained global attention and likely reached their peak around the 1970s and 1980s in the US, while nowadays the fight keeps on, those years were key in how their presence around the globe has resulted nowadays. A bit of the context of the Cola Wars; during the beginning of the 20th century Coca-Cola led the market, while Pepsi had a rough time and went bankrupt in 1923. After its restructured, Pepsi maintained but Coca-Cola advertisements, such as those featuring Santa Claus, made it difficult for Pepsi to compete and by the time of WWII, Coca-Cola could be found in 44 countries already. In 1965 Pepsi merged with Frito-Lay-Inc trying to gain better footholds in restaurants and supermarkets. At the time Coca-Cola was expanding its brand into other soft drinks beverages, Pepsi could simply not compete against them. But by the mid-1970s, Pepsi launched its “Pepsi Challenge”, a genius blind test marketing bet in which over 50% of Americans chose Pepsi over Coca-Cola due its sweeter taste, of course Pepsi claimed its first victory over giant Coca-Cola and started its rise. Coca-Cola's response came with celebrity endorsement and the diet coke in the early 80’s. But by the mid 80’s, Pepsi sales skyrocketed due to its collaboration and promotion with Michael Jackson and appearance in several movies like Back to the Future. Coca-Cola had an identity crisis at the time, but after going back to its roots, (Weird History Food, 2022) once again it came back to fight and claimed its important place in the industry. Coca-Cola and Pepsi around the world While the Cola Wars were largely defined within the American market, their global expansion strategies took very different trajectories once they reached international audiences. Coca-Cola made their debut in the international market in the early 20th century, but it was until WWII when it got international recognition. A marketing associated with American optimism and modernity was followed by the company, and during the war, the company produced millions of bottles for US troops abroad, introducing the drink to soldiers and civilians across Europe, Africa and Asia. The strategy transformed Coca-Cola from a domestic beverage into a global cultural symbol. Pepsi, meanwhile, took a more opportunistic route. After financial struggles between the 1920s and 1930s, the brand re-emerged with a more aggressive global approach. Its internationalization came in 1949 with exports to Canada and later expanded to Mexico, Brazil and the Philippines, but it was until the Cold War, when its real global expansion began (FBIF Food & Beverage Innovation, 2014), when it merged with Frito-Lay and diversified its portfolio. By 2024, PepsiCo generated $92 billion net revenue (PepsiCo, 2025) while Coca-Cola grew 3% to stand at $47.1 billion net revenues (The Coca-Cola Company, 2025) that same year and their products and diversifications not only include the classical soft drinks, but also other beverages and foods. Yet despite their shared dominance in over 200 countries, both face different degrees of acceptance depending on local political, cultural and religious attitudes. The role of geopolitics: soft power, sanctions, wars, risks and opportunities As stated already, both brands are known globally, however, it is important to highlight that their presence in different regions of the world has been shaped by other actors more than just commercial advertisements, or even due to their advertisements and commercial strategies. Let me explain in more detail. In the case of Coca-Cola, during WWII and the Cold War, many people outside of the United States associated the product with American culture, Coca-Cola became a symbol of American soft power and globalization, clearly seen in war advertisements featuring soldiers enjoying cokes suggesting the commonly used “bring people and nations together” phrases. (Edelstein, 2013) On the other hand, with a more social-cultural strategy, Pepsi used the American pop-culture as their approach to gain attention worldwide. Michael Jackson, Madonna, Britney Spears, Beyoncé, among others (Kalgutkar, 2024) were iconic in the brand. In addition, Pepsi’s marketing leveraged music, youth, and rebellion, giving a softer and aspirational appeal. However, this cultural and ideological symbolism also made both companies vulnerable to political backlashes and somehow have defined their reputation and presence in some areas of the world. In the 1950’s, France coined the term “coca-colonization” denouncing American influence. During the Cold War, Coca-Cola became a capitalist symbol (in the eyes of outsiders), and it was banned in the Soviet Union, an opportunity Pepsi took advantage of there. Later, when the Berlin Wall fell, Coca-Cola became a representation of freedom. (Hebblethwaite, 2012) However, the most notable geopolitical response came when the Arab League boycotted the brand between 1968-1991 in the 13-nation organization, because it chose to operate in Israel while the Palestinian land was under occupation. Pepsi capitalized on this absence, solidifying its position in the Arab markets. In addition to the Arab League boycott, there are other cases where sanctions imposed by the US to different countries have led to a small or lack of sales of the products, such as Myanmar, North Korea, Cuba or the Soviet Union, back on time. Moreover, occasional protests and bans in countries like Iran, Venezuela or Thailand (Hebblethwaite, 2012) has also affected the brands at certain points of the history and of course have created an image and reputation in the society, with positive, neutral or negative perceptions. Moving towards present day, after the war in Gaza broke out in October 2023, pressure on the brands reappeared on the Middle East; Coca-Cola, who has a factory in the illegal settlement in East Jerusalem in the Atarot Industrial Zone, was accused of complicity and violations of the international law, in addition to being “related” with the Israeli army. These led to the BDS Movement to add it to a boycott list, which led to protests and has also been spread across other Muslim-majority countries. Of course, sales have dropped sharply in different countries in the region like Egypt and Bangladesh. (Boycat Times, 2025) Pepsi, on the other hand, even though it has a major presence in the Middle East market built over the space left by Coca-Cola during the 1968-1991 boycott, has also been affected by the War in Gaza and the boycotts in the region. PepsiCo reported stagnation in beverage growth across Egypt, Lebanon and Pakistan, compared with 8-15% growth a year earlier the war started. (Awasthi, 2024) The boycott of these American brands in the Middle East and some Muslim-majority markets has led to important losses in the share market and the sales itself. For instance, Coca-Cola sales reportedly fell by 23% in Bangladesh and dropped by over 10% in Egypt, overall, there is an estimation of 7% regional revenue loss in the MENA region. The losses of the American brands had become an opportunity to the local brands, like Pakistan’s Cola Next and Pakola (shared market increased from 2.5% up to 12% after the boycott (The Economic Times, 2024)), Qatar’s Kinza or Egypt’s V7, which have up to 40% in market share growth and up to 350% growth in exports, canalizing consumer preferences for local alternatives. (The Economic Times, 2024), (Awasthi, 2024), (CBC, 2024), even in the West Bank, the Palestinian Chat Cola has been positioned in the market, with sales of over 40% in 2023 compared to the previous year. (Associated Press, 2025) Coca-Cola and Pepsi boycotts are not the only ones, other companies like McDonald’s or Starbucks have also been affected in the region, due to similar or same reasons. Even more, in Canada, another great example is the “americano” [coffee] being renamed as “canadiano”, (Barista Magazine, 2025) as response to the economic and political tensions developed earlier this year between Canada and the USA. Despite the boycotts, Coca-Cola and PepsiCo have a base in the region, and they have seek opportunities to continue, through investments (Coca-Cola invested $22 million in upgrading technology in Pakistan) or new strategies (PepsiCo reintroduced Teem soda in Pakistan with a “Made in Pakistan” printed on the label) (Shahid, DiNapoli, & Saafan, 2024). Overall, both companies are trying to maintain, penetrate and expand their products in the market, they have been using and relying on bottling companies as a strong tool for those purposes, creating alliances with local companies as well as innovating and testing different new products in the region. Conclusion The current boycott of Coca-Cola and Pepsi across the Middle East and Muslim-majority countries is not only a reflection of political anger – it is a window into how geopolitics can directly reshape consumer economies. What once symbolizes Western globalization, and cultural appeal has now become a marker of political identity and economic nationalism. In a society driven by consumerism – where success is often measured by how much one owns – people tend to care less about genuine human values such as love, kindness, respect, empathy and consideration (MET, 2022). Ironically, today that statement seems reversed. For many consumers, boycotting Western brands has become not only a moral choice but also an act of solidarity and empowerment. Beyond economics, the boycott also reflects a psychological and cultural response. For many consumers in the Middle East, choosing what to drink has become a symbolic act of identity, resistance and empathy. Avoiding brands such as Coca-Cola and Pepsi offers a sense of agency and unity Palestine, turning everyday consumption into an expression of political consciousness. Although both companies remain resilient and continue to invest heavily in local markets, their challenges go beyond short-term losses. The rise of local brands such as V7. Kinza and Cola Next highlights a deeper regional shift – where consumers are not merely reacting to politics, but redefining loyalty based on ethics, identity and sovereignty. In the long term, this phenomenon could accelerate the regionalization of the markets, as local producers gain confidence and international corporations are compelled to adapt – by respecting cultural sensitivities, building genuine local partnerships, and ensuring transparency across their supply chains. Ultimately, the story of Coca-Cola and Pepsi in the Middle East demonstrates that in today’s interconnected world, soft power is no longer a one-way export. Consumer behavior itself has become a form of diplomacy – capable of rewarding inclusion or punishing complicity.ReferencesAssociated Press. (2025, 03 02). Coca-Cola's appeal to Palestinians fizzles amid war. Retrieved from VOA News: https://www.voanews.com/a/coca-cola-s-appeal-to-palestinians-fizzles-amid-war/7991182.htmlAwasthi, S. (2024, 09 15). Middle East conflict bites Coca-Cola, Pepsi. Retrieved from SBS News: https://www.sbs.com.au/news/podcast-episode/middle-east-conflict-bites-coca-cola-pepsi/z445sv6glBarista Magazine. (2025, 02 25). Move Over, Americano: The ’Canadiano’ Has Arrived. Retrieved from Barista Magazine Online: https://www.baristamagazine.com/move-over-americano-the-canadiano-has-arrived/Boycat Times. (2025, 09 02). Everything You Need to Know: Why We Boycott Coca Cola. Retrieved from Boycat Times: https://blog.boycat.io/posts/boycott-coca-cola-israel-gaza-palestineCBC. (2024, 09 04). Muslim countries' local sodas see boost amid Coke and Pepsi boycott over Gaza. Retrieved from CBC: https://www.cbc.ca/news/business/coke-pepsi-boycott-1.7313370Edelstein, S. (2013, 05 13). A visual remix of the American Dream as pictured in Mid-Century media. On the front lines with Coca Cola pt II. Retrieved from Envisioning the American Dream: https://envisioningtheamericandream.com/2013/05/30/on-the-front-lines-with-coca-cola-pt-ii/FBIF Food & Beverage Innovation. (2014, November 18). PepsiCo's path to global dominance: from beverage brand to food empire. Retrieved from Food Talks: https://www.foodtalks.cn/en/news/54496Hebblethwaite, C. (2012, September 11). Who, What, Why: In which countries is Coca-Cola not sold? Retrieved from BBC News: https://www.bbc.com/news/magazine-19550067History of the Birthplace. (2018, October 18). Retrieved from Wayback machine: https://web.archive.org/web/20181004163206/http://www.pepsistore.com/history.aspKalgutkar, N. (2024, November 28). Pepsi’s Advertising: An Iconic Campaigns and Pop Culture Impact. Retrieved from Treehack: https://treehack.com/pepsis-advertising-an-iconic-campaigns-and-pop-culture-impact/MET. (2022, 07 29). The effects of living in a consumer society. Retrieved from MET: https://group.met.com/en/mind-the-fyouture/mindthefyouture/consumer-society/#:~:text=July%2029%2C%202022,the%20operation%20of%20a%20company.PepsiCo. (2025). Who we are. Retrieved from PepsiCo: https://www.pepsico.com/who-we-are/about-pepsicoShahid, A., DiNapoli, J., & Saafan, F. (2024, 09 05). Coke and Pepsi boycott over Gaza lifts Muslim countries' local sodas. Retrieved from Reuters: https://www.reuters.com/business/retail-consumer/coke-pepsi-boycott-over-gaza-lifts-muslim-countries-local-sodas-2024-09-04/The Coca Cola Company. (2025). Our Company. Retrieved from The Coca Cola Company: https://www.coca-colacompany.com/about-usThe Coca-Cola Company. (2025, February 02). Coca‑Cola Reports Fourth Quarter and Full Year 2024 Results. Retrieved from Thr Coca-Cola Company: https://www.coca-colacompany.com/media-center/coca-cola-reports-fourth-quarter-and-full-year-2024-results#:~:text=For%20the%20full%20year%2C%20net,the%20timing%20of%20concentrate%20shipments.The Economic Times. (2024, 09 04). Coca-Cola and PepsiCo lose popularity to local Cola brands due to boycott over Gaza in Muslim countries. Retrieved from The Economic Times: https://economictimes.indiatimes.com/news/international/business/coca-cola-and-pepsico-lose-popularity-to-local-cola-brands-due-to-boycott-over-gaza-in-muslim-countries/articleshow/113064771.cmsWeird History Food. (2022, 07 24). Do You Remember the Cola Wars: Coca-Cola vs. Pepsi? Retrieved from YouTube: https://www.youtube.com/watch?v=jtwkKrjHlhcWorld Population Review. (2025). World Population Review. Retrieved from Top-Selling Soft Drinks by Country 2025: https://worldpopulationreview.com/country-rankings/top-selling-soft-drinks-by-country

Defense & Security
Silhouette of missiles with South Korea flag against the sunset. Air defence concept

Major military weapons of South Korean Defense Industry II

by World & New World Journal Policy team

I. IntroductionAccording to the Stockholm International Peace Research Institute, Middle Eastern countries spent $243.5 billion on defense in 2024 — a 15 percent increase from 2023. Saudi Arabia led the region with $80.3 billion in defense spending, ranking seventh in the world. It was followed by Israel with $46.5 billion, Turkey with $25 billion, the United Arab Emirates(UAE) with $24 billion, Qatar with $14.4 billion, Iran with $7.9 billion, Kuwait with $7.8 billion, Iraq with $6.2 billion and Oman with $6 billion.[1] Pro-US countries like Saudi Arabia, the UAE and Qatar increased their military spending in response to perceived threats from Iran. Experts say that they have focused not just on deterrence but also on enhancing real-world capabilities. “These Middle East countries witnessed the consequences of being unprepared during the Israel–Hamas war and the Israeli–Iranian conflict,” said Kang Eun-ho, head of Jeonbuk National University’s defense industry research center and former chief of the Defense Acquisition Program Administration in South Korea. “Given the Middle East’s geopolitical tension, South Korean defense firms face growing opportunities.”[2] A key area of focus for Middle Eastern countries is the modernization of ground-based weapons like missiles, multiple launch rocket systems and self-propelled howitzers. As aging inventories in Middle East countries face obsolescence, the need for replacements is growing. According to a March 2025 report by Kyobo Securities, 2,350 out of 6,088 tanks, howitzers and multiple launch rocket systems (MLRS) units currently in use across Egypt, Saudi Arabia, the UAE and Iraq — or 39 percent — require replacement due to age or maintenance issues.[3] This presents a major opportunity for South Korean defense firms. South Korea has already exported K9 self-propelled howitzers to Turkey and Egypt, Chunmoo MLRS to the UAE and Saudi Arabia, and the Cheongung-II missile to multiple countries, including Iraq. Saudi Arabia and Egypt have recently shown strong interest in Hyundai Rotem’s K2 tanks, while the UAE is eyeing Hanwha Aerospace’s K9s. Air power modernization is also on the agenda of several Middle East countries. Korea Aerospace Industries (KAI) is promoting its FA-50 light attack aircraft to Egypt, the KF-21 fighter to Saudi Arabia and the Surion helicopter to Iraq and the UAE.   The appeal of K-defense lies in its cost-effectiveness. A single Cheongung-II interceptor, for example, costs approximately 1.5 billion won ($1.1 million), which is roughly a third of the price of a US Patriot missile, which ranges from 4 billion to 6 billion won. “US ground weapon offerings are limited, and some high-end fighter jets may be overkill for the region,” said Kim Ki-won, a professor of military studies at Daekyeung University. “South Korean weapon systems carry less political baggage and offer options like technology transfers and local production — attractive incentives for buyers.”[4]   Under this circumstance of the Middle East, this paper aims to introduce South Korean major weapons to government officials and businessmen in Middle Eastern countries.   This is the second paper in a series on South Korean defense industry. Focus is on South Korean weapons that were exported to Middle East countries, as well as on the weapons that have the potential to be exported to the Middle East. The first paper dealt with South Korean weapons that were exported to European countries.   This paper first provides an overview of South Korean defense industry and then introduces major Korean weapons exported and to be exported to Middle East countries.   1.South Korean Defense Industry: World’s top 10 arms exporter   It was 72 years ago that the bloody 1950-53 Korean War ended with an armistice.   Today, South Korea, the once-war-ravaged nation, stands among global leading arms exporters, and its factories turn out advanced tanks, artillery systems and fighter jets destined for battlefields far beyond the Korean Peninsula.   As Figure 1 shows, South Korea’s arms industry has been riding a wave of global demand. South Korea’ arms exports increased from 2.5 billion dollars in 2019 to 23 billion dollars (estimate)in 2025. South Korean weapons are in high demand for their advanced technology and fast delivery.   