Subscribe to our weekly newsletters for free

Subscribe to an email

If you want to subscribe to World & New World Newsletter, please enter
your e-mail

Defense & Security
President Donald Trump Speaks During Cabinet Meeting in the Cabinet Room of the White House, Washington, DC on December 2, 2025

Opinion – The Mearsheimer Logic Underlying Trump’s National Security Strategy

by Mark N. Katz

The recently released Trump Administration’s National Security Strategy (NSS) has upended what had been the decades-long consensus about American foreign policy. Most notable in it is the Trump Administration’s prioritization of the Western Hemisphere as an American security concern, its deemphasis on defending America’s traditional European allies, its identification of China as far more of a threat than Russia, and its determination not to be drawn into conflicts in the Middle East and Africa. But while the 2025 Trump Administration National Security Strategy breaks with much of previous American foreign policy, the logic behind it is not something completely new. Even though the document makes no mention of him, the policy outlined in the NSS comports with what John Mearsheimer described in his influential book, “The Tragedy of Great Power Politics”, which was first published in 2001 and updated in 2014. In his book Mearsheimer declared that no nation has ever achieved global hegemony. According to Mearsheimer, America is the only country that has achieved predominant influence in its own region (the Western Hemisphere) and has also been able to prevent any other great power from dominating any other region. Mearsheimer wrote, “States that achieve regional hegemony seek to prevent great powers in other regions from duplicating their feat. Regional hegemons, in other words, do not want peers” (2014 edition, p. 41). Trump’s 2025 National Security Strategy has, whether knowingly or not, adopted these aims as well. It discusses the various regions of the world in the order of their priority for the Trump Administration: the Western Hemisphere first, followed by Asia (or Indo-Pacific), Europe, the Middle East, and lastly Africa. With regard to the Western Hemisphere, the NSS unambiguously calls for the restoration of “American preeminence in the Western Hemisphere,” and states, “We will deny non-Hemispheric competitors the ability to position forces or other threatening capabilities, or to own or control strategically vital assets, in our Hemisphere.” This is very much in keeping with what Mearsheimer described as America being a regional hegemon in the Western Hemisphere. As for the other four regions of the world, though, the Trump Administration seeks either to prevent any other great power from becoming predominant — or it doesn’t see this as a possibility that needs to be worried about. According to the NSS, the Middle East was a priority in the past because it was the world’s most important energy supplier and was a prime theater of superpower conflict. Now, however, there are other energy suppliers (including the U.S.) and superpower competition has been replaced by “great power jockeying” in which the U.S. retains “the most enviable position.” In other words: the Trump Administration does not see any other great power as able to become predominant in this region which is now less strategically important than it used to be anyway. Similarly, the NSS does not see any other great power as even seeking to become predominant in Africa. The NSS thus sees America’s main interests there as mainly commercial. By contrast, China is seen as a threat in the Indo-Pacific region. The NSS, though, discusses Chinese threats in the economic and technological spheres before turning to the military one. A continued U.S. military presence in the region is seen as important for preventing Chinese predominance. But Japan, South Korea, Taiwan, and Australia are all enjoined by the NSS to increase their defense spending in order to counter this threat. The NSS also identifies “the potential for any competitor to control the South China Sea” as a common threat that not only requires investment in U.S. military capabilities, “but also strong cooperation with every nation that stands to suffer, from India to Japan and beyond.” Unlike the Middle East and Africa, then, the NSS does identify a rival great power as striving for predominance in the Indo-Pacific region. Countering it, though, is not seen as just being America’s responsibility, but also that of other powerful states in the region. The strangest section in the 2025 NSS is the one on Europe. While acknowledging that “many Europeans regard Russia as an existential threat,” the NSS envisions America’s role as “managing European relations with Russia” both to “reestablish conditions of strategic stability” and “to mitigate the risk of conflict between Russia and European states.” This is very different from the decades-long U.S. policy of seeing America’s role as defending democratic Europe against an expansionist Soviet Union in the past and Putin’s Russia more recently. Indeed, the NSS’s claim that the European Union undermines “political liberty and sovereignty” and its welcoming “the growing influence of patriotic European parties” (in other words, anti-EU right wing nationalist ones) suggests that it is not Russia which the Trump Administration sees as a rival, but the European Union. The 2025 NSS does call for a “strong Europe…to work in concert with us to prevent any adversary from dominating Europe.” The NSS, though, seems to envision the European Union as either greater than or equal to Russia in threatening to dominate European nations. In his book, Mearsheimer did not envision the European Union as a potential great power rival to the U.S. Indeed, there isn’t even an entry for it in the book’s index. The way that the NSS envisions the world, though, comports with how Mearsheimer described America’s great power position: predominant in the Western Hemisphere and able to prevent any other great power from becoming predominant in any other region of the world. Mearsheimer, though, is a scholar who described the position in the world that he saw the U.S. as having achieved and which would seek to maintain. The 2025 NSS, by contrast, is a policy document laying out how the Trump Administration believes it can best maintain this position. And there is reason to doubt that it has done so realistically. Keeping non-Hemispheric great powers out of the Western Hemisphere will not be easy when there are governments there that want to cooperate with them. Further, devoting American resources to being predominant in Latin America when this will be resented and resisted could not only take away from America’s ability to prevent rival great powers from becoming predominant in other regions, but could counterproductively lead Latin American nations than have already done so to increase their cooperation with external great powers which the Trump Administration wants to avoid. Further, the Trump Administration’s efforts to reduce the influence of the European Union runs two risks: the first is that such an effort will succeed, but that the rise of anti-EU nationalist governments throughout the old continent results in a Europe less able to resist Russian manipulation and incursion. The second is that Trump Administration efforts to weaken the European Union backfire and result not only in a Europe united against American interference but unnecessarily emerging as a rival to the U.S. It would be ironic indeed if pursuing the NSS’s plan for upholding what Mearsheimer described as America’s ability to predominate over the Western Hemisphere combined with an ability to prevent any rival from predominating over any other region ended up undermining America’s ability to do either.