As a result, in recent years, South Korea has often been listed among the world’s top 10 arms exporters, competing with the US, Russia and China. As Figure 2, South Korea ranked No. 10 in global arms exports, with a 2.2 % share of the world arms market in the 2020-2024 period, according to the Stockholm International Peace Research Institute. The South Korean government is now setting its sights on breaking into the ranks of global top 4 arms exporters.   Figure 1: South Korea arms exports Figure 2: world’s biggest arms exporters   1.South Korean ‘Big 4’ defense companies   According to the Defense News Top 100 list for 2020, four of South Korea’s defense companies were ranked in the top 100 defense companies in the world. These four companies are Hanwha (32nd), Korea Aerospace Industries (KAI 55th), LIG Nex1 (68th), and Hyundai Rotem (95th).   These South Korea’s top four defense companies are expected to surpass 100 trillion won ($72 billion) in total order backlog in 2025, driven by strong export growth. More European and other countries adopt self-reliant defense strategies as US President Donald Trump warn that the US will no longer protect them for free and as he calls for increasing military spending. Moreover, the Ukraine war and the Gaza conflict continue. Thus, there are higher expectations that South Korea’s leading defense firms will secure more orders.   According to data compiled by the Chosun Ilbo, a top Korean newspaper, on May 6, 2025, the combined backlog of South Korea’s top four defense companies stands at around 94.5 trillion won. The figures for Hanwha Aerospace and KAI are based on the results of the first quarter in 2025, while those for LIG Nex1 and Hyundai Rotem reflect data from the end of 2024.[5]   All four companies secure more export deals, thereby enhancing both the scale and quality of their order books. Hanwha Aerospace, for example, holds 31.4 trillion won in ground defense orders, led by exports of K9 howitzers and Chunmoo multiple rocket systems. Exports account for 65% of that backlog. KAI’s backlog at the end of the first quarter in 2025 reached 24.3 trillion won, up 32% from 18.4 trillion won in 2020. The KAI aims to exceed 29 trillion won by year-end. Its export share has also risen from 50% in 2020 to 63% by the end of 2024.   LIG Nex1 holds a backlog of around 20 trillion won as of the end of 2024, while Hyundai Rotem’s stands at 18.8 trillion won. More than half of the orders for both companies come from overseas. Hyundai Rotem is also expected to finalize a second contract with Poland to export around 820 K2 tanks, valued at over 8 trillion won. If finalized, the deal would significantly boost its backlog this year.   According to updated data from the Chosun Ilbo, as Figure 3 shows, South Korea’s four major defense companies saw their combined order backlog surpass 100 trillion won ($72 billion) for the first time, driven by strong overseas demand. Data in second quarter of 2025 show that Hanwha Aerospace, LIG Nex1, Hyundai Rotem, and Korea Aerospace Industries held backlogs totaling 103.48 trillion won, more than double the 42.23 trillion won recorded at the end of 2021. Industry officials say that these companies now have enough work secured for the next four to five years.[6]   Figure 3: South Korea top 4 defense companies’ order backlog (source: the Chosun Ilbo, August 19, 2025)   This jump in exports of Korean-made conventional weapons has led to the Korean defense industry boom. Orders for Korean artillery weapons and armored vehicles from Eastern Europe and the Middle East have significantly increased since the outbreak of the Ukraine war.[7]   Sales of Hyundai Rotem Co., the supplier of the K-2 Black Panther tank, and Hanwha Aerospace Co., the supplier of the K-9 Thunder howitzer, have skyrocketed over the same period. Their parts suppliers have also seen their sales double over a year.   The South Korean defense industry’s current heyday is expected to continue for a while as global demand for Korean-made weapons and combat systems has surged amid growing geopolitical conflicts around the world.   According to defense industry sources, Hanwha Aerospace is expected to soon close a deal with Vietnam to export the K9 self-propelled howitzers, a contract expected to be worth 1 trillion won. Indeed, Hanwha Aerospace signed an agreement to export its K9 self-propelled howitzers worth US$250 million to Vietnam.  Hyundai Rotem is also reportedly nearing the final stage of inking a second agreement with Poland for K2 battle tanks that could be worth over 7 trillion won. LIG Nex1 has supposedly been in talks with Malaysia to export its surface-to-air missile system Cheongung. KAI is looking to export its KF-21 fighter jet to the Middle East.[8]   As the Korean defense companies continue to rack up orders and look to expand their list of clients worldwide, JP Morgan released a report on the four major defense firms -- Hanwha Aerospace, Hyundai Rotem, LIG Nex1 and KAI – in March 2025, increasing their stock price targets by an average of 28 percent while pointing out that there is “plenty of room to go” for their values to rise.[9]   The report surprised investors, industry officials and analysts as it set the target prices of the four defense companies higher than the domestic market consensus. J.P. Morgan adjusted the target stock prices of Hanwha Aerospace, Hyundai Rotem, LIG Nex1 and KAI to 950,000 won, 90,000 won, 370,000 won and 120,000 won, respectively.[10]   JP Morgan noted that it estimates an annual new order market of 19 trillion won -- 14 trillion won from Europe and 5 trillion won from the Middle East -- for Korean land weapons systems companies.   “Korean-made weapons remain one of the top choices for Eastern European countries facing national security issues,” said Lee Tae-hwan, an analyst at Daishin Securities. “Discussions about ordering conventional weapons will gain momentum. The K9 self-propelled howitzers and K2 tanks are excellent candidates with strong potential for scoring additional export deals in Eastern Europe.”[11]   Yu Ji-hoon, a research fellow at the Korea Institute for Defense Analyses, told The Korea Herald that “South Korea has rapidly matured into one of the world’s leading arms exporters, backed by a highly capable manufacturing base, a track record of delivering on time and at scale, and proven platforms.”[12].   II. Importers of South Korean weapons   Table 1. The 20 largest importers of major arms and their main suppliers, 2020–24   Source: SIPRI Arms Transfers Database, March. 2025   According to the SIPRI, as Table 1 shows, during the period of 2020–24, four of the world’s top 10 arms importers were in the Middle East: Qatar, Saudi Arabia, Egypt and Kuwait. More than half of Middle Eastern arms imports came from the US (52 per cent). The next largest arms suppliers to Middle Eastern nations were Italy (13 per cent), France (9.8 per cent) and Germany (7.6 per cent). Israel was the 15th largest arms importer in the world during the period of 2020–24, down from 14th in 2015–19. The US was the biggest supplier of major arms to Israel in 2020–24 (accounting for 66 per cent of Israeli arms imports), followed by Germany (33 per cent). Iran’s arms imports have been at a very low level relative to those of most other arms importers in the Middle East since 1993. Iran’s only supplier of major arms during the period of 2020–24 was Russia. Iran received a total of 6 light combat aircraft from Russia in 2023 and 2024 and has pending deliveries for 42 combat aircraft.[13]   Against the backdrop of tensions with its neighbors, Qatar was the 3rd largest arms importer in the world in 2020–24. Qatari arms imports during the period of 2020–24 were 127 per cent higher than in 2015–19. Qatar’s main arms supplier in 2020–24 was the US (accounting for 48 per cent of Qatari arms imports), followed by Italy (20 per cent), the UK (15 per cent) and France (14 per cent). In 2020–24 Qatar’s imports included 42 combat aircraft from the US, 31 from the UK and 16 from France; Qatar also imported 7 major warships from Italy. Arms imports by Saudi Arabia decreased by 41 per cent between 2015–19 and 2020–24. Saudi Arabia went from the world’s largest arms importer in 2015–19 to fourth largest importer in 2020–24. Saudi Arabia’s main arms supplier during the period of 2020–24 was the US (accounting for 74 per cent of Saudi Arabian arms imports), followed by Spain (10 per cent) and France (6.2 per cent). The decline in Saudi Arabia’s arms imports in 2020–24 can be partly attributed to the cyclical nature of arms procurement. Based on known pending deliveries, Saudi Arabia is expected to remain a major importer of arms in the coming years.[14]   According to data from the Korea International Trade Association and the Korean Herald, Middle Eastern countries occupied most of the top five spots among importers of Korean weapons in 2024 as regional tensions escalated due to the conflicts involving Israel, Hamas, and the Houthis in Yemen.   Saudi Arabia ranked second in the purchase of South Korean weapons with $530 million in 2024, while the United Arab Emirates and Turkey placed fourth and fifth with $145 million and $113 million, respectively. Last year’s biggest importer of South Korean defense systems was Poland, which purchased Korea-made weapons worth about $2.51 billion, more than four times what it bought in 2023. The US was the third-biggest importer of South Korean weapons at $219 million.[15]   As the Gaza conflict has threatened to spiral into a prolonged war, South Korea’s defense industry  sees a surge in international interest — particularly from the Middle East, where Arab governments have been accelerating large-scale military modernization programs.   Saudi Arabia and the United Arab Emirates open the door to South Korean arms manufacturers, as regional demand has been rising for weapons systems that can be delivered fast and customized to local needs and priced more competitively than their US or European counterparts.   As Table 1 shows, Middle East countries have historically relied on US and Russian weapons. However, they are increasingly diversifying their weapons procurement by turning to suppliers in China, Europe and, more recently, South Korea.   South Korean arms appeal to many countries due to their strong performance, faster delivery timelines, competitive prices compared to products from the US and Europe, and the ability to customize systems to local needs. This South Korean approach has already translated into tangible results in the Middle East.   LIG Nex1’s medium-to-high altitude interceptor system, the Cheongung II, secured export contracts worth 12.1 trillion won ($8.7 billion) from the UAE in 2022, as well as from Saudi Arabia and Iraq in 2024. Several countries in the Middle East also reportedly consider purchases of the Cheongung II.   Interest in South Korean naval vessels, submarines and fighter jets has also risen in the Middle East.   Saudi Arabian Navy Chief of Staff Faisal al-Gharibi visited the 2025 International Maritime Defense Industry Exhibition in Busan on May 28, showing particular interest in Hanwha Ocean’s 3,600-ton Jangbogo-III Batch-II submarine. The delegation also visited HD Hyundai Heavy Industries’ booth, showing a strong interest in a 6,500-ton frigate on display.[16]   The UAE has expressed interest in the KF-21, South Korea’s next-generation fighter jet. The UAE Air Defense Commander Rashid Al Shamsi visited Korea Aerospace Industries’ (KAI) headquarters in April 2025 to inspect production facilities for the KF-21 and other aircraft. Azzan A. Ali Al Nuaimi, commander of the UAE’s Air Warfare and Missile Defense Center, even requested to sit in a KF-21 prototype himself.   The KAI also pushes additional exports of the Surion multipurpose helicopter, having already delivered two units to Iraq.[17]Chae Woo-seok, executive director of the Korea Defense Industry Association, said that demand for South Korean weapons is likely to grow due to the region’s urgent security needs. He told that “We expect higher demand for South Korean defense systems that can be delivered quickly in a region such as the middle East with high geopolitical risk.” Chae said that “demand will grow for weapons systems that strengthen air power and build aerial defense networks, particularly those that enhance war deterrence capabilities.”[18]   III. Major military weapons of South Korean Defense Industry   1.South Korea’s expanding arms export portfolio   In South Korea’s expanding arms export portfolio, the K2 tank, called “Black Panther” and built by Hyundai Rotem, has been a flagship item.   The K2 is South Korea’s most advanced main battle tank, designed for speed, precision and adaptability on the mountainous Korean Peninsula. In recent years, the K2 has drawn major international orders, most notably from Poland, as Polish and other nations’ militaries seek modern armor to replace aging Cold War units.   It is central to South Korea’s largest-ever defense export deals, including the one with Poland, signed in 2022, in which Poland ordered 180 K2 Black Panther tanks from Hyundai Rotem in a $3.37 billion agreement. Deliveries began within months, far faster than European or American suppliers could offer.[19]   In 2025, Poland signed with a $6.5 billion contract for 180 upgraded K2PL tanks, making South Korea one of the North Atlantic Treaty Organization’s most important new arms partners and cemented South Korea’s status as a major player in the global defense market.   Other key weapons in the South Korean export portfolio are the K239 Chunmoo Multiple Rocket Launcher System, K9 self-propelled howitzer, FA-50 fighter jets, KP-SAM chirons, M-Sam 2 (천궁 II), KF-21 fight jets, and KUH-1 (수리온 헬기).[20]   Prominent deals made with global clients include K239 Chunmoo MLRS systems purchased by the United Arab Emirates and Saudi Arabia in 2017 and 2022, respectively.   South Korea also signed a $250 million agreement to supply Vietnam with 20 K9 self-propelled howitzers on August 14, 2025, marking the weapon’s first deployment to a member of the Association of Southeast Asian Nations bloc. The K9 howitzers are already in service in countries such as Turkey and Egypt.[21]   In December 2013, Iraq signed a contract for 24 T-50IQ aircraft, a FA-50 variant, plus additional equipment and pilot training over the next 20 years. The first batch of aircraft was delivered in March 2017.   On March 28, 2014, Department of Defense in the Philippines signed a contract for 12 FA-50 fighters worth P18.9 billion (US$421.12 million). Deliveries began in November 2015, all 12 aircraft were delivered by May 31, 2017.[22]   Indonesian Air Force acquired and operated KP-Sam Chirons since 2014 which was integrated with Oerlikon Skyshield 35 mm anti-aircraft gun system. Additionally, 2 Chirons were transferred according to a 2019 SIPRI small arms report. 54 KP-SAM chirons were delivered to Romania in June 2024.   M-Sam 2 (천궁 II) secured export contracts worth 12.1 trillion won ($8.7 billion) from the UAE in 2022 and Saudi Arabia & Iraq in 2024. Iraq purchased KUH-1 (수리온 헬기) in 2024.   As the Israel-Palestine conflict spirals into a prolonged war, South Korea’s defense industry is seeing a surge in international interest — particularly from the Middle East, where governments have been accelerating large-scale military modernization programs. Several countries in the Middle East also reportedly consider additional purchases of South Korean weapons. Interest in South Korean naval vessels, submarines and fighter jets has been also rising.[23]   Saudi Arabian Navy showed strong interest in Hanwha Ocean’s 3,600-ton Jangbogo-III Batch-II submarine. The UAE has expressed interest in the KF-21, South Korea’s next-generation fighter jet. The KAI has also pushed additional exports of the Surion multipurpose helicopter.   2. Major South Korean weapons that were exported to Middle East countries   This is the second paper in a series on South Korean defense industry. Focus is on South Korean weapons that were exported to Middle East countries.   According to data from the Korea International Trade Association and the Korea Herald, last year’s biggest importer of South Korean defense systems was Poland. The most-exported items were from Hanwha Aerospace, which shipped 212 units of its K9 self-propelled howitzers, and Hyundai Rotem, selling 134 units of the K2 battle tank.[24]   Middle Eastern countries occupied most of the top five spots among importers of South Korean weapons as regional tensions escalated due to the conflicts involving Israel, Iran, Hamas, and the Houthis in Yemen.   Saudi Arabia ranked second in the purchase of South Korean weapons with $530 million in 2024, while the United Arab Emirates and Turkey placed fourth and fifth with $145 million and $113 million, respectively. The United States was the third-biggest importer of Korean weapons at $219 million. As Table 2 shows, South Korea has exported the following weapons to several Middle East countries during the period of 2001-2024: K2 tanks, K 9 howitzer, Chunmoo multiple rocket systems, M-Sam 2, FA-50, and KUH-1 Surion.   Table 2: Major defense export contracts with Middle East countries, 2001-2024   Year Destination Name of company Name of weapon Contract money  (₩ Korean won or $ US dollars) 2001 Turkey Hanwha Aerospace K 9 howitzer $1 billion 2007 Turkey Hyundai Rotem K2 tanks $ 0.4 billion (Technology export) 2013 Iraq Korea Aerospace Industries (KAI) FA-50 ₩2.0121 trillion won 2017 UAE Hanwha Aerospace K239 Chunmoo (천무) ₩700 billion won 2022   Saudi Arabia Hanwha Aerospace K239 Chunmoo ₩1 trillion won Egypt Hanwha Aerospace K 9 howitzer ₩2 trillion won UAE LIG Nex1 M-Sam 2 (천궁 II) ₩12.1 trillion won 2024   Saudi Arabia LIG Nex1 M-Sam 2(천궁 II) Iraq LIG Nex1 M-Sam 2 (천궁 II) Iraq KAI KUH-1 Surion (헬기) ₩1.358 billion won (source: Chosun Biz, 12 February, 2025 & several Korean newspapers)   3. Major South Korean weapons that have the potential to be exported to Middle Eastern countries   As the Gaza conflict spirals into a prolonged war, demand for defense products in the Middle East has rapidly increased. Moreover, Middle Eastern countries have been transforming their defense industry and accelerating large-scale military modernization programs. In particular, Saudi Arabia has been actively advancing the transformation of its defense industry under ‘Vision 2030,’ with the goal of localizing 50% of military spending by 2030. To this end, Saudi Arabia has made strategic investments to develop its domestic defense manufacturing capabilities, increase self-sufficiency, and reduce reliance on foreign suppliers. One of the key events showcasing these advancements is the World Defense Show (WDS) 2026, scheduled to take place in Riyadh, where Saudi Arabia will highlight its growing defense capabilities and industry partnerships.[25]   Since the launch of Vision 2030 in 2016, Saudi Arabia has made significant progress in localizing its defense industry. The localization rate of military expenditures increased from 4% in 2018 to 19.35% by the end of 2023. In addition, the number of licensed and authorized facilities in the Saudi military industry sector increased from five in 2019 to 296 by the third quarter of 2024. This growth is the result of policies and regulations designed to oversee and stimulate the sector, enhancing the competitiveness of domestic products. These efforts aim to establish a robust industrial base and foster a national ecosystem capable of attracting investment and strategic collaborations with global entities.[26]   Several initiatives have been introduced to achieve these ambitious goals. The General Authority for Military Industries (GAMI) stands at the forefront of this movement, acting as the regulatory and enabling body for the Saudi defense industry. GAMI’s mandate includes overseeing technology transfer, streamlining military procurement, and supporting the growth of local defense production.[27]   The GAMI has signed over 53 industrial cooperation agreements, amounting to approximately 35 billion riyals ($9.32 billion), with local and international companies. Among these agreements, approximately 13 billion riyals ($3.46 billion) pertain to orders for local firms, supporting the development of national capabilities. Saudi Arabia seeks to strengthen ties with major global manufacturers and accelerate technology transfer to its domestic industry through these initiatives.   In parallel, Saudi Arabian Military Industries (SAMI), established in 2017, plays a central role in this transformation. As a wholly owned subsidiary of the Public Investment Fund (PIF), SAMI aims to rank among top 25 global defense firms by 2030. The SAMI focuses on the development of air, land, naval, and defense systems while forming strategic partnerships to facilitate technology transfer and enhance local capabilities.[28]   During this Saudi Arabia’s modernization of its defense industry, Saudi Arabia and South Korea have strengthen defense cooperation. In particular, Saudi Crown Prince Mohammed bin Salman’s visit to South Korea in 2019 led to the signing of an MoU aimed at strengthening defense and industrial partnerships, focusing on military acquisitions, research, and technology.   Since then, defense ties between Saudi Arabia and South Korea have grown through several agreements. For example, in February 2024, defense ministers in Saudi Arabia and South Korea discussed closer collaboration, and they signed an MoU to establish a joint committee for weapons research and development.[29]   This MoU signing was followed by a $3.2 billion deal, with South Korea’s LIG Nex1 agreeing to supply Saudi Arabia with mid-range surface-to-air missile systems.   On the other hand, for several decades, the UAE has been the undisputed regional economic leader, attracting foreign investors. Recently, however, Saudi Arabia has doubled down on its efforts to compete with the UAE and present itself as the new regional economic & defense leader. This competition could reshape Saudi-UAE relations and have impacts on the entire region.   As the competition between Saudi Arabia and UAE has intensified, rifts between the two Arab nations have deepened, occasionally leading to strained relations and divergent geoeconomic and geopolitical agendas.   Without a doubt, the UAE is the regional leader not only in the economic sector, but also in the defense sector, offering advanced autonomous solutions, air defense systems including missiles, land systems, electronic warfare, and even space technologies. The UAE has surpassed Egypt, previously the Arab world’s largest industrial power.[30]   The UAE’s decision to develop its domestic capabilities in defense stems from the UAE’s recognition of the risks that rely totally on a partnership with the US, particularly after the Biden administration imposed export restrictions on Saudi Arabia. In addition, UAE leaders see building their own industrial base as a necessary hedge against the oil rentier model, whose longevity cannot be assured. Moreover, as Saudi Arabia made significant transformation in its defense sector under ‘vision 2030,’ the UAE also needed to embark on major restructuring of its defense sector and programs.[31]   The UAE approach has emphasized forming joint ventures with various foreign partners. This strategy has allowed the country to acquire foreign technologies, develop them further, and eventually implement and market them as its own. One notable example is the Falaj 3, a 60-meter offshore patrol vessel. In January 2025, Abu Dhabi Ship Building (ADSB), which is owned by EDGE (an Emirati advanced technology and defense conglomerate), launched the first ship of this class, with four planned in total. These vessels are the result of a partnership with Singapore-based ST Engineering that provided technologies from its Fearless-class ships.[32]   Decision-makers in the UAE have not limited their cooperation to the largest defense firms. While major companies were crucial in the initial technology transfer phase, EDGE is now actively seeking industrial agreements with smaller yet ambitious and innovative partners that can significantly expand the offerings of Emirati entities. For instance, in January 2025, EDGE signed a letter of intent with Hungary under which the UAE will supply Caracal sniper rifles to the Hungarian military – marking the first time EDGE has provided such systems to a NATO member state. Not coincidentally, UAE President Sheikh Mohamed bin Zayed Al Nahyan welcomed Hungarian Prime Minister Viktor Orbán to Abu Dhabi at the same time.[33]   As the UAE modernizes its defense industry and actively pursues joint ventures with foreign partners, other Middle Eastern countries are likely to adopt similar strategies.[34]   Under these circumstances, several countries in the Middle East, in particular Saudi Arabia and the UAE, as well as Qatar, shift their focus away from the traditional US- and European-centric arms supply chain and toward South Korean defense companies. South Korea has emerged as a new strategic partner, leveraging the technological prowess and independent defense platform it has accumulated over the past several years.   Saudi Arabia and the UAE opened the door to South Korean arms manufacturers, as regional demand has been rising for weapons systems that can be delivered fast and customized to local needs and priced more competitively than their US or European counterparts.[35]   The Middle East countries have historically relied on US and Russian arms. However, they have been increasingly diversifying their weapons procurement by turning to suppliers in Europe, China, and, more recently, South Korea.   South Korean weapons appeal to many Middle Eastern countries due to their strong performance, faster delivery timelines, competitive prices, and the ability to customize systems to local needs. This South Korean approach has already produced positive results in the Middle East.   LIG Nex1’s medium-to-high altitude interceptor system, the Cheongung II, secured export contracts from the UAE in 2022, as well as from Saudi Arabia and Iraq in 2024. Several countries in the Middle East also consider purchases of the Cheongung II.[36]   Moreover, many Middle Eastern countries have shown interests in South Korean fighter jets, naval vessels, and submarines.   The most noteworthy South Korean weapon is the KF-21 Boramae, a 4.5th-generation fighter jet. The KF-21 is expected to be fully domestically produced in the future, and its component replacement cycle and operational and maintenance costs are lower than those of US or European aircraft. This economic feasibility and maintenance efficiency are highly attractive to Middle Eastern countries seeking to rapidly bolster their military capabilities. The UAE has expressed interest in the KF-21. The UAE Air Defense Commander Rashid Al Shamsi and his delegation visited Korea Aerospace Industries’ (KAI) headquarters in April 2025 to inspect production facilities for the KF-21 and other aircraft.   Moreover, South Korea possesses a diverse portfolio that includes not only fighter jets but also ballistic missile interception systems (e.g., the Cheongung II), unmanned aerial vehicles (UAVs), helicopters, self-propelled howitzers (K9s), maritime patrol aircraft, submarines, tanks, and armored vehicles, allowing it to flexibly respond to the complex security needs of Middle Eastern countries.[37]   The KAI has pushed additional exports of the Surion multipurpose helicopter, having already delivered two units to Iraq. “We’ve seen a sharp increase in visits and inquiries about our fighter jets and helicopters, especially from Middle Eastern countries,” a KAI representative said. “We will focus on country-specific strategies for countries such as the UAE and Saudi Arabia to secure final export deals.”[38]   Saudi Arabian Navy has showed strong interest in Hanwha Ocean’s 3,600-ton Jangbogo-III Batch-II submarine. Saudi Arabian Navy Chief of Staff Faisal al-Gharibi visited the 2025 International Maritime Defense Industry Exhibition in Busan on May 28, 2025, showing particular interest in Hanwha Ocean’s  Jangbogo-III Batch-II submarine. The Saudi delegation also visited HD Hyundai Heavy Industries’ booth, where they inquired about the export readiness of a 6,500-ton frigate on display. 4. Introduction of major South Korean weapons to become the game changer in the Middle East   This paper first introduces South Korean weapons that have the potential to be exported to the Middle East and then shows weapons that were already exported to the Middle Eastern and other countries.   1.M-Sam Block (천궁)   Type Medium-range, mobile surface-to-air missile/anti-ballistic missile system Place of origin South Korea Service history In service 2015–present Production history Designer Agency for Defense Development  Almaz-Antey (Block 1) Designed Block 1: 2001–2011[2]  Block 2: 2012–2017 Block 3: 2024–In development Manufacturer Hanwha Aerospace (launcher, radar)  LIG Nex1 (missile, system) Produced Block 1: 2015–2020 Block 2: 2021–present Specifications Mass Missile: 400 kilograms (880 lb) Length 4.61 meters (15 ft 1 in) Diameter 275 millimeters (10.8 in) Engine Solid-fuel rocket motor Operational range Block 1: 40 km (25 mi) Block 2: 50 km (31 mi) Flight ceiling Block 1: 15 km (49,000 ft) Block 2: 20 km (66,000 ft) Maximum speed Mach 4.5 – Mach 5 (1,530–1,700 m/s; 5,510–6,100 km/h) Guidance system Inertial guidance with midcourse updates through datalink, terminal active radar homing   Figure 4:  M-Sam (천궁) (source: Wikipedia)   The M-SAM (Medium-range Surface-to-Air Missile, 천궁), or often called KM-SAM, is a South Korean medium range surface-to-air missile (SAM) system that was developed by the Agency for Defense Development (ADD) with technical support from Almaz-Antey and Fakel, based on technology from the 9M96 missile used on S-350E and S-400 missile systems. The project was named Cheolmae-2 (Iron Hawk, 철매) during its development phase.[39] M-SAM serves as a key system in South Korea’s Air and Missile Defense (KAMD).   The KM-SAM is the middle-tier of South Korea’s three-tier aerial and missile defense system. Though it was developed in Russia by the Almaz Design Bureau in association with Samsung Thales, LIG Nex1, and Doosan DST, localization and industrialization were done in South Korea enough to consider it an indigenous Korean system. South Korea has independent export rights under international intellectual property law and does not use Russian-made parts. Therefore, export is possible regardless of international sanctions against Russia. The KM-SAM can intercept targets up to an altitude of 15 km (49,000 ft) at a range of 40 km (25 mi). It is to replace upgraded MIM-23 Hawk batteries in South Korea and be made available for export. Almaz-Antey continued with the program after prototypes were transferred and have created a distinctly Russian version called the Vityaz missile system.[40]   The South Korean Air Force revealed in mid-2015 that the KM-SAM would soon enter mass production and begin delivery to the Air Force that September, replacing the Hawk missile that had been in Korean service since 1964, which the US military retired in 2002. The system can intercept up to six targets simultaneously, and the missiles have anti-electronic warfare capabilities to keep functioning despite jamming. The system passed the military’s operational requirement verification test in July 2015, and began deployment in early 2016 near the maritime border with North Korea in the Yellow Sea.   On 28 April 2020, the Defense Acquisition Program Administration (DAPA) in South Korea announced that deliveries of the Cheongung KM-SAM Block-1 system to South Korean Air Force had been completed. In July 2021, South Korea retired its last MIM-23 Hawk system, phasing it out for the Cheongung Block-1.[41]   LIG Nex1 participated in International Defence Exhibition held in the UAE in 2021 and showed off the South Korean weapon system, including KM-SAM and AT-1K Raybolt.[42]   On 16 November 2021, the UAE’s Ministry of Defense tweeted that it plans to acquire the M-SAM as a “qualitative addition” to its existing air defense capabilities and that the deal could reach US$3.5 billion. An official at South Korea’s DAPA said that the announcement was "positive" but "we still need to see how negotiations on the details will proceed." On 16 January 2022, the DAPA announced that the UAE would purchase the system in a deal worth $3.5 billion. At that time, it was the largest arms export deal ever made by South Korea.[43]   In 2022, the US requested South Korea to send this missile system to Ukraine during the Russian invasion of Ukraine. However South Korea declined the request on the basis of its security situation.   In February 2024, the South Korean Defense Ministry announced that Saudi Arabia would purchase 10 KM-SAM Block II batteries, in a deal worth $3.2 billion.[44] In September 2024, the Iraqi Ministry of Defense signed a deal with LIG Nex1 worth $2.8 billion, in order to acquire an unspecified number of KM-SAM Block II batteries.[45]   Currently South Korean Air Force is the only operator of KM-SAM, operating KM-SAM Block I & Block II. Future operators may be Iraqi, Saudi, UAE Armed Forces (unspecified number of batteries). The Iraqi armed forces ordered Block II (unspecified number of batteries) in September 2024 for USD $2.8 billion. Royal Saudi Air Defense Forces also ordered Block II (10 batteries) in February 2024 for USD $3.2 billion. In addition, United Arab Emirates Army ordered Block II (12 batteries) in January 2023, and to be produced partially in the UAE, worth USD $3.5 billion.[46]   Figure 5: on May 13, 2025, the UAE officially unveiled M-SAM II (source: https://en.topwar.ru/264565-oaje-oficialno-predstavili-zakuplennuju-ranee-v-juzhnoj-koree-sistemu-perehvata-ballisticheskih-raket-m-sam-ii.html)   The South Korean government recently took two major steps toward strengthening its air defense shield against attack from North Korea’s ballistic-missile arsenal. First, on 28 July 2025, the South Korean government announced that it had deployed a first Medium Surface-to-Air Missile (M-SAM) Block II system after it had been upgraded from a Block I. Secondly, on 1 August 2025, the government revealed that it had awarded contracts for development of the M-SAM Block III (also known as the Cheongung-III) as its next-generation air defense system.[47]   Original Cheongung-I missiles, in a mobile, medium-range system focused on aircraft threats, were fielded in 2016. Since then, the South Korean government has pursued a phased improvement program rather than developing entirely new systems.   The South Korean Air Force formally deployed its first new-build M-SAM Block II batteries in 2023, with each battery containing 32 missiles that possess an anti-ballistic capability. The latest milestone covered the upgrade of Block I systems into the Block II.[48]   The Cheongung-II is a key element of the multi-layered South Korea Air and Missile Defense (KAMD) network. It addresses both fixed-wing aircraft and high-speed, maneuvering missile threats. The Cheongung-II has a hit-to-kill capability and improved low-altitude target detection, plus it allows multi-target engagements, thus increasing response to saturation or complex attacks.[49]   The Block II system uses a ground-based, multifunction, X-band, 3D, active electronically scanned array (AESA) radar with a 100km range; it is capable of tracking up to 40 targets simultaneously. Detection or jamming of the radar is minimized by employing electronic beam steering and reducing sidelobe emissions.[50]   The interceptor missiles employ active radar guidance in their terminal phase. Each has a range of 40km at altitudes of up to 15km. An M-SAM Block II battery consists of a truck-mounted AESA radar, a command post vehicle and four eight-cell missile launchers.   The upgrade path to the future Cheongung-III, which should be completed by 2034, will realize similar cost savings as occurred with the Block II.   The primary contract award to LIG Nex1 involves development of the engagement control system, command-and-control unit, interceptor missile and full system integration. Hanwha, although not selected as a prime contractor, will provide missile launchers, propulsion system and multifunction radars.   The Block III program is valued at KRW3 trillion (US$2.2 billion), and it will extend the current system’s capabilities by intercepting envisioned future ballistic-missile threats. It will have five times the operational range and increase the engagement altitude to 30km. The solid-fuel missile will achieve speeds of Mach 4.5, and use inertial guidance and active radar homing to address both short- and medium-range targets.[51]   The density and multi-layered structure of the KAMD network reflect South Korea’s clear appreciation of the threat posed by North Korea and its anticipated attack tactics.   Continued development of indigenous defense systems also demonstrates the country’s commitment to increased self-reliance and to establishing itself as a top-tier exporter of defense equipment.   The new system, upon completion, will upgrade the multi-layered defense network alongside other defense systems, such as the Cheongung-II and L-SAM systems. “We will develop the M-SAM Block-III system that satisfies both performance and price to ensure it contributes to strengthening our competitiveness in exports,” said DAPA Vice Commissioner Kang Hwan-seok.