Defense & Security
Dugu beach, Donghae-myeon, Nam-gu, Pohang-si, South Korea - October 1, 2021 : South Korean Navy Jangbogo submarine at Dogu Coast for 2021 Armed Forces Day

Development of South Korea’s Submarines and Future Prospects

by World & New World Journal Policy Team

In the 21st century, the maritime security environment in Northeast Asia is changing more rapidly than ever, with information superiority and covert operational capabilities at sea emerging as core components of national security. At the heart of this shift lies the submarine force, which possesses both strategic deterrence and surveillance/reconnaissance capabilities. As China, Japan, and North Korea advance their submarine technology, South Korea finds itself in a situation demanding independent maritime strategic assets to counter these developments. The Republic of Korea Navy (ROKN) submarine force, which initially relied on foreign technology, has now grown into a submarine technology powerhouse capable of indigenous design and construction. The introduction of the KSS-III Dosan Ahn Changho-class submarine, in particular, has equipped South Korea with SLBM operational capability and advanced AIP (Air-Independent Propulsion) and electric propulsion technology, establishing a strategic-level submarine force.  This technological advancement not only strengthens national defense but also elevates the international status of the Korean defense industry, leading to enhanced export competitiveness. Concurrently, amidst the military expansion of surrounding countries, the need for nuclear-powered submarines (SSNs)—which offer far greater strategic survivability and sustained operational capability—is being raised in South Korea. Despite the high cost, the SSN is a strategic asset that provides overwhelming stealth, range, and operational endurance in the long run.  This article will comprehensively examine the importance and technical characteristics of submarines, followed by an analysis of South Korea's submarine force development, its international standing, and comparisons with neighboring countries. Furthermore, it will explore the implications of the nuclear submarine acquisition debate for South Korea's future security strategy. 1. The Importance of Submarines  The submarine is an extremely important weapon system in the defense industry from strategic, technological, and economic perspectives.  1) Strategic Deterrence and Control: Submarines act as a strategic deterrent to covertly check the enemy's maritime activities and protect a nation's sea lines of communication and security. The strategic deterrence of a submarine is based on its 'stealth' and 'lethality'.  - Stealth (Psychological Pressure): A submarine can move and be deployed secretly underwater without being exposed to the enemy, placing psychological pressure on the enemy's maritime operations and strategic weapon deployment during peacetime. Because it is extremely difficult for an attacking enemy to predict or neutralize the submarine's location, the enemy always harbors the fear of a potential strike. - Lethality (Retaliatory Capability): If the enemy attempts an actual invasion or provocation, the submarine can conduct a sudden and precise strike with high-power weapons like torpedoes or missiles. Specifically, a Strategic Nuclear Submarine (SSBN), equipped with strategic weapons like the SLBM (Submarine-Launched Ballistic Missile), provides a 'second-strike capability' to retaliate against the opponent's core targets at any time. - Maximizing Deterrence: The mere existence of strategic submarines maximizes the 'psychological deterrent effect', making the enemy's political and military leaders hesitate to initiate an attack. Due to the nature of submarines being covertly deployed anywhere in the ocean, the enemy is constantly exposed to threats, making it difficult to attempt military provocations recklessly. In essence, the core principle of strategic deterrence is the creation of a 'deterrence effect through uncertainty', combining the submarine's covert and unpredictable operational methods, its powerful striking capabilities, and the psychological fear it instills.  2) Enhancing National Defense and Economic Effects: The development of advanced submarines is central to a nation's naval power. It enhances defense self-reliance by securing indigenous design and construction technologies and promises enormous economic benefits through overseas exports. - Asymmetric Warfare Power: With its stealth and lethality, the submarine wields the most potent deterrent force and asymmetric warfare effect among all maritime forces. When surface fleet power is relatively insufficient, an advanced submarine can effectively check large enemy vessels or aircraft carriers and deny access to maritime domains. - Advanced Mission Capabilities: Advanced submarines are deployed for various missions, including long-duration submerged operations, strategic surprise, and special warfare support, utilizing cutting-edge technologies like next-generation guided missiles and sophisticated sonar/navigation systems that make detection and tracking difficult. - Increased Defense Industry Competitiveness: When advanced submarines are developed and operated with indigenous technology, it not only boosts the nation's defense industry capacity and technological self-reliance but also significantly increases related industry development and economic effects. In short, the advanced submarine is the qualitative and strategic linchpin of national naval power, encompassing defense, offense, intelligence deterrence, and the securing of cutting-edge technology. 3) Driving Advancement in Overall Defense Technology: The development of highly sophisticated weapon systems (e.g., SLBMs, advanced sonar, low-noise technology, etc.) also promotes the advancement of overall cutting-edge defense technologies. - SLBM Development: Developing SLBMs is not just missile technology; it complexly requires materials engineering to withstand the extreme pressure of the underwater launch environment, precise guidance systems, and miniaturized propulsion technology. The technology secured during this process naturally transfers to other fields, such as space launch vehicles and precision strike weapons. - Advanced Sonar Technology: The process of increasing the precision of underwater acoustic detection advances capabilities in signal processing, AI-based pattern recognition, and big data analysis. Such technology can also be utilized in civilian sectors, including marine resource exploration, underwater communication, and seismic detection systems. - Low-Noise Technology Development: The ripple effect of low-noise technology development is even greater. Vibration reduction in propulsion systems, special hull coatings, and hydrodynamic optimal design enhance the competitiveness of the shipbuilding industry as a whole. Propeller noise reduction technology, in particular, contributes to improving the fuel efficiency of commercial vessels and protecting the marine ecosystem. Furthermore, the process of developing these advanced technologies fosters high-level research personnel, strengthens industry-academia-research cooperation networks, and promotes the domestic production of materials, components, and equipment. Consequently, the single weapon system of a submarine has the effect of elevating the nation's overall scientific and technological capabilities to the next level. 4) High Competitiveness and International Credibility: The limited number of nations capable of manufacturing submarines ensures high competitiveness and international credibility in the global defense market. Currently, only about 12 countries are capable of independently designing and building submarines: the U.S., Russia, China, the U.K., France, Germany, Sweden, Italy, Spain, India, Japan, and South Korea. This technical rarity offers several strategic advantages. - Favorable Negotiation Power: Due to the high barrier to entry, a limited supplier market is formed, securing favorable negotiation power during exports. - Proof of Overall Defense Technology: Submarine construction capability serves as proof of comprehensive defense technology, raising the credibility of other weapon systems. South Korea, in particular, has demonstrated strengths in technology transfer and localization by successfully achieving domestic production after introducing German technology. This establishes South Korea as an attractive partner for middle-power countries that desire advanced submarines but find self-development difficult. The interest shown by nations like Indonesia and the Philippines in South Korean submarines is within this context. - Sustainable Economic Effects and Strategic Ties: Submarine projects lead to long-term follow-up businesses, including maintenance, upgrades, and crew training, ensuring sustained economic effects and strengthening strategic ties between nations. As such, the submarine is considered a core capability of the defense industry in terms of national security, industrial competitiveness, technological innovation, and economic benefits. 2. Technical Characteristics of Submarines The technical characteristics of submarines can be broadly divided into three key domains: stealth and survivability, propulsion and power systems, and weapons and combat systems. 2.1. Stealth & Survivability This is the technology area most directly tied to the fundamental purpose of submarines. In underwater environments, radar (radio-wave detection) cannot be used, so detection relies on sonar (sound-wave detection). While radar can detect surface targets from up to 500 km, sonar detection of a quiet, stealthy submarine is typically limited to around 30 km. - Acoustic Quieting Technology is essential for avoiding enemy sonar detection. Submarine noise reduction involves suppressing mechanical noise (machinery vibration), flow noise, structural vibration, and propeller noise through an integrated set of technologies. This is not just a matter of equipment but a comprehensive quieting process that spans the entire lifecycle of a submarine—from design and manufacturing to operation and maintenance. - Non-Acoustic Stealth Technology minimizes physical signatures other than sound—such as magnetic fields, heat/infrared emissions, radar/optical reflections, and surface disturbances—to prevent detection by non-acoustic sensors. Figure 1. Dosan Ahn Chang-ho class (Jangbogo-III) sonar system (Source: Hanwha Ocean) 2.2. Propulsion & Power System This system is key to determining a submarine's range and submerged operational endurance. It is broadly divided into conventional (non-nuclear) and nuclear propulsion. 1) Conventional Submarines (Diesel-Electric) - Diesel-Electric System: This is the traditional method where a diesel engine powers a generator to charge batteries, and an electric motor provides propulsion. It is favored for its cost-effectiveness and quietness, making it the standard for small and medium-sized submarines. However, because the diesel engine requires oxygen from the atmosphere, the submarine must periodically surface or use a snorkel, which severely limits continuous submerged endurance (to a maximum of about 3 days). Submarines equipped with the latest Lithium-ion batteries can extend this submerged time up to 7 days. - Air-Independent Propulsion (AIP): An innovative technology that produces power underwater without relying on an external oxygen supply. The main types include the Fuel Cell (PEMFC), Stirling Engine, and Closed-Cycle Diesel. AIP is used in conjunction with the diesel-electric system and significantly extends submerged endurance, often up to 3 weeks. Because it is cheaper than nuclear power while offering high strategic value, many nations have adopted it. - Hybrid Propulsion System (Cutting-Edge Technology): The integrated operation of three systems—the diesel generator, Fuel Cell AIP (Air-Independent Propulsion), and Lithium-ion batteries—allows for continuous submerged operation for up to 4 weeks. South Korea's Dosan Ahn Changho-class (KSS-III) utilizes the integrated operation of these three systems: a diesel generator, Fuel Cell AIP, and Lithium-ion batteries. Excluding nuclear power, the current cutting-edge technology is considered to be the Fuel Cell AIP + Lithium-ion battery hybrid system. Each propulsion system is selected based on operational range, mission sustainability, cost-effectiveness, and technological sophistication. South Korea is actively pursuing the development of next-generation submarines that combine both AIP and Lithium-ion battery technologies. However, the maximum continuous submerged endurance (up to 4 weeks) is only achievable when operating at low speeds (5–10 knots, or approx. 9–18 km/h). When operating at maximum speed (around 20 knots, or approx. 37 km/h), the battery consumption is extremely high, causing the submerged time to sharply decrease: - Older Submarines: Can sustain maximum speed for only 1–2 hours. - Li-ion/AIP Submarines: Can sustain maximum speed for 3–6 hours. After high-speed maneuvering, the submarine requires snorkeling for recharging, which significantly increases the risk of detection by the enemy. Figure 2. Dosan Ahn Chang-ho class (Jangbogo-III) lithium battery system (Source: Hanwha Ocean) Figure 3. Dosan Ahn Chang-ho class (Jangbogo-III) fuel cell AIP system (Source: Hanwha Ocean) 2) Nuclear-Powered Submarines (SSN/SSBN) Nuclear-powered submarines use nuclear fission reactors to generate steam, which drives turbines and provides virtually unlimited propulsion. Because they do not require refueling for months, their submerged endurance and operational range are effectively unlimited, enabling them to operate anywhere in the world. Only a small group of states—including the United States, Russia, China, the United Kingdom, France, and India—possess such submarines. Nuclear propulsion is used in both strategic ballistic missile submarines (SSBN: nuclear-powered submarines equipped with ballistic missiles carrying nuclear warheads) and nuclear-powered attack submarines (SSN: fast attack submarines powered by nuclear reactors). However, nuclear submarines are extremely expensive to build and operate, require large hull sizes (especially SSBNs), and demand sophisticated reactor noise-management technologies. Compared to conventional submarines, nuclear submarines can operate at much higher sustained speeds for long periods. Their average top speed is typically 25–30 knots (46–55 km/h), while specialized Soviet/Russian designs such as the Alfa-class have demonstrated speeds exceeding 40 knots in trials. This makes nuclear submarines more than twice as fast as most conventional submarines, with the added advantage of being able to maintain high speeds for extended durations without limitations. 