[52]   The M-SAM system (Cheongung)with this high quality is comparable to US Patriot system and Israeli Iron Dome. This paper compares M-Sam 2, Patriot (PAC-3) and Iron Dome. As Table 3 shows, M-Sam 2, Patriot (PAC-3) and Iron Dome have their own strengths and weaknesses. M-Sam 2 is better than Patriot (PAC-3) and Iron Dome in terms of high interception capability, high mobility, and low cost of purchase & maintenance. For more information about the M-SAM system, please watch the following Youtube videos:   الدفاع الجوي M SAM II الذي تعاقد علية العراق   Saudi Arabia Ordered Multi-Function Radar for Medium Range Surface-to-Air Missile from South Korean   UAE STRENGTHENS AIR DEFENSE IN 2025 — M-SAM II NOW INTEGRATED WITH PAC-3 & THAAD SYSTEMS   Table 3: Comparison of M-Sam 2 (천궁 II), Patriot (PAC-3), and the Iron Dome   Name of system M-Sam 2 Patriot (PAC-3), The Iron Dome Country of Origin South Korea USA Israel Period of use 2017-current (with ABM capabilities) 2009-current 2011-current Intercept Terminal Terminal Terminal Role against SRBM SRBM, MRBM Short-range rockets, artillery shells, drones Range (Max) Up to 50 km Up to 160 km Up to 70 km Ceiling (Max) 20km 24km + 10km Speed Mach 4.5+ 6,170 km/h (3,830 mph) Mach 2.2 Cost Export cost for Saudi Arabia, 10 batteries for US$ $3.2 billion, 2024 Export cost: US$2.37–2.5 billion for battery; US$6–10 million (FY 2018) for a single missile $50 million per battery; $100,000–150,000 per interception Interception success rate 100% (claim). No real war records 95% (claim). Operational experience in Ukraine demonstrates the increasing problem: on June 28, 2025, seven Russian ballistic missiles were fired, with one intercepted. above 90% (claim) Strength High interception capability, High mobility, low cost of purchase & maintenance Long-range interception, wide defense range, effectiveness against a wide range of targets, including aircraft, cruise missiles, and tactical ballistic missiles. Extensive real combat experience Extensive real combat experience Weakness Limited range, No real combat experience High cost of purchase & maintenance, lack of full 360-degree radar coverage, difficulty with hypersonic threats and saturation attacks Limited range, difficulty with saturation attacks & long-range ballistic missiles with larger and more powerful warheads, not effective against very short-range rockets that are fired from close proximity. (source: Wikipedia & https://en.wikipedia.org/wiki/Comparison_of_anti-ballistic_missile_systems, & https://gallery.modernengineeringmarvels.com/2025/10/09/russias-missile-maneuvers-expose-patriot-defense-weakness/, & https://defencesecurityasia.com/en/irondome-flaws-system/)   2. KUH-1 Surion General information Type Medium utility helicopter Role Transport National origin South Korea Manufacturer Korea Aerospace Industries Designer Agency for Defense Development (mission equipment package)  Korea Aerospace Industries (with technical assistance from Eurocopter) Status In service Primary users Republic of Korea Army National Police Agency (South Korea) Number built 218+ (including derivatives) History Introduction date 22 May 2013 First flight 10 March 2010 In service 2013–present Developed from Eurocopter AS332 Super Puma Figure 6: KUH-1 Surion (source: Wikipedia)   The KUH-1 Surion is a twin-engine, transport utility helicopter developed primarily by Korea Aerospace Industries (KAI), Agency for Defense Development (ADD) and Korea Aerospace Research Institute (KARI) jointly with Eurocopter. In 2006, the research and development phase of the Korea Helicopter Project - Korea Utility Helicopter (KHP-KUH), costing around ₩1.3 trillion (equivalent to ₩1.67 trillion or US$1.48 billion in 2017), was launched by the Agency for Defense Development.[53]   In June 2008, KAI announced that the first prototype KUH was to be rolled in the following month and that ground tests would begin later that year. The KAI stated that it aimed to conduct the type’s first flight in early 2010 and that the first production aircraft would be delivered in 2013.[54] In August 2009, the first prototype was introduced by President Lee Myung-bak at an unveiling ceremony in Sacheon, South Korea.   On 10 March 2010, KAI announced that a prototype had performed the maiden flight of the Surion. Two test pilots and an engineer performed a series of taxiing and hovering maneuvers, as well as a stationary hover at 30 ft (9.1m), during this initial flight.[55] In May 2010, following three months of flight testing, the prototype performed its first public flight demonstration.[56] In January 2011, Eurocopter and KAI established a joint venture, KAI-EC, for the purposes of marketing the Surion and handling export sales. At the time, it was envisioned that 250-300 units would be sold worldwide by 2021. In December 2012, deliveries of the first Surion model began. In February 2013, low temperature testing in Alaska, US, was completed, leading to development of the KUH-1 Surion being formally recognized as completed in March.[57] In 2012, full-scale production of the Surion began. KAI became the principal manufacturer of the type.   An initial force of around 245 Surions have been ordered by the South Korean Army to replace their aging fleets of UH-1H utility helicopters and 500MD light utility helicopters, which have been in service for decades. KAI will also construct civilian and law enforcement variants of the helicopter.[58]   KAI has offered the Surion to international markets for military and civilian purposes. In late 2013, it was reported that KAI had received requests for proposals regarding the Surion from two South American nations and another Asian nation; at the time, KAI stated that the company hoped to sell 60–120 Surions over the following 15–20 years.[59] International marketing efforts were expected to escalate in 2017, as prior to this point the overwhelming priority had been to fully develop the Surion to conform with existing domestic requirements and roles. KAI has deliberately focused on marketing the Surion to countries in which previous export success had been found for the KAI T-50 Golden Eagle and KAI KT-1 Woongbi trainer aircraft.[60]   KUH-1 export version prototype helicopter was unveiled at the Seoul ADEX in 2019. The new prototype helicopter was developed over four years to meet requirements of foreign customers. This helicopter for export was equipped with a GARMIN G5000H avionics suite, and this equipment strengthened airframe/structures for the installation of external fuel tanks and a weapons wing pylon. It can accommodate VIPs and passengers with enhanced interior and Bluetooth/wi-fi connectivity.   The Korea Utility Helicopter (KUH-1), the Surion, successfully achieved mass production by applying the concurrent engineering design concept, which involved simultaneous design and prototype development. Designed with the Korean Peninsula’s weather and mountainous terrain in mind, the Surion was developed to hover even at high altitudes, such as Mount Baekdu. This makes it a multi-purpose helicopter capable of conducting air operations throughout the Korean Peninsula and various support missions, including airlifting personnel and cargo to high altitudes.[61]   To counter enemy attacks in battlefield environments, critical flight safety components for the Surion, including the rotor system, cockpit, engine, and fuel tank, were designed with ballistic resistance. The rotor blades maintained their functionality even after a hit, ensuring the helicopter’s safe return. The windshield was designed to contain and prevent fragments from dispersing in the event of an external impact, ensuring pilot safety.   The fuel tank sealed itself in the event of a hit to prevent fuel leakage and explosion, and the engine was equipped with a Full-Factor Engine Control Unit (FADEC). The control system employed a dual-compensation design, allowing a backup system to operate in the event of a failure. The main gearbox can operate without lubrication for 30 minutes in an emergency. Furthermore, the integrated digital instrument panel (Glass Cockpit) enhanced pilot convenience. Equipped with a four-axis autopilot and digital power control, the aircraft can autonomously fly to a tactical target point after takeoff, enabling tactical missions even at night and in adverse weather conditions. It also features automatic hover capability.[62]   Current operators of KUH-1 Surions are South Korean Army, Marine Corps and Korea Coast Guard. South Korean government agencies such as National Police Agency, Korea Forest Service, Jeju Fire Department, and Korea Aerospace Industries also operate KUH-1 Surions. Potential customers of KUH-1 Surions are Vietnam and Iraq:   Vietnam: In mid-2023, Korea Aerospace Industries (KAI) signed a Memorandum of Understanding with Viettel Aerospace Institute (VTX) to “cooperate in developing and producing helicopters.” By that, KAI and VTX plan to collaborate on the development and production of helicopter’s rotary wings. The agreement is expected to boost KAI’s presence in the Southeast Asian helicopter market while eventually making Vietnam a very potential customer of the Surion.[63]   Iraq: In August 2024, Korean media reported that a high-ranking Iraqi Army official, Lieutenant General Samir Zaki Hussein Al-Maliki, commander of Iraq’s Army Aviation Command, embarked on a four-day visit to South Korea. The official’s visit to South Korea coincides with Iraq’s exploration of potential acquisitions to modernize its military assets. While Iraq previously secured a deal with KAI for the procurement of 24 FA-50 light attack aircraft in 2013, discussions regarding the Surion helicopter mark a new avenue for collaboration between the two nations. In December 2024, the KAI signed a US$93.7 million deal to export the Surion to Iraq. Under the deal, KAI will supply 2 KUH-1 helicopters to the Iraqi government by March 2029.[64] 3. KF-21   General information Type Block 1: Air superiority fighter  Block 2: Multirole combat aircraft, air superiority fighter  Block 3: Stealth strike fighter, multirole combat aircraft, air superiority fighter National origin South Korea Manufacturer Korea Aerospace Industries Designer Agency for Defense Development Primary user Republic of Korea Air Force, Republic of Indonesia Air Force Number built 6 prototypes History Introduction date 2026 (planned) First flight 19 July 2022   Figure 7: KF 21 (source: Wikipedia)   The KF-21 Boramae (KF-21 보라매) is a South Korean fighter aircraft development program with the initial goal of producing multirole fighters for South Korean Air Force. The airframe uses stealth technology but carries weapons externally, and features such as internal bays will be introduced later with KF-21EX program.[65] The KAI KF-X is South Korea’s second domestic fighter jet development program, following the FA-50.[66]   In April 2021, the first prototype was completed and unveiled during a rollout ceremony at the headquarters of KAI in Sacheon. It was named the Boramae. The first test flight was on 19 July 2022. The serial production started in July 2024. 40 aircraft were planned to be delivered by 2028, with South Korean Air Force expecting to deploy 120 of the aircraft by 2032.[67] It will also be available for export. South Korea will begin replacing its F-4D/E Phantom II and F-5E/F Tiger II jets with KF-21s. Later, F-16 Fighting Falcon and F-15EX Eagle IIs will also be replaced.[68]   The KF-21’s specifications are as impressive as its development speed. This jet can reach a speed of Mach 1.8 (or 1,400 miles per hour), has a ceiling of 50,000 feet, and can carry 17,000 pounds of ordnance.[69]   The KF-21 also has an advanced suite of avionics and other electronics, like an active electronically scanned array (AESA) radar; a cutting-edge system that uses thousands of tiny antennas to rapidly scan, track, and target multiple objects simultaneously. The two-seater variant is expected to be capable of teaming with South Korea’s Low Observable Unmanned Wingman System (LOWUS), a collaborative combat aircraft under development.[70]   Despite its impressive capabilities, the KF-21 is not a 5th-gen fighter, because it does not have the same stealth capabilities as its American, Chinese, and Russian counterparts.[71] While the jet does feature an angular design to reduce its radar cross section, it lacks radar-absorbent materials (RAM) across its entire body and does not have internal weapons bays, instead relying on ten external hardpoints. Thus, KAI and analysts often refer to the KF-21 as a “4.5 generation” fighter — in other words, an advanced 4th-gen fighter with some 5th-gen characteristics.   But that may not be the case for long. KAI announced that it intends to upgrade a version of the KF-21 to a full stealth fighter. Dubbed the KF-21EX, these upgrades will include internal weapons bays, more advanced RAM coatings, conformal antennas (flat sensors embedded in the airframe’s skin that replace protruding antennas), and possibly low-observable exhaust nozzles for engine exhaust and infrared signature reduction. Internal weapons bays are important for a 5th-generation fighter because external weapons produce sizable radar returns.   The KF-21EX may be available by the late 2030s or early 2040s. South Korea’s Air Force signed its first contract for 20 KF-21s in 2024, with deliveries expected between the end of 2026 and summer of 2027. A second order of 20 more is expected to come by the end of this year. The country hopes to acquire 120 of the jets by 2032.[72]   Based on the final basic design (C109) released in late 2018, the KF-21 is a medium-sized fighter jet. The KF-21is larger than smaller fighters like the F-16 or JAS 39 Gripen, but is smaller than larger fighters like the F/A-18E/F, F-15, and F-22, and is comparable in weight to the Dassault Rafale, MiG-35, Eurofighter Typhoon, and F/A-18C/D.[73]   The KF-21 is smaller and lighter than the F/A-18E/F, which uses the same F414-GE-400 engine, and has the advantage of lower wing loading than the F-35, which has a similar thrust rating. Thanks to this, the thrust-to-weight ratio is comparable to that of the Eurofighter Typhoon, and with the application of triple digital FBW, LEX (Leading Edge eXtension), and variable camber wings, it is expected to demonstrate high acceleration, turning ability, and high angle of attack maneuverability. The subjective evaluation of current test pilots is that its maneuverability is similar to or better than that of the F-16. The speed is Mach 1.8 or higher. To ensure survivability in future battlefields, the KF-21 has a low-observable shape design, including a reflection angle alignment design, a flush antenna, S-Duct, a flat fuselage, and a semi-recessed weapons bay. RAM is applied to the canopy, wings, and tail, and RAS is applied to the ducts and flaps inside the fuselage. Frequency-selective surface technology is applied to the radome to prevent radar waves from enemy fighters from reflecting back onto the antenna.[74]   As befitting a cutting-edge 4.5-generation fighter, the KF-21 incorporates sensor fusion technology. This technology integrates various sensors, including an active electronically scanned array (AESA) radar, along with information shared via the AESA radar, IRST, EOTGP, and datalink. This technology determines whether a target is the same target, calculates the target’s flight trajectory, and displays it to the pilot via the radar-activated display (LAD). The IRST and EOTGP are developed based on Leonardo's PIRATE IRST, used on the Eurofighter Typhoon, and Lockheed Martin’s Sniper Targeting Pod, used on fighters such as the F-15K. Contrary to popular belief, the EOTGP is also used in air-to-air missions, enabling more effective detection of enemy aircraft through IRST and sensor fusion, much like the Rafale's Front Sector Optronics (FSO).[75]   The Multi-Function Radar developed by Hanwha Systems is an active electronically scanned array (AESA) radar, and its performance is developed with the goal of being equal to or superior to that of the AN/APG-81. It can detect/track more than 20 targets simultaneously, and supports simultaneous air-to-air/air-to-ground/air-to-ship search modes, air-to-ground SAR mode, air-to-air tracking mode, and LPI mode. The radar signal processing computer was developed by Intellics, a South Korean company, and is equipped with OpenCL for high-speed calculations. It provides a total processing performance of 25 TFLOPS by installing eight of the latest high-performance FPGA Virtex 7, server-grade CPU Intel XEON D, and MXM type AMD Radeon E8950 MXM GPUs in parallel, which is a 47% improvement compared to the 17 TFLOPS of the Mercury product installed on the F-35. By applying this low-observable technology, it achieved a lower RCS than the F/A-18E/F Super Hornet, and at the time of exploration and development, it was predicted that the combat effectiveness would be 4.1 times that of the F-16, 1.2 times that of the F/A-18E/F, and 1.3 times that of the F-16C.[76]   Currently KF-21 is operated only in South Korea, but potential operators of KF-21 are as follows: Egypt, Indonesia, Malaysia, Poland, Peru, the Philippines, Saudi Arabia, and UAE. Because this paper focuses on Middle East countries, it explains only Egypt, Saudi Arabia, and UAE.   Egypt is regarded as a potential purchaser of the FA-50, as well as the newly-developed KF-21 Boramae fighter jet.[77]   Saudi Arabia is seen as another potential purchaser of KF-21. On 30 January 2024, a South Korean Defense Ministry official stated that senior representatives from the Ministry and the Agency for Defense Development made an unannounced visit to Saudi Arabia from 23 to 26 January, 2024. During the visit, the South Korean delegation met with Saudi Arabia’s Deputy Defense Minister, Dr. Khalid bin Hussein Al-Biyari, and other officials to discuss the potential joint development of a 5th or 6th generation multi-role fighter based on the KAI KF-21 Boramae design.[78]   On July 29, 2025, Royal Saudi Air Force Commander Lieutenant General Turki bin Bandar bin Abdulaziz met with South Korean Air Force General Lee Young-soo. The two Generals discussed military cooperation and topics of mutual interest, including potential Saudi involvement in the KF-21 Boramae fighter jet project.   On August 14, 2025, officials from Saudi military company SAMI Aerospace held a meeting with the Chief of Staff of South Korean Air Force to talk about boosting their partnership in the aviation sector.[79]   To strengthen its position in developing and exporting next-generation combat aircraft, South Korea has proposed joint development of the KF-21 and its successor to several countries in Southeast Asia and the Middle East, with a particular focus on the United Arab Emirates and Saudi Arabia.   On 15 May 2024, senior air force officials from South Korea and the UAE signed a letter of intent for comprehensive cooperation on South Korea’s KF-21 Boramae program. The agreement was signed by South Korean Air Force General Lee Young-su and UAE Air Force and Air Defense Commander General Rashed Mohammed A.