2.3. Weaponry & Combat Systems This category encompasses the submarine’s offensive capabilities and intelligence-gathering functions. Submarine weapons and combat platforms can be divided into four major types: 2.3.1. Launch Weapons Launch weapons are categorized as follows: - Torpedoes: Underwater weapons fired from a submarine’s horizontal launch tubes, used to attack underwater targets such as other submarines, surface ships, and mines. - Missiles: This includes anti-ship missiles (ASM) and sea-launched cruise missiles (SLCM) designed to strike surface or land targets. Some missiles are launched through Vertical Launch Systems (VLS). - Nuclear Weapons: The primary example is the SLBM (Sea-Launched Ballistic Missile), equipped with a nuclear warhead. These form the core of a nation’s strategic nuclear deterrence capability. Table 1. Types of Launch Weapons Table 2. Ballistic/Guided Missiles Table 3. Submarine-Launched Weapon Systems Figure 4. Weapon systems of the Dosan Ahn Chang-ho–class (Jangbogo-III): Torpedoes/Mines (Horizontal Launch) and Missiles (Vertical Launch) (Source: Hanwha Ocean) Figure 5. Vertical Launch System of the Dosan Ahn Chang-ho–class (Jangbogo-III) (Source: Hanwha Ocean) 2.3.2. Underwater Drones / Unmanned Underwater Vehicles (UUV/AUV) Unmanned Underwater Vehicles (UUVs) and Autonomous Underwater Vehicles (AUVs) are unmanned underwater platforms deployed from submarines. They can perform missions such as intelligence collection, reconnaissance, mine detection, and even underwater attacks. In the latest technology trends, AUVs serve as important auxiliary assets for submarines, used for tasks such as detecting specific targets, locating and neutralizing naval mines, and tracking enemy submarines. Figure 6. Combat Unmanned Underwater Vehicle (Source: Hanwha Ocean) 2.3.3. Electronic Warfare Systems A submarine’s electronic warfare (EW) systems defend against enemy detection through electronic surveillance countermeasures. By transmitting deceptive or disruptive signals, these systems help conceal the submarine’s presence and significantly enhance survivability. Capabilities such as electronic deception, electronic jamming, and counter sonar/radar measures enable the submarine to evade enemy tracking and maintain strategic advantage. In addition, electronic attack (EA) capabilities can inflict direct damage on enemy military assets by disrupting or degrading their electronic systems. 2.3.4. Naval Mines Naval mines are explosive devices used by submarines to block enemy sea routes or hinder the approach of surface vessels. Submarines can deploy underwater mines or launch them from dedicated systems, allowing them to disrupt maritime traffic and defend against the movement of hostile fleets through area denial tactics. 3. Economic Impact of Submarine Strategy Submarine capabilities are not only crucial for military security but also represent a high-value industry that generates substantial direct and indirect economic effects for the nation. 3.1. Direct Industrial Impact (Manufacturing and Employment) Submarine construction is a highly technology-intensive, large-scale project, creating significant economic effects for the shipbuilding and defense industries: • Development of high-value shipbuilding: Submarines require extremely high precision and complex construction within much tighter spaces than commercial ships. The construction process itself represents the pinnacle of shipbuilding technology, directly enhancing the competitiveness and qualitative growth of the shipbuilding industry. • Job creation: Building a single submarine involves thousands of workers over several years, from design and component production to final assembly and sea trials, creating a large number of highly skilled technical jobs. • Activation of component and partner industries: Submarines consist of numerous precision components (sonar systems, propulsion units, special alloys, batteries, etc.), which stimulates supply chains largely composed of small and medium-sized defense companies and elevates technological capabilities across the sector. 3.2. Indirect Economic Impact (Security and Exports) The existence of a submarine fleet generates invisible economic benefits and opportunities: • Reduction of national security costs: Submarines are one of the most effective tools of asymmetric deterrence — a military strategy where a country at a disadvantage in conventional forces or numbers neutralizes an adversary’s attack intentions and deters war through unique and unpredictable means. Maintaining submarine capabilities helps prevent potential economic damages in crises (trade disruptions, destruction of industrial facilities) and raises the cost of potential aggression, effectively reducing national security expenditures. • Protection of sea lines of communication (SLOCs): As a highly trade-dependent nation, Korea relies critically on maritime routes. Submarines deter hostile naval forces threatening these routes during crises and protect major trade arteries, ensuring the continuity of economic activity. • Opportunities for defense exports (K-Defense): o Demonstrating Korea’s ability to independently design, build, and operate submarines (Dosan Ahn Changho-class / Jangbogo-III KSS-III) establishes technological credibility in global markets. o This capability generates high-value defense export opportunities, not only for the submarines themselves but also for related components, maintenance, and training systems (Korea has already exported submarines to Southeast Asia). In conclusion, submarine capabilities serve as a form of national security insurance while fostering domestic advanced technology industries and opening export markets, providing significant economic value as a future growth engine. 4. History of South Korea’s Submarine Forces Although the history of the Republic of Korea Navy’s submarines is relatively short, it has made significant leaps in both independent technological development and force enhancement. The following outlines the chronological development and progress of Korea’s submarine forces. Figure 7. Timeline of Submarine Acquisition and Operations of the Republic of Korea. Note: SSM: Submersible Ship Midget (small submarine), KSS: Korea Submarine System (the systematic development plan for the ROK Navy’s submarine force) 4.1. Early Stage (1975–1990): Direct Acquisition of Cosmos-class and Foundation of Submarine Forces Starting in 1975, the ROK Navy acquired seven small Italian-made Cosmos-class submarines (70-ton class) for intelligence missions and special operations, laying the foundation for Korea’s underwater capabilities. These submarines were primarily used for special operations, such as special forces infiltration, mine-laying, and intelligence gathering, rather than as conventional warships. Crew members of the Cosmos-class submarines later became key personnel in the development of the Dolphin-class indigenous submarines in the early 1980s. 4.2. Formative Stage (1983–1991): The Dolphin-class Small Submarine Era In the beginning in 1977, the Agency for Defense Development (ADD) started developing a submarine modeled after Italy’s Cosmos-class. Construction took place at Tacoma Korea’s Masan Shipyard, and a total of three submarines were commissioned starting in 1983. This marked Korea’s first domestically built submarines, and the experience gained became the foundation for developing South Korea’s own underwater weapons. Based on operational results from the first submarine delivered in 1984, the second and third units were designed and built, being commissioned in 1990 and 1991, with reinforced pressure hulls and improved armament: SSM-051 1985 commissioned, 2003 decommissioned, SSM-052 1990 commissioned, 