[80]   In April 2025, the United Arab Emirates Air Force and Air Defense, and the South Korean Air Force signed a letter of intent to further their cooperation on the program.   On July 7, 2025, a friendship flight took place at Sacheon Air Base in South Korea, involving high-ranking officials from both South Korean Air Force and the United Arab Emirates. South Korean Air Force General Lee Young-su piloted an FA-50 fighter jet, while UAE Assistant Undersecretary of the Ministry of Defense, Ibrahim Nasser Mohamed Al Alawi, flew in a prototype of the KF-21 Boramae fighter.[81]   4. KSS-III submarine    Class overview Builders ·Hanwha Ocean ·HD Hyundai Heavy Industries Operators  Republic of Korea Navy (ROKN) Preceded by Son Won-il class (Type 214 submarine) Cost USD $900,000,000 per submarine Built 2014–present In service 2021–present Planned 9 Building 3 Completed 3 Active 3 General characteristics Type Attack submarine with ballistic missile launching capabilities Displacement ·Batch-I:- ·3,358 t (3,305 long tons) (Surfaced) ·3,750 t (3,690 long tons) (Submerged) ·Batch-II:- ·3,600 t (3,500 long tons) (Surfaced) ·4,000 t (3,900 long tons) (Submerged) Length ·Batch-I:- ·83.5 m (273 ft 11 in) ·Batch-II:- ·89.3 m (293 ft 0 in) Beam ·Batch-I/II:- ·9.6 m (31 ft 6 in) Draught ·Batch-I:- ·7.62 m (25 ft 0 in) Propulsion ·Batch-I:- ·Diesel-electric propulsion ·Air-independent propulsion (AIP) ·3 × MTU 16V396SE84L marine diesel engines ·4 × Bumhan Industries PH1 PEM fuel cells, each with 150 kW ·Batch-II:- ·Diesel-electric propulsion ·Air-independent propulsion ·Samsung SDI lithium-ion fuel cells Speed ·12 knots (22 km/h; 14 mph) (surfaced) ·20 knots (37 km/h; 23 mph) (submerged) Range 10,000 nmi (19,000 km; 12,000 mi) Endurance 20+ days (submerged) Complement 50 Sensors & processing systems ·Combat suite: ·Hanwha-developed "Combat Management System" (CMS) ·Sonar: ·LIG Nex1-developed sonar suite ·Thales-developed mine-avoidance sonar ·Electronic warfare: ·Indra-developed radar electronic support measurement (RESM) ·Other processing systems: ·Safran-developed "Series 30" optronic surveillance mast ·Babcock-developed "Weapons Handling and Launch System" (WHLS) ·ECA Group-developed steering consoles Armament ·Batch-I:- ·6 × 533 mm (21 in) torpedo tubes o        LIG Nex1 K761 Tiger Shark heavyweight torpedoes ·6 × K-VLS cells o        6 × Hyunmoo 4-4 submarine-launched ballistic missile ·Batch-II:- ·10 × K-VLS cells o        10 × Hyunmoo 4-4 submarine-launched ballistic missile o        Chonryong land attack cruise missile Notes First-ever AIP-equipped submarine capable of launching submarine-launched ballistic missiles (SLBM).   Figure 8: KSS-III 잠수함 (source: Wikipedia)   The KSS-III (잠수함) is a series of diesel-electric attack and ballistic missile submarines that are currently being built for South Korean Navy, jointly by Hanwha Ocean and HD Hyundai Heavy Industries. The KSS-III is the final phase of the South Korean Attack Submarine program, a three-phased program to build 27 attack submarines for the South Korean Navy, between 1994–2029.[82]   The KSS-III initiative consists of the development of nine diesel-electric attack submarines, capable of firing submarine-launched ballistic missiles (SLBM), to be built in three batches, between 2014–2029.[83]   A total of three submarines of the first batch of the series have been launched, with the first submarine, ROKS Dosan Ahn Chang-ho, commissioned on 13 August 2019. The second ship, ROKS Ahn Mu, was commissioned on 20 April 2023.   On October 30th, 2024, a steel-cutting ceremony for the third and final vessel of the KSS-III Batch-II submarine took place at Hanwha Ocean’s Geoje shipyards. The KSS-III Batch-II submarine, designed and constructed with domestic technology, is the latest and most advanced diesel submarine for the South Korean Navy.[84]   The KSS-III Batch-II, with a displacement of 3,600 tons (surfaced), is 5.5 meters longer than the previous KSS-III Batch-I submarines and is equipped with 10 VLS cells for launching Hyunmoo-IV-4 SLBMs. Additionally, the Batch-II features enhanced combat and sonar systems for improved detection and targeting capabilities, along with a lithium battery system that enables extended underwater operations, making it a core asset in safeguarding national security.[85]   In addition to enhanced sensors and weapon systems, the KSS-III Batch-II is also expected to operate an Anti-Submarine Warfare Unmanned Underwater Vehicle (ASWUUV), currently being co-developed by Hanwha Systems and the Agency for Defense Development. The incorporation of a manned-unmanned teaming (MUM-T) system is anticipated to extend the operational range and enhance the combat capability of its carrier by remaining underwater for extended periods to detect enemy submarines in advance, thereby ensuring the survivability of manned combat vessels. Moreover, with variable operational depth control, the UUV will effectively monitor and gather intelligence on underwater threats. The ASWUUV is planned to be operational with the South Korean Navy by 2030.[86]   The KSS-III Batch-II has also extended its localization rate to over 80% by incorporating more than 70 types of domestically developed and built equipment. With more accessible maintenance, South Korean Navy is expected to achieve more stable submarine operations, while for the shipbuilding industry, this provides a more manageable construction process for future exports, anticipated to boost defense exports.[87]   Current Operators of the KSS-III submarines are South Korean Navy - Three in service, out of a total of nine planned. Potential operators are Royal Canadian Navy - up to twelve conventionally-powered submarines are planned to replace the Victoria class submarines, with long-range patrols being a key factor. The Hanwha has emerged as a frontrunner, formally responding to the request for information by its deadline of 18 November, 2024, offering to have the first in class launched by 2030 and the first four by 2035. Hyundai Heavy Industries made a partner offer to supply artillery, likely the K9 Thunder.[88] On 26 August 2025, the KSS-III was shortlisted as the only qualified options alongside the TKMS Type 212CD developed by ThyssenKrupp Marine Systems.[89]   5. K 2 Black Panther (K 2 tanks)   Service history In service 2014–present Production history Designer Agency for Defense Development  Doosan Mottrol  Hyundai Rotem  Poongsan Corporation  Samsung Thales  Samyang Comtech  WIA Designed 1995–2008 Manufacturer Hyundai Rotem Unit cost ₩7.8 billion (production batch  US$8.5 million (constant 2009 USD) Produced 2008–present No. built · Republic of Korea Army: Batch I: 100, Batch II: 106, Batch III: 54, Batch IV: 150 (ordered) · Polish Land Forces: Batch I: 180 (ordered), Batch II: 180 (ordered) · Total: 440 Specifications Mass Curb weight: 55 metric tons (54 long tons; 61 short tons) Combat weight: 56 metric tons (55 long tons; 62 short tons) Length Overall: 10.8 meters (35 ft 5 in)  Chassis: 7.5 meters (24 ft 7 in) Width 3.6 meters (11 ft 10 in) Height Highest: 2.4 meters (7 ft 10 in) Lowest: 2 meters (6 ft 7 in) Crew 3 (commander, gunner and driver) Armor MIL-12560H armor steel and silicon carbide non-oxide ceramic plate along with ERA and NERA modular add-on armor Main armament Hyundai WIA CN08 120 mm 55 caliber smoothbore gun (40 rounds) Secondary armament 1× 12.7×99mm (.50 BMG) K6 heavy machine gun (3,200 rounds) 1× 7.62×51mm NATO coaxial machine gun (12,000 rounds) Engine · Batch I: STX Engine/MTU Friedrichshafen MT883 Ka-501 4-short stroke, 12-cylinder water-cooled diesel, dry weight: 2,064 kg 1,500 hp (1,103 kW)· Batch II-IV: HD Hyundai Infracore DV27K 4-long stroke, 12-cylinder water-cooled diesel, dry weight: 2,550 kg 1,500 hp (1,110 kW)] Power/weight 27.3 hp/t (20.35 kW/t) Transmission · Batch I-II: RENK HSWL 295 TM (5 forward, 5 reverse gears), dry weight: 2,450 kg · Batch III-IV: SNT Dynamics EST15K (6 forward, 3 reverse gears, in development), dry weight: 2,500 kg Suspension Semi-active in-arm suspension unit (ISU) with dynamic track tension system (DTTS) Fuel capacity 1,296 liters (342 U.S. gal) Operational range 450 km (280 mi) Maximum speed Paved road: 70 km/h (43 mph) Cross country: 50 km/h (31 mph) Acceleration from 0–32 km/h (0–20 mph) in 7.47 seconds (MT883 Ka-501) or 8.77 seconds (DV27K)   Figure 9: K2 Black Panther (source: Wikipedia)   K2 Black Panther (K-2 흑표 tank) is a South Korean fourth-generation main tank,  manufactured by Hyundai Rotem.   The K2 Black Panther has an advanced fire-control system, in-arm suspension, laser rangefinder, a radar, and crosswind sensor for lock-on targeting. The K2’s thermographic camera tracks target up to 9.8 km, and its millimeter-band radar acts as a Missile Approach Warning System, enhancing situational awareness. And its soft-kill active protection system deploys smoke grenades to counter incoming projectiles. The K2’s autoloader reduces crew size from 4 to 3, thereby providing a faster rate of fire, better fuel efficiency, and lower maintenance costs compared to other western main tanks requiring human loaders. In addition, the K2 can operate in indirect fire mode, offering key advantages over Western designs.[90]   The K2’s production started in 2008 and its mass production began in 2013. The first K2 tanks were deployed to South Korean army in July 2014.[91]   The K2 Black Panthers were exported to Turkey and Poland. The potential operators of K2 Black Panthers are Armenia, Egypt, Morocco, Peru, Romania, and Slovakia.   a. Turkey   In June 2007, South Korea and Turkey negotiated a deal worth $540 million that included South Korea’s support for the development of Turkey’s Altay battle tank.   On July 29, 2008, Hyundai Rotem and Turkey’s Otokar (Turkish defense firm) signed a contract to provide design assistance and technology transfer for the Altay tank project. This collaboration included systems integration, critical design elements, and manufacturing expertise from South Korea, specifically tailored to develop Turkey’s domestic manufacturing capabilities.   South Korea’s contributions to the Altay’s development included the transfer of manufacturing technologies for critical components. Hyundai Rotem played a central role in the system design and integration process, and Hyundai WIA provided the 120 mm 55-caliber smoothbore gun technology. Poongsan Corporation supported the development of ballistic protection systems, while Samyang Comtech shared expertise in advanced armor materials. These collective efforts laid the foundation for Turkey’s capabilities in producing the Altay tank.[92]   This cooperation extended beyond technical support, encompassing assistance in establishing production lines for key subsystems. Hyundai Rotem guided Otokar in tank systems development, while MKEK (Turkish mechanical and chemical corporation) received tank gun production technologies. Roketsan (Turkish defense firm) was supported in the design and manufacturing of advanced armor packages. These collaborative efforts were instrumental in the development of prototypes PV1 and PV2, finalized in 2015, and the Altay project's official completion in 2016.[93]   On 10 March 2021, BMC, the Turkish contractor responsible for the production of Altay tanks, made a decision to import engines and transmissions from South Korea to address production delays. Seven months later, on 22 October 2021, South Korea’s DAPA approved the export of Hyundai Doosan Infracore (now HD Hyundai Infracore) DV27K engines and SNT Dynamics EST15K transmissions to Turkey. In August 2022, durability testing of the powerpack, combining the DV27K engine and EST15K transmission from South Korea, was successfully completed. Following this success, the first batch of Altay tanks will be produced using this Korean powerpack including engines from HD Hyundai Infracore and transmissions by SNT Dynamics. The tank is in production according to the Turkish media.[94] In 2025, mass production of the Altay tank officially started on 5 September, 2025.   b. Poland   In January 2020, Poland announced negotiations with Hyundai Rotem for license production of the K2 Black Panther for the Polish Army.   On 13 June 2022, the Polish Ministry of Defense announced that it had signed a memorandum of understanding (MOU) to buy at least 180 K2 tanks for the Polish military.   On 27 July 2022, the Polish Armaments Group (PGZ) and Hyundai Rotem signed a framework agreement to provide 180 K2s and 820 K2PLs. The contract included rapid arms supply and extensive technology transfer from South Korea. According to the contract, 180 K2s will be produced in South Korea and delivered to Poland starting in 2022, and 820 K2PLs will be produced in Poland under license beginning in 2026.[95]   On 26 August 2022, the first executive agreement worth $3.37 billion was signed to procure 180 K2s in Morąg in northern Poland. The contract included logistics packages, training programs, explosive reactive armor packages, 50,000 120 mm, 4.3 million 7.62 mm and 12.7 mm machine gun ammunition for the K2. Soldiers of the 16th Mechanized Division of the Polish Army were sent to South Korea in October 2022 to participate in the training program. The 180 K2 tanks will be delivered during the period of 2022-2025 and then be deployed to the 20th Mechanized Brigade, 15th Mechanized Brigade, and 9th Armored Cavalry Brigade in Poland.[96]   On 7 September 2022, PGZ and Hyundai Rotem signed a partnership agreement to develop and produce tanks, armored vehicles and ground unmanned systems. The contract included joint cooperation in building manufacturing facilities in Poland for the production and maintenance of 1000 K2 tanks and the production of K3 next-generation battle tanks. The facilities to be built in Poland will be used as a hub in Europe for the sale and maintenance of Hyundai Rotem’s armed vehicles and tanks.   On 5 December 2022, the first 10 K2 tanks arrived in Poland, just “six months” after the signing of the agreement. The tanks were delivered to the 20th Mechanized Brigade of the 16th Mechanized Division on 9 December 2022.   On 31 March 2023, the Polish Ministry of Defense signed a foundational agreement with Hyundai Rotem for a consortium to produce K2PL in Poznań.   6. The K9 Thunder (K 9 howitzer)   Service history In service K9: 1999–present K9A1: 2018–present Wars Bombardment of Yeonpyeong in South Korea Production history Designer ●     Agency for Defense Development (main developer) ●     Samsung Aerospace Industries (integration and production) ●     Kia Heavy Industry (main armament) ●     Dongmyeong Heavy Industries (turret and suspension) ●     Poongsan Corporation (ammunition) Designed 1989–1998 Manufacturer ●     Samsung Aerospace Industries (1998–2000) ●     Samsung Techwin (2000–2015) ●     Hanwha Techwin (2015–2017) ●     Hanwha Land Systems (2017–2019) ●     Hanwha Defense (2019–2022) ●     Hanwha Aerospace (2022–present) Unit cost 4 billion KRW (ROK Armed Forces, 2021) Produced K9: 1998–2018 K9A1: 2018–present No. built 1,900 (2025) Specifications Mass K9 & K9A1: 47 t (46 long tons; 52 short tons), combat K9A2: 48.5 t (47.7 long tons; 53.5 short tons), combat, with metal track Length Overall: 12 m (39 ft 4 in) Hull: 7.44 m (24 ft 5 in) Width 3.4 m (11 ft 2 in) Height 2.73 m (8 ft 11 in) Crew K9 & K9A1: 5 (commander, driver, gunner, assistant gunner, loader) K9A2: 3 (commander, driver, gunner) Maximum firing range 18 km (M107, HE) 30 km (M549A1, RAP/HE) 36 km (K310, BB/DP-ICM) 41 km (K307, BB/HE) 54 km (K315, LAP/HE) Sights Panoramic scope (manual mode) Safran MINEO DFSS (option) Armor POSCO MIL-12560H armor steel (South Korean produced variants only, after 2022) Bisalloy armour steel (foreign licensed variants, after 2022) Spall liner (option)  Plasan add-on armor (option) Main armament Hyundai WIA CN98 155 mm 52 caliber, 48 rounds Secondary armament SNT Dynamics K6 12.7x99 mm NATO HMG Engine STX Engine/MTU Friedrichshafen MT881Ka-500 8-cylinder water-cooled diesel engine 735 kW (1,000 hp) @ 2,700 rpm STX Engine SMV1000 8-cylinder water-cooled diesel engine 735 kW (1,000 hp) @ 2,700 rpm (available since 2024) Power/weight 21.3 hp/t (15.88 kW/t) Transmission SNT Dynamics/Allison Transmission X1100-5A3 4 forward, 2 reverse Suspension Mottrol/Horstman Hydropneumatic Suspension Unit (HSU)  Travel distance: ≤ 275 mm Dead weight: 40–45 kN Ground clearance 410 mm (16 in) longitudinal slope: 60 % lateral slope: 30 % vertical: 0.75 m trench: 2.8 m fording: 1.5 m Fuel capacity 850 L (225 U.S. gal) Operational range 360 km (220 mi) Maximum speed 67 km/h (42 mph) Figure 10: K9 Thunder (source: Wikipedia)   The K9 Thunder is a South Korean 155 mm self-propelled howitzer designed and developed by the Agency for Defense Development and South Korean corporations including Samsung Aerospace Industries, Dongmyeong Heavy Industries, Kia Heavy Industry, and Poongsan Corporation for South Korean Armed Forces. It is now manufactured by Hanwha Aerospace. K9 howitzers operate in groups with the K10 ammunition resupply vehicle variant.[97]   The entire K9 fleet operated by South Korean Armed Forces has undergone upgrades to K9A1, and a further upgrade variant K9A2 is now tested for production. As of 2022, the K9 series  had a 52% share of global self-propelled howitzer market.[98]   The K-9 Thunder is superior to the US self-propelled howitzer M109A6 Paladin or the British self-propelled howitzer AS90. The Chinese PLZ-05 has poor recoil and suspension functions as revealed in the released operating video. And the performance of the Russian 2S35 Kalitsa-SV has not been verified. Compared to the German PzH2000 (currently the world’s best self-propelled howitzer), the K-9 Thunder is a cost-effective alternative, offering a similar balance of performance, range, and mobility but at a lower price, making the K-9 a highly successful export system. The main differences between K-9 and PzH2000 lie in cost and performance. The PzH 2000 has been known for its superior automation and slightly higher firing rate, while the K9 Thunder boasts excellent mobility, a better cost-performance ratio, and seamless integration with its K10 ammunition resupply vehicle.[99]   For these reasons, as Table 4 shows, the K9 Thunders were exported to a number of countries such as Turkey, India, Norway, Poland, Finland, Estonia, Australia, Egypt, and Romania.   