2016 decommissioned, SSM-053 1991 commissioned, 2016 decommissioned. The experience with the Dolphin-class played a critical role in advancing domestic submarine construction technology, serving as the stepping stone for the introduction and deployment of medium- to large-sized submarines. Table 4. Specifications of the Dolphin-class Submarines (Source: Namuwiki) 4.3. Development Stage (1992–2006): Introduction and Localization of the Jangbogo-class (Jangbogo-I) In 1987, the ROK Navy signed a contract with the German company HDW for three Type 209 submarines (license for design acquisition), officially launching the Jangbogo-class (KSS-I) 1,200-ton program. Among these, one submarine was delivered as a complete unit from Germany in 1992, while the other two were assembled and constructed at Daewoo Shipbuilding & Marine Engineering’s Okpo shipyard using imported German parts, delivered in 1994 and 1995 respectively. Subsequently, six additional submarines were built, bringing the total to nine in service by 2001. This program was not merely an import project; the core goal was to transfer German technology and secure domestic assembly and construction capabilities. It laid the foundation for Korea’s submarine technology independence and advanced development. Leveraging the experience gained from constructing the Jangbogo-class, Daewoo Shipbuilding & Marine Engineering (DSME) signed a contract in 2011 to build three 1,400-ton submarines for Indonesia. Known as the DSME1400, these submarines are named the Nagapasa-class in the Indonesian Navy, marking Korea’s advancement in export capabilities. Table 5. Specifications of the Jangbogo-class Submarine (Source: Namuwiki). Note: A batch refers to a group of submarines of the same model built in series, with incremental performance improvements applied in each production run. Table 6. Development Stages of the Jangbogo-Class Submarine 4.4. Leap Period (2007–2020): Son Won-il Class (Jangbogo-II) and AIP Technology In 2000, the Republic of Korea Navy signed a contract with Germany’s HDW to acquire three Type-214 submarines under a design-license arrangement, launching a full-scale 1,800-ton Son Won-il–class program with Hyundai Heavy Industries. The first submarine, Son Won-il, was delivered in 2007, and an additional six submarines were subsequently built by Hyundai Heavy Industries and Daewoo Shipbuilding & Marine Engineering (DSME). The key feature of the Son Won-il class is its AIP (Air Independent Propulsion) system, which uses fuel cells to allow submerged operations for 2–3 weeks without surfacing. Construction was divided between Hanwha Ocean (formerly DSME) and HD Hyundai Heavy Industries. The vessels are named Son Won-il, Jeong Ji, An Jung-geun, Kim Dae-geon, Hong Beom-do, Yu Gwan-sun, Yun Bong-gil, Ahn Chang-ho, and Baekdusan. Table 7. Specifications of the Son Won-il Class Submarines (Source: Namuwiki) Table 8. Development Stages of the Son Won-il-Class Submarine   Over time, the armament and electronic systems have progressively advanced. Below is a simplified cross-sectional diagram of the HDW Type 214, which was used as a reference for the construction of the Son Won-il class submarines. The diagram helps to easily understand the complex internal structure by showing the main components. Here, the Fuel Cell Plant represents the AIP (Air Independent Propulsion) technology. Figure 8. Simplified cross-section of the Type 214 Submarine (Source: TKMS) Figure 9. Cross-section of the Son Won-il-class Submarine (Source: Defense Mirror) 4.5. Independent Period (2021–Present): Dosan Ahn Chang-ho Class (Jangbogo-III) Indigenous Design Achievements of Complete Domestic Design In December 2012, the Defense Acquisition Program Administration (DAPA) signed a contract with Daewoo Shipbuilding & Marine Engineering (DSME) for the construction of two Dosan Ahn Chang-ho class submarines. The contract amount for the two submarines was approximately 1.675 trillion KRW (1.14 billion USD). The project was based on the construction experience of the Jangbogo-class and Son Won-il-class submarines, as well as the technology transferred from HDW and the experience in developing the DSME-1400 submarine (Nagapasa-class submarine) based on the Type 209 design. Dosan Ahn Chang-ho (launched in August 2021) is the first submarine fully designed, built, and equipped with its own weapon systems by South Korea. It has a displacement of 3,000 tons, making it a large submarine. It is the first in the world to be equipped with lithium-ion batteries, enabling long-term submerged operations without the need for an AIP system. Strategic Weapon Deployment Capability The most notable feature of the Dosan Ahn Chang-ho class is the vertical launch system (VLS) with 6 launchers (Batch-II will have 10 launchers), which allows the operation of the Hyunmoo-4-4 submarine-launched ballistic missile (SLBM). This capability is considered the most powerful strategic strike capability among non-nuclear nations. Currently, the Dosan Ahn Chang-ho, Kim Jong-seo, and Yun Bong-gil have been commissioned, with a total of 9 submarines planned: 3 from Batch-I, 3 from Batch-II, and 3 from Batch-III. Table 9. Specifications of the Dosan Ahn Chang-ho Class Submarine (Source: Namuwiki)   The following is information on the improvement projects for Batch 2 and Batch 3. Table 10. Development Stages of the Dosan Ahn Chang-ho Class Submarine   Over time, the missile payload and electronic systems continue to evolve. Below is a cross-sectional diagram of the Dosan Ahn Chang-ho-class submarine, including a comparison of its size with the North Korean Romeo-class and the German Type 214 submarines. It also includes the proposed diagram by Daewoo Shipbuilding & Marine Engineering (now Hanwha Ocean) for the BrahMos missile-equipped version, which was part of their bid for the Indian next-generation submarine construction project. Figure 10. Cross-sectional Diagram of the Dosan Ahn Chang-ho-class Submarine (Source: Naval News) 4.6. Comparison of 3 Generations of ROK Submarines Table 11. Development Stages of South Korean Submarines 5. Exports and International Status The history of South Korean submarines follows a trajectory of introduction, indigenization, technological accumulation, advancement, and international expansion. In 2011, South Korea became the first Asian country to export submarines by selling three Jangbogo-class derivative Nagapasa-class submarines to Indonesia for 1.1 billion USD. Currently, South Korea owns 18 submarines, making it the 8th largest submarine-owning country in the world. When it comes to conventional (diesel-electric) submarines, South Korea is regarded as one of the top global powers, along with Germany and Japan. Current Submarine Power Rankings 1. United States (68 nuclear submarines) - Overwhelming leader 2. Russia (45 nuclear submarines + 20+ diesel submarines) 3. China (12 nuclear submarines + 50+ diesel submarines) 4. United Kingdom (11 nuclear submarines) - Entirely nuclear-powered submarines 5. France (10 nuclear submarines + diesel) 6. India (2 nuclear submarines + 15 diesel submarines) 7. Japan (22 diesel submarines) 8. South Korea (18 diesel submarines) 9. Germany (6 diesel submarines, export power) 10. Sweden (5 diesel submarines, technological powerhouse) Detailed Classification by Country A. Nuclear Submarine Exclusives B. Nuclear + Conventional Submarine C. Conventional Submarine   The following are the rankings of the leading countries in conventional submarine exports: 1. Germany - 100 years of tradition, top exporter 2. Japan - Highest technological capabilities 3. South Korea - Only country with VLS/SLBM capability 4. Sweden - Specializes in stealth technology 5. France - Combines nuclear and diesel capabilities The following compares the key features of export submarines from each country. Table 12. South Korean KSS-III Competitor Submarines Export Competitiveness Evaluation Top Exporting Countries 1. Germany - Type 209/214 series, more than 100 units exported 2. France - Scorpène, 16+ units (additional orders in progress) 3. South Korea - 3 units exported, actively competing in various tenders Latest Trends • Lithium-ion Batteries: South Korea (Jang Yeong-sil class), Japan (Taigei class), France (Scorpène Evolved) • VLS (Vertical Launch System): South Korea (SLBM), Sweden (Cruise Missiles) • Stealth Technology: Germany (Diamond hull), Sweden (Ghost), Japan (Low noise) Hanwha Ocean, the builder of the Dosan Ahn Chang-ho-class KSS-III submarines, and the South Korean government are actively engaging with the following countries for submarine exports: • Canada: The Canadian Navy's Submarine Replacement Program (CSCP) is a major project worth up to 40 billion USD (with an acquisition cost of about 14 billion USD and operation and maintenance costs of around 27 billion USD). Canada plans to introduce 12 new submarines. The KSS-III, at 4,000 tons, is considered a strong candidate due to its suitability for Canada’s operational environment (including the Arctic). South Korean defense companies are offering technical cooperation and local construction options in an effort to secure the deal. • Poland: Poland is pursuing the Orka project to modernize its navy, aiming to acquire 3 new submarines project worth about 14 billion USD. The KSS-III is consistently mentioned as one of the main contenders by the Polish government. • Philippines and other Southeast Asian countries: The Philippines is focused on strengthening its naval power to counter China. Other Southeast Asian nations are also looking to enhance maritime security through submarine acquisitions. South Korea, having previously exported submarines (e.g., the Nagapasa-class to Indonesia), is actively pursuing KSS-III sales in the region. 6. Comparison of the Latest Submarine Capabilities of Countries Surrounding South Korea This section examines the key features of the latest submarine technologies of South Korea, North Korea, China, and Japan. Table 13. Comparison of the latest submarines of South Korea and neighboring countries Overall Assessment • Military Ranking: Evaluated as top-tier in Asia in the order of China > Japan > South Korea > North Korea. • Advanced Technology: Japan, South Korea, and China are rapidly advancing in technological innovation, while North Korea focuses on strategic threat capabilities. • Operational Capability: Japan and South Korea excel in maritime route defense and blockade capabilities, whereas China’s strength lies in ocean-going and strategic power projection. Asian military experts particularly regard South Korea’s KSS-III, Japan’s Soryu-class/Taigei-class, and China’s latest submarines as the pinnacle of their respective national defense technologies. North Korea, while still relatively underdeveloped, raises the threat level through the public display of its strategic nuclear-powered capabilities. 7. Future Prospects: Development of Nuclear-Powered Submarines South Korea is considering the development of next-generation submarines over 4,000 tons in the 2030s, with nuclear-powered submarines being a key option under discussion. In the past, in 2003, the basic design for a 4,000-ton reactor was completed, but at that time, cooperation with the United States was essential due to restrictions such as the Korea–U.S. nuclear agreement (“123 Agreement”). Recently, with the revitalization of Korea–U.S. shipbuilding cooperation through Hanwha Ocean and Philly shipyards, the possibility of acquiring nuclear submarine technology has increased. In particular, following the official U.S. approval of South Korea’s nuclear-powered submarine construction at the 2025 APEC Summit, technical, fuel, and policy cooperation with the U.S. is expected to move forward in earnest for South Korea’s project. 1. Scope of Future Cooperation • The U.S. has agreed to share key technologies for South Korea to build nuclear-powered submarines. • Cooperation will also include securing nuclear fuel for propulsion (highly enriched uranium or HALEU – high-assay low-enriched uranium) and the design and fabrication of small reactors for submarine use. • Both countries have agreed to expand mutual investment and technical collaboration in shipbuilding, marine plants, and submarine construction industries. 2. Technology Transfer and Conditions • South Korea has requested U.S. approval and supply for submarine propulsion nuclear fuel, and the U.S. is reported to have approved the use of nuclear fuel for South Korea’s submarine construction. • However, based on currently available information, this does not automatically include the full transfer of submarine reactor design or propulsion systems; the scope and method of technology transfer (joint development vs. full transfer) are still under discussion. • If South Korea transitions to third-country technology transfer or domestic development under U.S. cooperation, there could be restrictions linked to the Non-Proliferation Treaty (NPT) and the 123 Agreement. 3. Potential Timeline • According to the fact sheet released at the APEC Summit, this cooperation is linked to investment in the shipbuilding industry, and South Korea is reported to have pledged around US$150 billion to U.S. shipbuilding. • South Korean government reports indicate the goal is to secure four or more medium-sized (approximately 5,000-ton or larger) nuclear-powered submarines by the mid-2030s. • However, specific milestones such as design completion, project start, construction, and delivery dates have not been officially finalized, and Korean officials have stated that detailed schedules are still under coordination. 8. Comparison of Nuclear Submarines and Conventional Submarines & the Importance of Nuclear Submarines Nuclear submarines can be broadly divided into two types based on their primary missions: 1) Strategic Nuclear Submarine (SSBN: Ship Submersible Ballistic missile Nuclear) • Primary Mission: Equipped with ballistic missiles (SLBMs) carrying nuclear warheads, SSBNs patrol covertly for extended periods to maintain nuclear deterrence. This means deterring adversaries from using nuclear or major conventional attacks by maintaining the capability to retaliate with nuclear weapons, thereby preventing war. • Characteristics: Large in size, prioritizes extreme stealth and long-range operational capability. 2) Torpedo-Attack Nuclear Submarine (SSN: Ship Submersible Nuclear) • Primary Mission: Engage enemy submarines (Sub Hunter) or surface ships (Ship Killer), conduct intelligence, surveillance, and reconnaissance (ISR), support special operations forces, or carry out land-attack missions using cruise missiles. • Characteristics: Smaller and faster than SSBNs, emphasizes agility and maneuverability. Summary: • SSBN: Strategic missions with nuclear missiles. • SSN: Tactical attack missions with torpedoes and cruise missiles. 