Table 4: Countries to which K9 howitzers have been exported and the number of units under contract, 2001-2024   Country Number of contract Year of exports Name of K 9 Turkey 280 2001 T-155 Firtina Poland   120 2014 Krab 212 2022 K9 152 2023 K9 India 100 2017 K9 Vajra-T Finland 96 2017 K9 Moukari Norway 28 2017 K9 VIDAR Estonia 36 2018 K9 Kou Australia 30 2021 AS9 Huntsman Egypt 2 trillion won   2022 K9A1EGY Romania 54 2024 K9 Tunet   (source: Hanwha Aerospace)   a. Turkey   In May 1999, the Ministry of Defense in South Korea ordered its military attaché in Turkey to arrange a presentation for K9 Thunder. Although Turkey showed interest in K9 Thunder, there was no business deals made as Turkey was planning to produce German Panzerhaubitze 2000 at that time. As Turkey’s plan to build PzH2000 eventually became halted by Germany, South Korea and Turkey signed MOU to strengthen their military and defense cooperation on 18 November, 1999.[100]   On 12 December, Turkey sent a team of military general and engineers to Korea to inspect K9 Thunder. Satisfied with the K9’s performance, Turkey cancelled its plan to find replacement from Israel, and decided to manufacture K9 Thunder. On 19 February 2000, a technology evaluation team from members of the Agency of Defense Development and Samsung was sent to Turkey and inspected various Turkish companies and facilities including Turkish 1010th Army Factory, MKEK, and Aselsan to optimize manufacturing process of K9 in Turkey. On 4 May 2000, the Ministry of Defense in South Korea and Turkish Land Forces Command signed a memorandum of understanding (MOU) to supply 350 K9 systems untill 2011.[101]   The prototype was finally assembled on 30 December 2000, and earned the nickname Firtina (Fırtına; Storm). Winter test was held in January and February 2001 at Sarıkamış, and Firtina was able to operate in snowy mountain terrain without issue.   A formal contract was signed by Samsung Techwin (formerly Samsung Aerospace Industries) and the Embassy of the Republic of Turkey in Seoul on 20 July 2001. South Korean government promised to transfer the technologies of the Agency for Defense Development to  Turky for free in exchange for Turkey’ purchase of 350 vehicles—280 for Turkish Land Forces and 70 for its future customer—by 2011, which the total is expected to be $1 billion. The first 24 T-155 Firtina consisted of Korean subsystems worth $65 million. The Turkish model was named T-155 Firtina.[102]   Hanwha Defense has generated more than $600 million from Turkey since then, much lower than expected. This is because Turkey produced fewer units than planned and because Turkey  increased its localization efforts gradually by indigenous research and from technology transfer.   b. India   On 25 March 2012, South Korean President Lee Myung-bak and the Indian Prime Minister, Manmohan Singh signed Memorandum of Understanding (MOU) to strengthen their economic and military ties. On 29 March 2012 at DEFEXPO, Samsung Techwin and Larsen & Toubro announced their partnership to produce the K9 Thunder in India. According to the agreement, Samsung Techwin will transfer key technologies, and the vehicle will be manufactured under license in India using 50 per cent of the domestic content such as FCS and communication system.[103]   Two units of K9 were sent to Thar Desert, Rajasthan for firing and mobility test, and competed against Russian 2S19. Operated by Indian military personnel, the K9 fired 587 Indian ammunitions including Nub round and drove a total distance of 1,000 km. Maintenance test was conducted at Pune, EMI (electromagnetic interference) test at Chennai, and technical environment test was held in Bengaluru until March 2014. K9 Thunder achieved all ROC set by Indian military while the Russian counterpart failed to do so. Hanwha Techwin (previously Samsung Techwin) later told in an interview that the Russian engine performance dropped when the air density is low and in high temperature, the placement of the engine also resulted in the center of the mass located at the rear, making the vehicle difficult to climb high angles. On the other hand, K9 benefitted from automatic control system of the engine, providing the optimum performance based on given condition automatically—this was one of the decisive reason why India selected K9 over 2S19.[104]   In September 2015, the Indian Ministry of Defense selected Hanwha Techwin and Larsen & Toubro as preferred bidder to supply 100 K9 Vajra-T to the Indian Army after K9 outperformed 2S19 Msta-S and passed two-year trial. On 6 July 2016, India agreed in purchasing 100 K9 Vajra-T for $750 million. On 29 March 2017, the Government of India approved budget of $646 million for purchasing 100 K9 Vajra-T. A formal contract of $310 million was signed between Hanwha Techwin and Larsen & Toubro in New Delhi on 21 April. According to the contract, Hanwha Techwin will supply first 10 K9 Vajra-T, and 90 K9 will be license produced in India by Larsen & Toubro.[105]   In May 2021, it was reported that India’s Defense Research and Development Organisation was working with Larsen & Toubro on a light tank using the K9 chassis with 105 mm or 120 mm gun system to counter China’s Type 15 tank.[106]   The Indian Army planned to order an additional 40 K-9 Vajra-T from Larsen & Toubro as of 2021 after completion of high altitude trials at Ladakh under cold climatic conditions. At that time, India was also looking to export the K9 Vajra-T variant to third countries in collaboration with South Korea and its industry partners.   As per a report in 2022, the Indian MoD could place a repeat order of 200 K9 Vajra-T worth ₹9,600 crore (equivalent to ₹100 billion or US$1.2 billion in 2023) after satisfactory performance of the guns at high altitude terrain.[107]   According to a report in May 2024, the clearance for next 100 units would be approved after the formation of a new government after Indian general election in 2024. The Cabinet Committee on Security cleared the purchase of 100 units on 12 December 2024.[108] The contract, worth ₹7,628.70 crore (US$900 million), was signed with Larsen & Toubro on 20 December 2024 in the South Block, New Delhi. The entire order is to be processed and delivered by the end of 2025. On 3 April 2025, Larsen &Toubro signed another contract with Hanwha Aerospace at $253 million to execute the order.[109]   c. Norway   In May 2015, Samsung Techwin joined the Norwegian artillery upgrade program to replace Norway’s M109Gs with 24 new systems, competing against the KMW Panzerhaubitze 2000, the Nexter CAESAR 6x6, and the RUAG M109 KAWEST. A single K9 was sent to Norway to join the competition. Operated by a sales team, the vehicle went through tests between November 2015 and January 2016. During the January winter test, the K9 was the only vehicle that managed to drive through meter-thick snow field and fire its weapon without any issue. Competing vehicles experienced engine troubles or broken parts.[110]   The K9’s engine was able to maintain heat overnight by simply covering the area with tarpaulin, a simple trick learned from operating experience, allowing the engine to ignite without failure the next day at an extremely cold temperature. The hydropneumatic suspension became a huge advantage for mobility, as its mechanism melted snow on mobility parts much quicker. The test result had also significant impact on Finland and Estonia to acquire K9, because the two nations were invited to observe performances for their artillery replacement.   In December 2017, a contract of $230 million was signed between Hanwha Land Systems and the Norwegian Ministry of Defense. According to the contract, Hanwha would supply 24 K9 Thunder and 6 K10 ARV by 2020. The K9 outperformed competitors in various weather and terrain conditions according to Norwegian military officials during trials.[111]   The Norwegian variant was named K9 VIDAR based on the K9A1 configuration. In November 2022, Norway decided to purchase 4 K9s and 8 K10s, increasing its total vehicles to 28 K9s and 14 K10s (2:1 ratio). The delivery was expected to be completed in 2 years.[112] In April 2025, it was announced that Norway plans to almost double its K9s by ordering an additional 24 K9s for about $534 million USD.[113]   d. Poland i) PK9 (AHS Krab with PK9 chassis)   In 1999, Poland joined NATO and launched a military program named Regina Project to replace its 152mm Soviet-era SPGs with the NATO standard 155 mm artillery system.   In December 2014, Samsung Techwin signed a cooperation agreement with Huta Stalowa Wola to supply modified K9 Thunder chassis for AHS Krab self-propelled howitzer. The deal is worth $310 million for 120 chassis, which includes related technology transfer and the power pack. From 2015 to 2022, 24 units were scheduled to be manufactured in South Korea, and 96 would be license produced in Poland. First chassis rolled out on 26 June 2015, and all 24 vehicles produced in South Korea were sent to Poland as of October 2016.[114]   Late in May 2022, the Polish government sent 18 AHS Krab howitzers to Ukraine to assist the Ukrainian military to defend against Russia during the Ukraine war. On 29 May, Polish minister of defense visited South Korea for high level talks about the purchase of various Korean weapons to increase AHS Krab production. On June 7, Poland and Ukraine signed a contract for the purchase of an additional 54 units plus support vehicles, in a deal worth US$700 million. The agreement was the largest defense contract that Polish defense industry had made.[115]   On 5 September 2022, Poland ordered 48 Krabs and other support vehicles for a value of PLN 3.8 billion zlotys (USD $797 million).   On 23 December 2024, the contract worth PLN 9 billion for 96 Krabs, command vehicles, command and staff vehicles, ammunition vehicles, and repair workshops was signed. The delivery for this batch was scheduled by the end of 2029.[116]   On 8 April 2025, Huta Stalowa Wola signed a ₩402.6 billion deal with Hanwha Aerospace to supply parts and power packs for 87 AHS Krabs between 2026 and 2028.   ii) K9PL   On 27 July 2022, Polish Armaments Group (PGZ) and Hanwha Defense signed a framework agreement to supply 672 K9PL. Hanwha Defense hoped to expand the deal by adding K10 ARV and K11 FDCV support vehicles. Poland was also expected to produce AHS Krab in parallel; however, due to the low production capability, the deliveries of the existing order will be completed by 2026. On 26 August 2022, an executive contract of $2.4 billion was signed to acquire 212 K9PL manufactured by Hanwha Defense as a Batch I order.  Under the contract, Hanwha is responsible for delivery of all 212 vehicles by 30 September 2026. Poland plans to build K9PL locally afterward via technology transfer for the Batch II. On 7 September, Hanwha Defense and WB Electronics signed a $139.5 million deal for installation of Polish communication systems on the Batch I order.[117]   The first 24 K9PL(GF) was rolled out on 19 October 2022. The delivery ceremony was held in Poland on 6 December. The first new K9PL began its construction in July 2023.[118]   On 1 December 2023, Poland and Hanwha Aerospace signed a $2.6 billion agreement for 6 Batch I K9PLs by 2025, 146 Batch II K9PLs between 2026 and 2027, and integrated logistics support for the howitzers and 155 mm ammunitions.[119]   On 4 April 2024, Hanwha Aerospace opened a European office in Warsaw and announced the integration of the K9 and Krab howitzer systems with cooperation from Huta Stalowa Wola to improve the operational and maintenance efficiency of the Polish military.   e. Finland   On 1 June 2016 at KDEC (Korea Defense Equipment & Component) industry fair, South Korea and Finland signed a MOU for defense cooperation including export of used K9. In July 2016, the Finnish Ministry of Defense announced that an undisclosed number of used K9s have been acquired from South Korea. In September 2016, K9 was field tested in Finland, and Seppo Toivonen, the commander of the Finnish Army, visited South Korea to inspect operating units during 2016 DX Korea. On 25 November 2016, two countries signed MOU to supply 48 used K9 for $200 million and match equal amount of free technology transfer related to vehicle maintenance.[120]   On 17 February 2017, the South Korean Ministry of Defense announced that Finland will acquire 48 used K9s over a period of seven years starting in 2018, with conscript training on the equipment begining in 2019. On 2 March 2017, final contract of value of €145 million ($160 million) was signed by two governments in Seoul, South Korea.[121]   On 21 October 2021, Finnish Ministry of Defense authorized exercising option to purchase 10 new vehicles including spare parts and supplies—5 in 2021 and another 5 in 2022—for €30 million, increasing the fleet size to 58 vehicles.[122]   On 18 November 2022 Finnish Minister of Defense Antti Kaikkonen authorized purchase of another 38 used vehicles for €134 million.   The official Finnish designation of the K9 howitzer is 155 PSH K9 FIN, colloquially called Moukari (meaning Sledgehammer).   On 4 March 2024, Millog, a Finnish company, signed a contract with the Finish Defense Force to upgrade 48 vehicles purchased in 2021 and 2022 at €8.1 million. The work is expected to be completed by 2030.[123]   f. Estonia   To reduce the cost for both nations, Finland invited Estonia to jointly procure the K9. In February 2017, Estonian military officials visited South Korea for price negotiations.   In June 2018, Rauno Sirk, the director of the Estonian military procurement agency, announced that Estonia would buy K9 Thunder howitzers. Hanwha Land Systems was to supply 12 used K9s for €46 million, which would cover maintenance, parts and training, as in the contract with Finland. In October 2019, the Estonian Ministry of Defense announced that it would exercise the option to purchase 6 additional K9s under the terms of this contract, at an estimated cost of €20 million.[124]   In August 2021, the Estonian Centre for Defense Investment (RKIK) signed a €4.6 million contract with Hanwha Defense and Go Craft to modernize 24 K9EST Kõu, hinting at purchasing 6 more for its inventory. The upgrade involves communication systems, a FCS, painting, fire suppression system, and electronics.[125]   In September 2022, it was reported that Estonia had purchased 24 vehicles in total. In October, the Estonian defense minister stated that Estonia would procure 12 additional K9s, bringing the total number up to 36 units. In November 2022, Go Craft opened Estonia's first private military workshop, and will start upgrading K9s. In January 2023, Estonia ordered 12 vehicles for €36 million, which will be delivered before 2026. The first Estonian edition by Go Craft was rolled out in February 2023.[126]   g. Australia   In August 2009, it was reported that the consortium of Samsung Techwin and Raytheon Australia had the upper hand for Australia’s Land 17 artillery replacement program by becoming a sole bidder, as KMW, the manufacturer of the competing Panzerhaubitze 2000, had not provided the detailed offering proposal that Australia requested.[127]   The K9 was sent to Australia and was evaluated by the Australian military starting in April 2010. The test included firing M982 Excalibur, a requirement which the K9 satisfied.   In June 2010, the K9 became the preferred bidder for the LAND 17 program, but the program was delayed. In May 2019, in the lead-up to the 2019 Federal Election, the Prime Minister of Australia, Scott Morrison, announced that 30 K9 howitzers and associated support equipment, including ten K10 ammunition resupply vehicles, would be acquired for the Australian Defense Forces. No time frame was given for the purchase.[128]   In September 2020, the Minister for Defense, Linda Reynolds, announced a request for tender to locally build 30 K9s under the Land 8116 Phase 1 Protected Mobility Fires requirement. The sole-source request for tender was released to the preferred supplier, Hanwha Defense Australia, to build and maintain 30 K9s and 15 K10s, as well as their supporting systems. These would be built at Hanwha Defense Australia's Geelong facility. Australian variant AS9 Huntsman was based on Norwegian K9 VIDAR.[129]   In December 2021, the Capability Acquisition and Sustainment Group (CASG) of Australia and Hanwha Defense Australia signed a formal contract of producing 30 AS9s and 15 AS10 AARVs under license at Hanwha Defense Australia facility in Geelong. The estimated value of the deal is $788 million, and manufacturing was expected to start in Q4 2024.[130]   Production of AS9 and AS10 began in June 2023. In July, Australian army conducted tests on ammunition compatibility at the Agency for Defense Development test center in South Korea. In August, another Israeli company Epsilor was selected to supply NATO standard 6T Li-ion batteries for the howitzer.[131]   On 28 March 2024, Hanwha Aerospace announced the beginning of assembly of two AS9s and one AS10 in Changwon. The remaining 28 AS9s and 14 AS10s will be built at H-ACE in Australia.   On 23 August 2024, Hanwha Aerospace invited Korean and Australian government officials for an opening ceremony of H-ACE. The factory will start mass production of AS9 and AS10 in 2024 and deliver all vehicles to the Australian Army by 2027.[132]   In December 2024, Hanwha Aerospace delivered two AS9 and one AS10 to Hanwha Defense Australia, and the Australian military received them in January 2025.   h. Egypt   In 2010, the K9 was evaluated by the Egyptian military to replace its aging artillery fleet. The regional instability resulting from the Arab Spring revolution caused the Egyptian government to postpone the replacing project indefinitely.   In April 2017, it was reported that Hanwha Techwin was again in negotiations with Egypt to export the K9 Thunder. Hanwha Techwin sent a K9 howitzer to Egypt in July and K9 test-fired at a range located west of Cairo in August, competing with the French CAESAR, Russian 2S35 Koalitsiya-SV, and Chinese PLZ-45. During the test, the K9 hit a target ship approaching to the shore, successfully performing an anti-access/area denial simulation against enemy ships for the Egyptian Navy.[133]   In October 2021, South Korea and Egypt discussed the sale of the K9 Thunder. The estimated value of the deal was $2 billion, including training of technicians.[134] In February 2022, South Korea's Defense Acquisition Program Administration (DAPA) announced that Hanwha Defense had signed a $1.6 billion K9 Thunder export contract at Egypt's Artillery House, attended by Egypt's Ministry of National Defense and key officials from both countries. According to the DAPA, the deal provided for the production of 200 K9A1EGY and 100 K10EGY in Egypt, including technology transfer. An unknown number of the earliest vehicles in the series were to be produced in South Korea and delivered to the Egyptian Army and the Egyptian Navy.[135]   The production of the first K9A1EGY was expected in Q4 2022. At a military parade on 25 October 2023, the Egyptian Army unveiled the K9A1EGY in service with the 4th Armored Division. On 1 July 2024, Egyptian media reported that the exact number of South Korean exports was 216 K9A1EGY, 39 K10, and 51 K11. Previously, Egypt received K9A1 and K10 vehicles with 1,000 horsepower Korean-made SMV1000 engines for testing purposes.