8.1. Nuclear-Powered Submarines vs. Conventional (Diesel-Electric) Submarines – Propulsion Comparison The most fundamental difference is in the power source: • Nuclear propulsion: Uses a reactor; heat from nuclear fission boils water to produce steam, which drives turbines to generate propulsion and electricity. • Diesel-electric submarines: Operate differently on the surface/snorkeling versus submerged. o Surface / Snorkeling: Diesel engines are run to propel the submarine or charge the batteries. The submarine must surface or use a snorkel to intake air and expel exhaust gases, reducing stealth. o Submerged: Diesel engines are turned off; the submarine runs solely on large charged batteries powering electric motors. This allows for very quiet, stealthy operation, but operational endurance is limited. Once the batteries are depleted, the submarine must surface to run diesel engines and recharge. Table 14. Comparison of Nuclear Submarine and Conventional Submarine Specifications Key Points • A nuclear-powered submarine is similar to an aircraft carrier: it provides long-range, high-endurance capability and serves as a powerful tool for global power projection. It is designed to dominate the open ocean. • A conventional submarine is comparable to a coastal patrol craft or a hunter-killer submarine: a stealthy and cost-effective weapon optimized for controlling regional waters and coastlines. Its greatest advantage is extremely low noise during battery-powered operation, making it a deadly threat in shallow waters—like “a hole in the water.” • Choosing a submarine type is not about absolute superiority, but about selecting the model best suited to a country’s strategic goals, budgetary limits, and geographic operational environment. 8.2. Maintenance Comparison Between Nuclear-Powered and Conventional Submarines Which force should a nation prioritize: Nuclear submarines, the backbone of strategic deterrence thanks to their unlimited underwater endurance, or conventional submarines, which offer excellent cost-effectiveness and are easier to field in larger numbers? One of the core factors in this decision is operational cost-efficiency. Beyond construction cost, the long-term burden of decades of maintenance, training, reactor refueling, and life-cycle logistics must be considered. The comparison below outlines these sustainment requirements. Table 15. Maintenance Comparison: Nuclear vs. Conventional Submarines 8.3. Total Life-Cycle Cost Comparison Between Nuclear-Powered and Conventional Submarines Let us compare two submarines of similar class size as examples: • Dosan Ahn Changho–class (KSS-III, South Korea) — conventional (diesel-electric + AIP) • Virginia-class (SSN, United States) — nuclear-powered Between these two types, the Total Lifetime Cost is 3 to 4 times higher for the nuclear-powered submarine. Below, we analyze the causes of this massive cost difference using concrete figures. Table 16. Total Life-Cycle Cost Comparison: Nuclear Submarine vs. Conventional Submarine 8.4. Importance of Nuclear-Powered Submarines for the Republic of Korea Navy Despite the enormous cost gap shown earlier, the South Korean government has strong reasons for wanting to acquire nuclear-powered submarines. These reasons are rooted in national security, strategic autonomy, and enhanced maritime defense capability. Key strategic motivations include: 1) Responding to North Korea’s SLBM Threat North Korea: Developing the Sinpo-class SSBN (armed with SLBMs). If a North Korean SLBM submarine hides in the deep waters of the East Sea, it becomes impossible to track with conventional submarines. Only nuclear-powered submarines can conduct continuous 24-hour tracking due to their unlimited underwater endurance 2) Monitoring Chinese Submarine Activity: China has ~12 nuclear submarines + ~50 diesel-electric submarines and is increasing activity in the East China Sea and Western Pacific. To monitor Chinese submarines operating in the open ocean, nuclear-powered submarines are essential 3) Strengthening Strategic Deterrence: Current South Korean SLBM range: ~500 km, requiring operations near the Korean Peninsula. A nuclear submarine can launch from anywhere in the Pacific, drastically expanding deterrence. Provides a “survivable second-strike capability”—a retaliatory force that cannot be located or neutralized 4) National Prestige: Nations that operate nuclear submarines are considered major military powers. Only six countries currently possess them. Strengthens technological sovereignty and diplomatic leverage South Korea’s desire to operate nuclear-powered submarines is driven by strategic and security needs that far outweigh cost considerations. For over 30 years, South Korea has pursued nuclear submarine capabilities as part of a long-term defense strategy, aiming to achieve: enhanced nuclear deterrence, increased strategic autonomy, breakthroughs in defense technology, effective countermeasures against the expanding submarine forces of North Korea and China. Nuclear-powered submarines are seen as essential platforms capable of long-duration, high-speed, and highly covert operations—capabilities that are crucial in Korea’s security environment. Figure 11. Conceptual Cross-Section of the Korean Nuclear-Powered Submarine (KSS-N) Conclusion The Republic of Korea began with the small Dolgorae-class submarines in 1983, and in 42 years has risen to become the world’s 8th-largest submarine operator and one of the “Big Three” diesel-electric submarine powers (Germany, Japan, Korea). The Dosan Ahn Chang-ho class (KSS-III), in particular, is the world’s only diesel-electric submarine equipped with 10 VLS cells for SLBMs, and with its combination of AIP and lithium-ion batteries, it possesses some of the strongest underwater endurance and operational capability in the world. It has proven its real-world combat performance by eluding detection from a U.S. aircraft carrier during the RIMPAC exercises, and has demonstrated strong export competitiveness—Korea has already secured a 1.1 billion USD contract with Indonesia, and is competing for additional tenders in Canada, Poland, and the Philippines. Despite the overwhelming cost burden of nuclear-powered submarines, they remain essential for South Korea to counter North Korea’s SLBM-equipped SSBNs, and China’s expanding submarine fleet. Only nuclear-powered submarines can perform unlimited submerged operations and maintain high-speed, long-duration tracking of North Korean SSBNs 24/7. They also allow South Korea to exercise strategic deterrence across the entire Pacific, not just near the Korean Peninsula. While challenges remain—such as restrictions from the U.S.–Korea 123 Nuclear Agreement and various technological barriers—ongoing Korea–U.S. naval cooperation through Hanwha Ocean’s Philadelphia Shipyard significantly increases the likelihood of acquiring nuclear-submarine technology. Securing 4 to 6 nuclear-powered submarines would mark a transformational leap for the ROK Navy and a historic turning point in Korea’s rise as a true maritime power. South Korea’s submarine industry is not just a weapons program—it is an advanced technology sector and a driver of economic growth. It represents a core capability for self-reliant defense and national security. Based on its world-class diesel-electric submarine expertise, if Korea succeeds in acquiring nuclear-powered submarines as well, it will firmly establish itself as one of the world’s top five submarine powers. As history teaches that “those who command the seas command the future”, the continued advancement of South Korea’s submarine capabilities will serve as the foundation for peace and stability on the Korean Peninsula and in Northeast Asia in the 21st century.