[136]   On 5 October 2024, Arab Defense reported that the Ministry of Military Production in Egypt announced local manufacturing of the SMV1000 engine by the state-owned Helwan Casting Company, also known as Military Factory 9. In addition, Egypt worked with Hanwha Aerospace in transferring manufacturing technology and installing production lines. The Military 200 became the main manufacturer, and the Military 100 would produce the CN98 cannon and armored steel. Moreover, Egypt plans to become the regional center to export the K9 Thunder system to African and Arab countries, and the Minister of Military Production confirmed negotiations with a number of countries.[137]   i. Romania   On 26 September, 2022, Romanian media reported that the Romanian military was interested in purchasing K9 Thunder and K2 Black Panther. Romania also expressed interest in the K239 Chunmoo multiple rocket launcher and the K21 infantry fighting vehicle. In July 2023, it was reported that Romania planned to acquire 54 (3 systems of 18) K9 Thunders.[138]   On 19 June 2024, Romanian Defense Minister Angel Tîlvăr finally decided to buy 54 K9s worth ₩1.3 trillion ($920 million) during an official meeting with South Korean Defense Minister Shin Won-sik. The Romanian version is called K9 Tunet. The first 18 vehicles are expected to completely built at the Changwon factory in South Korea, while the rest will be assembled in Romania.   On 9 July 2024, Hanwha Aerospace signed the ₩1.3 trillion contract with the Romanian Ministry to supply 54 K9s and 36 K10s, including ammunition and support equipment packages. Hanwha will deliver the vehicle from 2027 in cooperation with a local defense company in Romania. Meanwhile, Hanwha will deliver 18 K9s and 12 K10s from South Korea.[139]   j. Vietnam   The negotiation for K9 Thunder began when Nguyễn Xuân Phúc, the president of Vietnam, visited South Korea for the 30th anniversary of diplomatic ties in 2022.   In March 2023, Vietnam’s highest military figure Phan Văn Giang and other officials showed interests in the K9 by visiting South Korean Army’s K9 operator unit and discussion with Hanwha Aerospace on the potential K9 procurement for the Vietnam military.[140]   In April 2024, it was reported that the Vietnam Ministry of National Defense has officially outlined the K9 procurement plan to its South Korean counterpart, with Korean officials  supporting the deal. 108 units was mentioned as the potential purchase number.   Vietnam confirmed the purchase on 11 August 2024 during Vietnam Prime Minister Tô Lâm's visit to South Korea.   7. The K239 Chunmoo (천무)   Service history In service 2015–present Production history Designer Agency for Defense Development (launcher)  Doosan DST (vehicle)  Hanwha (rocket)  Samyang Comtech (armor) Designed 2009–2013 Manufacturer ●     Hanwha Aerospace (2015–present) ●     Korea Defense Industry (2020–present) ●     Huta Stalowa Wola (2023–present) Unit cost ₩3.6 billion (US $2.94 million) per one launcher+K239L vehicle (2020) Produced 2014–present No. built 356/705 Variants Homar-K Specifications Mass 31 metric tons (31 long tons; 34 short tons) Length 9 meters (29 ft 6 in) Width 2.9 meters (9 ft 6 in) Height 3.3 meters (10 ft 10 in) Crew 3 (K239L launcher vehicle) 2 (K239T ammunition support vehicle) Caliber 131 mm (K33) 230 mm (KM26A2) 239 mm (CGR-080) 280 mm (CTM-MR/ASBM) 600 mm (CTM-290) Rate of fire 6 rds/in 30 sec (CGR-080) Effective firing range 36 km (K33) 45 km (KM26A2) 80 km (CGR-080) 160 km (CTM-MR/ASBM) 290 km (CTM-290) Armor Samyang Comtech Steel / Ceramic + Polymer Matrix Composites (STANAG 4569 Level 2) Main armament 20×2 K33 6×2 KM26A2 6×2 CGR-080 4×2 CTM-MR/ASBM 1×2 CTM-290 Engine HD Hyundai Infracore DV11K 6-cylinder water-cooled diesel engine  450 hp (340 kW) Power/weight 14.5 hp/t (10.81 kW/t) Transmission Allison Transmission 4500SP Fuel capacity 250 liters (66 U.S. gal) Operational range 450 km (280 mi) Maximum speed 80 km/h (50 mph) Guidance system GPS-aided INS Accuracy 9 m CEP (CTM-290) 15 m CEP (CGR-080)   Figure 11: K239 Chunmoo (source: Wikipedia)   The K239 Chunmoo(천무) is a rocket artillery system developed in 2013 to replace the aging K136 Kooryong(구룡) of the South Korean military. The K239 Chunmoo is a self-propelled multiple launch rocket system (MLRS) capable of firing several different guided or unguided artillery rockets. The Cheonmu has a maximum range of 80km, capable of striking North Korean coastal artillery positions near the Military Demarcation Line and even the Wonsan area. It can fire 12 rounds continuously per minute, striking 12 different targets.[141]   The Chunmoo is much better than US military’s HIMARS (High Mobility Artillery Rocket System) multiple rocket launcher in the ammunition capacity. The Chunmoo can fire up to 12 230mm guided missiles in single or burst bursts. Moreover, using 130mm pod-type ammunition (POD) of the same caliber as the Kooryong(구룡), the Chunmoo can fire 20 rounds per pod, for a total of 40 rounds simultaneously. It can also fire the US military’s 227mm MLRS ammunition. The wheeled Chunmoo launcher vehicle boasts excellent mobility, reaching a top speed of 80 km/h. It also has rapid response capabilities, capable of firing its first round within seven minutes of arriving at the firing point, and protection to ensure crew survivability. The Chunmoo boasts an excellent capability of carrying a wide variety of rocket types. The US Hymas, whose effectiveness was recently proven in the Ukraine war, can carry six rockets, while the ATACMS tactical ballistic missile can only carry a single rocket. However, the Chunmoo can fire 130mm rockets (36 rockets per pod), 227mm rockets (6 rockets per pod, two pods), and 230mm rockets (6 rockets per pod, two pods). Unguided 227mm rockets can travel up to 80km, while guided rockets can travel up to 160km, allowing them to strike all major North Korean military targets.[142]   The K239 Chunmoo(천무) were exported to United Arab Emirates, Saudi Arabia, and Poland.   a. United Arab Emirates (UAE)   In 2017, Hanwha Defense announced at ADEX (Aerospace & Defense Exhibition) in Seoul that it had signed a nondisclosure contract worth 700 billion won to export K239 Chunmoo to a certain country in the Middle East. Later it was revealed that the United Arab Emirates signed a supply contract with Hanwha Defense, including 12 K239 Chunmoos, 12 K239T Ammunition Support Vehicles, GPS-guided rockets, and munitions. In February 2021, 12 K239 Chunmoo systems and 12 K239T Ammunition Support Vehicles were delivered to the United Arab Emirates.[143]   b. Saudi Arabia   At the World Defense Show in Riyadh, Saudi Arabia, on March 9, 2022, Hanwha signed a defense export contract worth 1 trillion won ($800 million) with the Saudi Arabian Ministry of Defense, but details of the contract were not known. It was later confirmed on 31 March 2023 that an unknown number of Chunmoo was in service by the Royal Saudi Land Forces. As in the case of UAE, it is presumed that Saudi Arabia has signed a non-disclosure contract.[144]   c. Poland   On 27 August 2022, Polish defense minister, Mariusz Błaszczak, said that there were ongoing negotiations to acquire South Korea’s rocket artillery system. On 13 October 2022, Polish Armament Agency announced that the negotiations with South Korea to acquire nearly 300 K239 Chunmoo systems had been completed and the framework agreement was signed on October 17. Poland had originally intended to procure 500 American M142 HIMARS launchers, but such an order could not be fulfilled in a satisfactory timeline, so decision was made to split the HIMARS order into two stages, buying less of them and adding Chunmoo procurement. A supply contract for 288 Chunmoo MLRS mounted on Jelcz 8x8 chassis and equipped with Polish TOPAZ Integrated Combat Management System along with 23 thousand missiles with the range of 80 and 290 kilometers was signed in Poland on October 19, 2022.[145] On 20 August 2023, first Homar-K (Polish version of Chunmoo), which completed system integration and testing in South Korea, was deployed to the 18th Mechanized Division of the Polish Land Forces in Poland.[146]   8. FA- 50     General information Type T-50: Advanced trainer jet  TA-50: Lead-in fighter-trainer  FA-50: Light Strike-fighter  FA-50 Block 20: Multirole light fighter National origin South Korea Manufacturer Korea Aerospace Industries  Lockheed Martin Status In service Primary users Republic of Korea Air Force Iraqi Air Force  Royal Thai Air Force  Indonesian Air Force Number built 200 (all models) History Manufactured 2001–present Introduction date February 22, 2005 First flight August 20, 2002 Figure 12: FA-50 (source: Wikipedia)   The FA-50 is a light combat aircraft manufactured by Korea Aerospace Industries (KAI) for South Korean Air Force (ROKAF). It is a light combat version of the T-50 Golden Eagle supersonic advanced jet trainer and light attack aircraft.   FA-50 aircraft can carry a weapons load of up to 4.5t. The aircraft can be armed with AIM-9 Sidewinder short-range air-to-air missiles, AGM-65 Maverick air-to-ground tactical missiles (AGM), GBU-38/B Joint Direct Attack Munitions (JDAM), CBU-105 Sensor Fused Weapon (SFW), Mk-82 Low Drag General Purpose (LDGP) bombs and Cluster Bomb Units (CBUs).[147]   The aircraft is also mounted with an internal, three-barrel 20mm Gatling gun and LAU-3/A 19-tube 2.75″ rocket launcher for firing Folding-Fin Aerial Rockets (FFAR). The wide range of weapon systems aboard the FA-50 jet allows it to counter multiple threats in today’s complex battlefield scenario.[148]   The FA-50 platform will be integrated with Lockheed Martin’s Sniper advanced targeting pod (ATP), which is an electro-optical targeting system encased in a single, lightweight pod. It will expand the capabilities of FA-50 with two-color laser spot tracking (LST), high-definition, forward-looking infrared (FLIR), and the Global Scope™ sensor software suite for non-traditional intelligence, surveillance and reconnaissance (NTISR) missions.[149]   The FA-50 can be externally fitted with Rafael’s Sky Shield or LIG Nex1’s ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve its electronic warfare, reconnaissance, and targeting capabilities. Other armaments include SPICE multifunctional guidance kits, Textron CBU-97/105 Sensor Fuzed Weapon with WCMD tail kits, JDAM, JDAM-ER for more comprehensive air-to-ground operations, and AIM-120 missiles for BVR air-to-air operations. FA-50 has provisions for, but does not yet integrate, Python and Derby missiles, also produced by Rafael, and other anti-ship missiles, stand-off weapons, and sensors to be domestically developed by Korea. The South Korean military is reviewing whether to arm the FA-50 with a smaller version of the Taurus KEPD 350 missile to give it a stand-off engagement capability of 400 km (250 mi). European missile maker MBDA’s Meteor and ASRAAM medium and short-range air-to-air missiles are also reportedly available for integration on the FA-50.[150]     Currently FA-50 is operational in South Korea, Indonesia, Iraq, Philippines, Thailand, Poland, and Malaysia. a. South Korea In 2011, the first squadron with the TA-50, the T-50’s light attack variant, became operational with the South Korean Air Forces. In 2014, the FA-50 was officially deployed by the South Korean Air Forces with President Park Geun-hye officially leading a ceremony during which a flight demonstration was held showing its capabilities. 20 FA-50s was assigned its own Air Force wing. 60 FA-50s were ordered by South Korean Air Forces. On October 9, 2014, an FA-50 successfully test fired an AGM-65 Maverick at a stationary target, a retired ship.[151] b. Indonesia Indonesia had been considering the T-50, along with four other aircraft, to replace its BAE Systems Hawk Mk 53 trainer and OV-10 Bronco attack aircraft. In August 2010, Indonesia announced that T-50, Yak-130 and L-159 were the remaining candidates for its requirement for 16 advanced jet trainers. In May 2011, Indonesia signed a US$400 million contract for 16 South Korean T-50s, designated T-50i. They feature weapons pylons and gun modules, enabling light attack capabilities. Deliveries began in September 2013 and the last aircraft were delivered in January 2014.[152]   In July 2021, KAI confirmed that it has been awarded a US$240 million contract to supply another batch of six T-50s along with a support and logistics package. c. Iraq   Iraq first publicly expressed interest in the T-50 trainers during the Korea–Iraq summit in Seoul on February 24, 2009. In December 2013, Iraq signed a contract for 24 T-50IQ aircraft, a FA-50 variant, plus additional equipment and pilot training over the next 20 years. The first batch of aircraft was delivered in March 2017, while the second batch arrived in May 2018. However, none were flown until June 2022, following the negotiation of a maintenance, logistics and training contract with KAI in November 2021.[153]   d. Philippines   The Philippine Air Force (PAF) chose 12 TA-50s to fulfill its requirement for a light attack and lead-in fighter trainer aircraft. In January 2013, state media reported that the FA-50 variant, not the TA-50 as previously reported, was selected for procurement. On March 28, 2014, the  Department of National Defense in the Philippines signed a contract for 12 FA-50 fighters worth P18.9 billion (US$421.12 million).[154] Deliveries began in November 2015, all 12 aircraft were delivered by May 31, 2017. On January 26, 2017, two PAF FA-50PHs conducted a nighttime attack on terrorist hideouts in Butig, Lanao del Sur in Mindanao, the first combat sorties flown by these aircraft.[155]   e. Thailand   In September 2015, the Thai government chose Korean T-50TH for its air force over the Chinese Hongdu L-15 to replace its aging L-39 Albatros trainers. In July 2017, the Thai government approved the procurement of eight more aircrafts. Deliveries began in January 2018. The Royal Thai Air Force’s 2024 White Paper outlined a plan to acquire two more T-50TH aircraft in the fiscal year 2025. This acquisition will bring the total number of aircraft in squadron 401 to 16.[156]   f. Poland   On July 22, 2022, Polish Defense Minister Mariusz Blaszczak announced in a press interview that Poland would purchase 48 FA-50 fighter jets. KAI officially signed a contract with the Polish government on July 28 for 12 FA-50GF (Gap Filler) Block 10 aircraft and 36 FA-50PL (Polish version) Block 20 aircraft.[157] Blaszczak stated that KAI’s ability to quickly deliver aircraft was a decisive factor in the selection. The Russian invasion of Ukraine in 2022 required the Polish Air Force to urgently replace its remaining MiG-29 fighters and Su-22 attack aircraft. However, the United States was unable to supply additional F-16s in such a short timeframe. The FA-50PL contract was awarded for an aircraft version still under development. The FA-50PL is an improved version of the basic FA-50 designed to meet Poland’s specific requirements. Many of these requirements, including the sniper targeting pod, GBU-12 bombs, KGGB guided bombs, and aerial refueling probes, had already been tested and integrated onto the FA-50 platform prior to the Polish order. Other integration plans for the FA-50PL, such as the Phantom Strike AESA radar and Link-16 datalink, were considered challenging, primarily in terms of timing, but not technically impossible.[158] The FA-50PL will be integrated with modern air-to-air missiles such as the AIM-9X Sidewinder and AIM-120 AMRAAM. The FA-50 is a light fighter aircraft similar in size to the F-16. While the FA-50 has limited combat capabilities, it is not without the capabilities and can carry and use certain weapons.[159] The FA-50’s training role has been compared to the Italian M-346 AJT. While the M-346 can simulate a wider range of virtual weapons, it is more expensive to operate than the FA-50. Unlike the M-346, the FA-50 can also be used for training against live targets and has unique combat capabilities. g. Malaysia   On February 24, 2023, KAI announced the signing of a $920 million deal with the Malaysian Ministry of Defense for the purchase of 18 FA-50 Block 20 for the Royal Malaysian Air Force’s light combat aircraft (LCA) and fighter in-lead trainer (FLIT) tender, which is intended to replace the Aermacchi MB-339 and Hawk Mk 108/208 currently in service.[160] The FA-50 was in competition with the Indian HAL Tejas, Italian Alenia Aermacchi M-346 Master, Turkish TAI Hürjet, Chinese Hongdu L-15, Russian Mikoyan MiG-35, and Sino-Pakistani JF-17 Thunder. On May 23, 2023, Malaysia signed a $920 million final contract with KAI to purchase 18 FA-50 Block 20s. KAI officials said Malaysia is willing to order 18 more FA-50s later.[161] 9. The KP-SAM Chiron (신궁)   Service history In service 2005–present Production history Designer Agency for Defense Development  LIG Nex1 Designed 1995–2004 Manufacturer LIG Nex1 Unit cost €2.6 million (2023) Produced 2004–present Specifications Mass Total: 19.5 kg (43 lb) Missile: 15 kg (33 lb) Length 1.68 m (5.5 ft) Diameter 80 mm (3.1 in) Crew 2 (If based from a tripod), 1 (If held) Maximum firing range 7 km (4.3 mi) Warhead 720 Tungsten balls] Warhead weight 2.5 kg (5.5 lb) Engine Solid fuel rocket Flight ceiling 4 km (13,000 ft)] Maximum speed Mach 2.5 (851 m/s; 3,060 km/h) Guidance system Infrared homing Figure 13: KP-SAM Chiron (source: Wikipedia)     The KP-SAM Chiron (신궁) is a South Korean shoulder-launched surface-to-air missile manufactured by LIG Nex1. The KP-SAM Chiron was created to protect South Korean troops in the forward area, which started in 1995 under the direction of LIG Nex1.  The KP-SAM began production in 2004 with extended trials in early 2005.[162]   In late 2005, the KP-SAM entered service with the South Korean Army, after development for nearly 8 years.   The KP-SAM was marketed in 2012 for India’s modernization of their VSHORAD system, competing with the RBS 70, the Starstreak, the Mistral-2 and the SA-24.[163]   In 2014, Indonesia bought the KP-SAM for integration with the Skyshield 35 mm anti-aircraft system.[164]   While the KP-SAM missile system externally resembles a French Mistral system, the entire missile systems including the seeker, control section, warhead and motor were developed and manufactured in South Korea. The missile features integrated IFF systems, night and adverse weather capabilities, a two-color (IR/UV) infrared seeker to aid in negating infrared countermeasures (IRCM) and a proximity-fuse warhead. During development tests, the missile scored a 90% hit ratio.   According to Agency for Defense Development officials, the KP-SAM is superior to the American FIM-92 Stinger or the French Mistral in hit probability, price and portability. the KP-SAM had been involved in a missile test where its missile made impact on a low-flying target as high as 3.5 kilometers with a speed of 697.5 m/s (more than Mach 2.36) and a distance range of 7 km.[165]   The KP-SAM Chirons are operational in South Korea, Indonesia, Romania. Indonesian Air Force acquired and operated Chirons since 2014 which was integrated with Oerlikon Skyshield 35 mm anti-aircraft gun system. Additional 2 Chirons were transferred to Indonesia according to a 2019 SIPRI small arms report.[166] First systems of 54 KP-SAMs were delivered to Romania in June 2024. The KP-SAM Chirons have been operational in South Korean army since 2005.     IV. Conclusion   This paper provided an overview of South Korean defense industry and its major military weapons that have been exported to Middle Eastern countries. The paper also explained major military weapons that have the potential to be exported to Middle Eastern countries. The future for South Korean defense industry looks bright because of its advanced technology and fast delivery amid ongoing conflicts in Ukraine and Middle East.References[1] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.” Korea JoongAng Daily. 29 July 2025.[2] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”[3] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”[4] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”[5] “S. Korean defense giants set to surpass 100 trillion won in combined orders.”  Jung Han-kook, Kim Seo-young.  The Chosun Daily. May 6, 2025.[6] “S. Korea’s defense giants surpass 100 tn won in backlog defense giants set to surpass 100 trillion won in combined orders.”  Han Ye-na, Jung Han-kook, Kim Seo-young. The Chosun Daily. August 19, 2025. [7] “S. Korea’s defense giants surpass 100 tn won in backlog defense giants set to surpass 100 trillion won in combined orders.”  Han Ye-na, Jung Han-kook, Kim Seo-young.[8] “S. Korea’s defense giants surpass 100 tn won in backlog defense giants set to surpass 100 trillion won in combined orders.”  Han Ye-na, Jung Han-kook, Kim Seo-young.[9] “4 major defense firms set to report robust results in Q1.” The Korea Times. April 20 2025.[10] “4 major defense firms set to report robust results in Q1.”[11] Amid global tensions, Korea’s arms exports hit all time high. Kan Hyeong-woo. The Korea Herald. April 17, 2025.[12] Amid global tensions, Korea’s arms exports hit all time high.   [13] SIPRI Fact Sheet March 2025, p. 11[14] SIPRI Fact Sheet March 2025, p. 12[15] Amid global tensions, Korea’s arms exports hit all time high. Kan Hyeong-woo. April 17, 2025 [16] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”  [17] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.”[18] “As tensions rise in the Middle East, Korea spies opportunity for K-defense exports.” [19] “Hanwha Aerospace inks US$250 mln K9 howitzer supply deal with Vietnam: sources.” Kim Seung-yeon. Yonhap News Agency. August 14, 2025.[20] “Hanwha Aerospace inks US$250 mln K9 howitzer supply deal with Vietnam: sources.”[21] “Hanwha Aerospace inks US$250 mln K9 howitzer supply deal with Vietnam: sources.”[22] “Hanwha Aerospace inks US$250 mln K9 howitzer supply deal with Vietnam: sources.” Kim Seung-yeon. Yonhap News Agency. August 14, 2025.[23] “Middle East may turn to Korean defense industry as conflict rages.” Korea JoongAng Daily. June 16, 2025.[24] Amid global tensions, Korea’s arms exports hit all time high. Kan Hyeong-woo. The Korea Herald. April 17, 2025.[25] For more information, see https://armyrecognition.com/news/defense-web-tv/vision-2030-and-saudi-arabias-military-industry-insights-from-world-defense-show[26] “Saudi Government announces 19.35% localization of military spending,” Akhbma News. 21 Nov 2024.[27] Nora Albekeiri, “From Importer to Innovator: Saudi Arabia’s 5 Major Shifts in the Defense Industry.” Aug 27, 2025. For more information, see https://tascoutsourcing.sa/en/insights/from-importer-to-innovator-saudi-arabia-s-5-major-shifts-in-the-defense-industry.[28] “Saudi Arabian Military Industries (SAMI): Fueling the Growth of Saudi Defense Industry,” Albert Vidal. https://gulfif.org/saudi-arabian-military-industries-sami-fueling-the-growth-of-saudi-defense-industry/[29] “Riyadh, Seoul strengthen defense ties with quality assurance deal.” Arab News. February 18, 2025.[30] “Sharpening the EDGE: How the UAE Plans to Out-Innovate its Rivals,” John Calabrese. https://gulfif.org/sharpening-the-edge-how-the-uae-plans-to-out-innovate-its-rivals/[31] “UAE Transitions from Arms Importer to Competitor with the West.” Robert Czulda. Stimson Center. February 26, 2025.[32] “UAE Transitions from Arms Importer to Competitor with the West.”  [33]“Strategic defence industry partnership with the United Arab Emirates.” 19 September 2025. https://www.4ig.hu/strategic-defence-industry-partnership-with-the-united-arab-emirates[34] “UAE Transitions from Arms Importer to Competitor with the West,” Robert Czulda. Stimson Center. February 26, 2025.[35] The “Middle East may turn to Korean defense industry as conflict rages,” Korea JoongAng Daily. 16 Jun. 2025.[36] “LIG Nex1 wins $2.78 bil. deal to export missile defense system Cheongung-II to Iraq.”  The Korea Times. Sep 20, 2024.[37] “South Korea to Upgrade Indigenous KF-21 Into Stealth Fighter,” Inder Singh Bisht. The Defense Post. 15 September 2025.[38] The “Middle East may turn to Korean defense industry as conflict rages,” Korea JoongAng Daily. 16 Jun. 2025.[39] Pike, John. "Cheolmae II / Cheongung (Iron Hawk) M-SAM Medium Surface to Air Missile". www.globalsecurity.org.[40] Cheongung – a New MR-SAM for the South Korean Multi-Tier Defense System - Defense-Update.com, 17 December 2011.[41] "South Korean air force retires last MIM-23 HAWK SAM systems". Jan’s Information Group. 16 July 2021.[42] Kim, Byung-wook (21 February 2021). "LIG Nex1 heads to IDEX 2021, knocks on Middle East market". The Korea Herald. [43] Lee, Michael (17 January 2022). "UAE to buy Korean air defense system for $3.5 billion". Korea JoongAng. Daily[44] Arthur, Gordon (7 February 2024). "Saudi Arabia signs $3.2B deal for South Korean air defense systems". Defense News.[45] Osborne, Tony (20 September 2024). "Iraq Acquiring KM-SAM II Systems". Aviation Week.[46] Kim, Brian (18 January 2022). "South Korea inks largest arms export deal with UAE for missile interceptor". Defense News.[47] “South Korea enhances air defense shield with M-SAM improvements.” Stephen W. Miller. August 2025 https://www.asianmilitaryreview.com/2025/08/south-korea-enhances-air-defence-shield-with-m-sam-improvements-foc/[48] “Cheongung air defense system upgraded to intercept ballistic missiles.” Yonhap News Agency. July 28, 2025.[49] “South Korea enhances air defense shield with M-SAM improvements.”[50] For more information, see https://www.asianmilitaryreview.com/2025/08/south-korea-enhances-air-defence-shield-with-m-sam-improvements-foc/[51] 천궁Ⅱ 막강전력 배치·천궁Ⅲ 개발 개시…한국 방공망 ‘게임 체인저’ 박정한, 글로벌이코노믹. 2025-08-09[52] “S. Korea kicks off development of advanced M-SAM defense system.” Kim Hyun-soo. Yonhap News Agency. September 19, 2025.[53] "KAI and Eurocopter reveal the Surion". Shepard. 2009-07-31.[54] Govindasamy, Siva. "PARIS AIR SHOW: Korea Aerospace to roll out utility helicopter prototype in July." Flight International, 14 June 2009.[55] Francis, Leithan. "PICTURES: Korea Utility Helicopter makes first flight." Flight International, 16 March 2010.[56] "Korea Utility Helicopter demonstrates capabilities." Korea Times, 22 May 2010.[57] "History." KAI, Retrieved: 23 June 2016.[58] "KAI and Eurocopter reveal the Surion". Shepard. 2009-07-31.[59] Waldron, Greg. "KAI eyes export market for Surion." Flightglobal.com, 30 October 2013.[60] KAI readies to boost Surion production in 2016 - Flightglobal.com, 23 October 2015[61] For more information, visit the website of KAI. https://www.koreaaero.com/EN/Business/KUH1.aspx [62] For more information, see https://www.koreaaero.com/EN/Business/KUH1.aspx[63] South Korean defense industry and energy companies have had great outcomes from President Yoon's state visit to Vietnam...Signing many agreements with Vietnamese corporations]. Aju News Vietnam (in Vietnamese). Retrieved 2023-06-27.[64] "KAI signs 130 billion won deal to export Surion helicopters to Iraq". Chosun. 23 December 2024. [65] Roblin, Sebastien (13 April 2021). "Korea's New KF-21 Jet Isn't A Stealth Fighter—But Could Evolve Into One". The National Interest.[66] "KF-X Fighter: Korea's Future Homegrown Jet". Defense Industry Daily. 17 November 2017.[67] "South Korea unveils prototype of homegrown KF-X fighter jet". Defense News. 9 April 2021.[68] "[20분 핵심 정리]FA-50이 밀고 KF-21이 당기는K-방산 수출액은? 밀당백25회 | 국방홍보원". KFN Plus. 14 July 2025.[69] “2 new stealth fighter jets will expand who's in the world's top air forces.” Benjamin Brimelow. May 3, 2025, Business Insider[70] “Hanwha Systems rolls out AESA radar for South Korea’s KF-21 jet.” August 7, 2025. Airforce Technology.[71] “2 new stealth fighter jets will expand who's in the world's top air forces.” Benjamin Brimelow. May 3, 2025, Business Insider[72] “Military signs contract with KAI and Hanwha to deliver 40 KF-21s by 2028.” Kim Ji-hwan. Chosun Biz. June 26, 2005.[73] For more information, see https://www.aerosociety.com/news/south-korea-bets-big-with-kf-21/[74] “South Korea’s F-35? KF-21 Boramae To Become 5th-Generation Stealth Fighter.” Stephen Silver. September 12, 2025. National Security Journal.[75] “Hanwha Systems delivers first AESA radar for KF-21 fighter jet in Korea,” Park Sung-woo. 2025.08.06. Chosun Biz.[76] For more information, see https://namu.wiki/w/KF-21%20%EB%B3%B4%EB%9D%BC%EB%A7%A4)[77] "Egypt emerges as new market for Korean arms exports". The Korea Times. 9 August 2022.[78] Park, Hyunmin (31 January 2024). "South Korea offers Saudi Arabia joint work on a new generation combat aircraftThis text comes from MILMAG Military Magazine."[79] [Yang Nakgyu’s Defence Club] Will South Korea Join Hands with Saudi Arabia to Develop a Sixth-Generation Fighter Jet? Yang Nakgyu. 29 July 2025. Asia Business Daily[80] Lee, Minji (16 April 2025). "S. Korea, UAE ink deal on cooperation on KF-21 jets."[81] "이영수 공군총장, UAE국방차관과 우정 비행 실시". Financial News (in Korean). 7 August 2025. [82] Gady, Franz-Stefan (18 June 2019). "South Korea's First-of-Class KSS-III Attack Sub Begins Sea Trials."[83] "KSS-III (Jangbogo–III-class) diesel-electric attack submarine". Thediplomat.com.[84] “Hanwha Ocean cuts steel of third KSS-III Batch-II Submarine.” Naval News. October 30, 2024.[85] “Hanwha Ocean cuts steel of third KSS-III Batch-II Submarine.” Naval News.[86] “Hanwha Ocean cuts steel of third KSS-III Batch-II Submarine.” Naval News. October 30, 2024.[87] “Hanwha Ocean cuts steel of third KSS-III Batch-II Submarine.” Naval News. October 30, 2024.[88] Freebairn, Tom (2025-05-21). "South Korea Pitches $18 Billion Submarine & Arms Deal to Canada Amid US Tensions". Defense Security Monitor. [89] Naval News Staff (2025-08-26). "Canada down selects two shipbuilders for future Canadian Patrol Submarine Project."  [90] For more information, see "Abrams i Czarna Pantera kontra rosyjskie T-14 i T-90M". Default (in Polish). 2023-01-23.[91] Kim Moon-kyung (27 September 2014). “K2 전차 실전배치 후 첫 공개 -- 백발백중.” YTN.[92] For more detailed information, see Wikipedia https://en.wikipedia.org/wiki/K2_Black_Panther[93] “Altay National Main Battle Tank of Turkey”. Globalsecurity.org. 5 February 2022.[94] Jung Seong-taek (6 February 2015). 파워팩 논란 K2전차 "전력화 이상무"... 1.2km 떨어진 표적지에 '쾅쾅'. The Dong-A Ilbo.[95] Kim Yeon-suk (27 July 2022). 폴란드 "한국에 K2 1천대·FA-50 3개편대·K-9 600문 주문"(종합2보).[96] Shin Jun-myeong (27 August 2022). 폴란드와 K2 전차·K9 자주포 7조6천억 규모 계약 체결. YTN.  [97] Kim Minseok (6 March 2022). 8년전 우크라 때리자 꽂혔다...세계최강 K9자주포 진화 이유 [김민석 배틀그라운드]. JoongAng Ilbo. [98] 한화그룹, 대우조선해양 인수로 국내 유일 육·해·공 전문 방산기업으로 '우뚝'. 뉴스투데이, Retrieved 28 September 2022.[99] For information, see https://english.defensearabia.com/dominating-the-battlefield-the-worlds-most-advanced-self-propelled-artillery-systems-2025/[100] 한-터키 국방장관 방산협력 협의. Yonhap News Agency. 18 November 1999. [101] 국산 K9자주포 첫 수출...터키에 1조3000억 규모. The Dong-A Ilbo. 20 July 2001.[102] "[K9 34회·끝] 터키형 자주포 화력시범 대성공". Kookbang Ilbo. Archived from the original on 8 December 2022.[103] "L&T, Samsung join hands for India's Howitzer artillery". The Economic Times. 29 March 2012.[104] "K9 자주포 & 해외수출 Q&A". Defense Today. 7 May 2020.[105] "K-9 자주포 100문 인도 수출 확정...3500억 규모". Newsis. 21 April 2017.[106] Philip, Snehesh Alex (14 June 2021). "India sets eyes on Russian Sprut light tanks to counter China, gets rare access to trials". The Print. [107] Unnithan, Sandeep (23 January 2022). "What's behind a massive order for Made-in-India howitzers". India Today.[108] "CCS clears Rs 20,000 crore Make in India projects for Su-30 fighter jets, 100 K-9 howitzers - The Economic Times". m.economictimes.com. Retrieved 12 December 2024.[109]  "Indian Army accelerates artillery modernisation with indigenous systems". India Today. 13 January 2025.[110] Com, Segye (20 February 2018). 손재일 한화지상방산 대표 "K-9, 해외마케팅 강화. Segye Ilbo.[111] 김귀근 (21 December 2017). 한화, K-9 자주포 24문 노르웨이에 수출 계약...2천452억원 규모(종합). Yonhap News Agency.[112] 박희준 (9 November 2022). 노르웨이, K9 4문·K10 8대 추가 수입...K9 수입량 총 28문. 더팩트 (in Korean).[113] Ruitenberg, Rudy (4 April 2025). "Norway to nearly double its K9 howitzer fleet for around $534 million". Defense News.[114] 한화테크윈, 폴란드에 K9 자주포 96대 수출(종합). Yonhap News Agency. 15 December 2016.[115] "Poland to sell 60 AHS Krab self-propelled howitzers to Ukraine". Ukrinform. 2 June 2022.[116] "한화에어로스페이스, 폴란드에 4000억원대 자주포 부품 공급". Hanwha Aerospace. 8 April 2025.[117] [단독] 한화디펜스, 폴란드 방산업체와 '1920억원 규모' 통신 시스템 공급계약 체결. www.theguru.co.kr (in Korean). 8 September 2022. [118] 한화 김동관 폴란드行...한국선 K9 자주포 조립 개시. Money Today (in Korean). 14 July 2023.[119] MBC경남 NEWS (31 October 2024). [K-방산] K9자주포, K2전차 동시 폴란드 수출 선적 현장 포착..전차 180대 자주포 1차 212문, 2차 152문도 이렇게 납품됩니다.[120] "K-9 자주포, 핀란드 수출 양해각서 체결". Daily NTN. 23 November 2016.[121] "K-9 자주포 핀란드 수출계약 체결, 48문 1.45억 유로 규모". Republic of Korea. 2 March 2017.[122] 박원석 (9 September 2024). 서울대 '2024 한-핀란드 이노베이션 포럼: 떠오르는 민/군 겸용 기술' 개최. Veritas Alpha (in Korean).[123] "Millog sai lisätilauksen Puolustusvoimilta K9-panssarihaupitsien käyttökuntoon saattamisesta". Millog (in Finnish). 4 March 2024. [124]  한화디펜스, 에스토니아에 K9 자주포 6대 추가 수출. Global Economics (in Korean). 25 October 2019.[125] 한화디펜스, 에스토니아 'K9 자주포' 현대화 사업 수주. www.theguru.co.kr (in Korean). 5 August 2021.[126] [단독] 한화에어로, 에스토니아와 'K9 자주포' 12문 추가 계약 ... 3600만 유로. Global Economics [Newdaily] (in Korean). 17 January 2023[127] "K-9 자주포 호주 수출 유력". Seoul Shinmun. 4 August 2009.[128] Bergmann, Kym (June 2019). "Australian Army to receive massive boost in firepower with 155mm SPH purchase". Asia-Pacific Defence Reporter. 45 (5): 12–16.[129] Kuper, Stephen (2 September 2020). "Government announces request for tender for Army Protected Mobile Fires". Defence Connect. [130] "S. Korea to export 30 units of K-9 howitzer to Australia under W930b deal". The Korea Herald. 13 December 2021.[131] 호주, K9 자주포에 이스라엘산 전력 시스템 장착. 한스경제 (in Korean). 22 August 2023. [132] 강지용 (23 August 2024). 한화에어로스페이스, 호주 방산 생산기지 완공…국내 첫 해외 생산. 파이낸셜포스트 (in Korean).[133] Helou, Agnes (1 February 2022). "Why did Egypt choose to buy South Korea's K9 howitzer?" Defense News. [134] 남수현 (12 October 2021). 박병석, 이집트 대통령 만나 세일즈 외교.  JoongAng Ilbo (in Korean). [135] 한화디펜스, 이집트와 K9 자주포 2조원 규모 수출 계약...'역대 최대 규모'. 파이낸셜투데이 (in Korean). 3 February 2022.[136]  MBC경남 NEWS (1 July 2024). 국산 파워팩 자주포 탑재 첫 수출.[137] "Egypt produces the advanced Korean K9 Thunder engine locally". Arab Defense. 5 October 2024.[138] “루마니아, 한국의 K9자주포와 K2흑표전차 구매 희망”. Global Economics (in Korean). 27 September 2022.[139] Seo Ji-eun; Lee Hay-june (10 July 2024). "Korea to export K9 howitzers to Romania in nearly $1 billion deal". Korea JoongAng Daily. [140] "Vietnam outlines intent to procure K9 howitzer". Janes.com. Janes Information Services. 24 April 2024.[141]  Park Soo-chan (30 May 2021). "사거리 최대 80km ... 축구장 3개 면적 '초토화' [한국의 무기 이야기]". Segye Ilbo.[142] For more information, see Park Soo-chan (22 October 2022) “하이마스보다 낫다” 전면전 공포에 각국, 천무 다연장로켓 '주목' [박수찬의 軍] | 세계일보 https://www.segye.com/newsView/20221021509773[143] "South-Korean Chunmoo K239 MLRS rockets/missile launcher to enter in service with UAE". Army Recognition. 8 April 2021[144] "Saudi military unveils Chun-Moo MRLs". Janes Information Services. 4 April 2023 [145] "K239 Chunmoo launchers will increase the deterrence potential of the Polish Army". Defence Industry News. 19 October 2022.[146] Gil So-yeon (20 August 2023). "'K-239 천무' 폴란드 상륙…예정보다 12일 지연". The guru. [147] South Korea plans to arm its FA-50 light combat fighters with new variant of the Taurus missiles, December 8, 2015, at the Wayback Machine – Airrecognition.com,[148] FA-50 Expanded Weapons and Avionics Archived January 12, 2016, at the Wayback Machine.[149] For more information, see https://www.airforce-technology.com/projects/fa-50-light-combat-aircraft-south-korea/[150] "MBDA To Show New Munitions in Singapore". Archived from the original on February 7, 2018. [151] "The Chosun Ilbo (English Edition): Daily News from Korea – Korea Deploys Home-Grown FA-50 Fighter Jets". Archived from the original on February 8, 2015[152] Waldron. "Indonesia receives first pair of T-50i advanced jet trainers." Archived December 3, 2013, at the Wayback Machine.[153]   Iddon, Paul (June 27, 2022). "Korean T-50 Jets Could Enhance Iraq's Air Campaign Against ISIS". Forbes.[154]  "KAI won a contract to export 12 FA-50s to the Phil" (Press release). Korea Aerospace Industries, LTD. (KAI). March 28, 2014.  [155]  "TV Patrol: DND, kinumpirma ang ugnayan ng ISIS at teroristang grupo sa Pilipinas". ABS-CBN News. January 26, 2017.   [156] "Delivery of T-50TH trainer jets to Thailand begins". Seoul. Yonhap News Agency. January 8, 2018. [157] KAI signs US$3 bln deal with Poland to export 48 FA-50s". Yonhap News Agency. July 28, 2022.[158] "Świadoma tego wszystkiego polska strona wciąż parła do stworzenia lepszej wersji FA-50 PL, wpisując na listę życzeń trudne do zrealizowania wymogi.".  The Furious Fafik. August 10, 2025.[159] "Korzystając z tego, że już utopiłem 9,90 zł w subskrypcję Onet Premium". The Furious Fafik. August 10, 2025.[160]  Waldron, Greg (February 24, 2023). "FA-50 wins Malaysia's light combat aircraft competition". Flight Global.[161] Akhil Kadidal (May 23, 2023). "LIMA 2023: KAI says Malaysia keen to order 18 additional FA-50s". Janes Information Services. [162] Shin In-ho (5 November 2018). "[신궁 1회] 승리의 믿음 K-PSAM 신궁". Defense Media Agency.[163] "VSHORAD – India's Next Big Air Defense Program". April 2012.[164] "Indonesia might buy more Chiron MANPADS systems from South Korea | November 2018 Global Defense Security army news industry | Defense Security global news industry army 2018 | Archive News year". 13 November 2018.[165] "Chiron". www.deagel.com. Retrieved 2015-04-08.[166] For more information, see www.smallarmssurvey.org.