Defense & Security
Electric car made in China. Duty for EV cars made in China. Trade, tariffs, duty and customs war

Connected Cars as Geopolitical Weapons: The National Security Battle Over Chinese EVs

by World & New World Journal

According to the IEA by 2024, more than 20% of new cars sold worldwide were electric, exceeding 17 million and positioning China as the leader in the market with more than 11 million sales. In comparison, the European and US markets also saw a growth in the sector, but not comparable to the Chinese counterpart. Figure 1: Global EV sales, 2014-2024. Source (IEA, 2025) Figure 2: EVs registrations share in China, US and Europe: 2018-2023. Source: IEA, 2025. On the other hand, autonomous vehicles, whose market value size was estimated at USD 68.09 billion in 2024, are also trending worldwide, North America being the largest market in 2024 (market share of 37.1% and passenger vehicles leading the market with 69% of the global revenue), while the Asia Pacific region is the fastest-growing market. Figure 3: Autonomous Vehicle Market. Source: Grand View Research. (Grand View Research, 2025) Recently, despite the data and market share, discussions and analysis of the vehicle industry have moved into new concerns related to security risks, trade protectionism and unfair competition. Why? Because the vehicle industry has evolved and adopted new technologies, at the same time, concerns have shifted accordingly. These changes have relied on or prioritized human convenience and connectivity over everything else. A New Security Paradigm for Mobility: Are Connected Cars Data Weapons A simple answer is no, but there are elements that can change the answer into a yes in the future. Vehicles are evolving into connected machines, with software-driven platforms, sensors, cameras, connectivity modules and AI systems. Thus, the vehicle industry is entering a new era where data is key, and whoever controls it, is likely to control the market itself. As mentioned before, vehicle-related security risks have sparked discussions in recent years. Nowadays, practically any vehicle sold has a certain degree of connectivity, naturally this leads to a continuous and massive collection of information (sensitive or not), including for example: real-time location, driving patterns, biometric data, audio recordings, images from the Advanced Driver-Assistance Systems (ADAS) and more. For common people this might pass unnoticed but for governments, the fact of collecting and storing data or having the possibility to do so has become a critical point and a threat to their national security. After all, fear is real, and the more connected a vehicle is, the higher the chances that it can become a surveillance device, for example. The speculations can grow as much as our/their imagination leaves them, but after all, security risks and fear related to them exist. In line with the security risks, the possibility of software backdoors hidden in operating systems or telematic units is another possibility. Naturally, if exploited this possibility, these vulnerabilities could allow a remote shutdown of vehicles or fleets, manipulation of navigation systems or even data extraction could occur. In simple terms, this could open the door to cyberattacks, including the potential loss of control of a vehicle. Once again, the possibility of these ideas has reshaped and changed the paradigm of connected vehicles Actual measures and global regulatory trends As governments start recognizing these security threats associated with connected vehicles, many have begun implementing several regulations to protect their national security. For instance, the UK, Israel, the USA and the EU are among the most active actors. One of the branches of the economic war between the US and China is exactly the mobility industry, the fierce competition between both nations has tightened the nationalist policies of President Trump, in fact the US has rapidly adopted a national-security lens for automotive imports. There have been discussions in Congress and even the Commerce Department has proposed rules allowing Washington to prohibit connected car technologies linked to foreign adversaries. In addition, there is huge pressure over the United States-Mexico-Canada Agreement (USMCA), specifically in the encouragement to revise the vehicles entering the US and the promotion of US vehicle-manufacturing companies. For those reasons, the US had imposed tariffs on Chinese-made vehicles (from 25% up to 100% on 2024 during Biden’s administration and later a 35.5% extra tariff on Chinese-made EVs) and had set several rules in line with the USMCA, to limit or protect the American market from Chinese vehicles, as it argued that China is taking advantage of the USMCA by using Mexico or Canada as the entry points to the American market, avoiding tariffs and minimizing costs. According to experts, this Chinese circumvention of US tariffs can occur in three main ways. First through transshipment – products enter Canada or Mexico and then they are shipped to the USA. The second way is by incorporating the Chinese products into the North American supply chains. And the third way is through direct Chinese investments in manufacturing facilities in Mexico or Canada. At the same time, across the Atlantic the EU has also been working on tightening regulations through the Cyber Resilience Act, as well as strengthening the General Safety Regulations, both focusing on the application of rigorous standards to vehicle cybersecurity, data governance, and supply-chain transparency. Also in Europe, recently, a British newspaper reported that military and intelligence chiefs had been ordered not to discuss official business while riding in EVs, and cars with Chinese components had been banned from sensitive military sites. In addition, the former head of the intelligence service MI6 claimed that Chinese-made technology, including cars, could be controlled and programmed remotely. Consequently, the UK has begun evaluating supply chains for hidden dependencies in infotainment systems, telematics, and semiconductors. In the same line, Israel has adopted rigid measures, the Israeli army has begun withdrawing Chinese-made vehicles from officers, citing espionage concerns. Other measures implemented include auditing imported vehicles to ensure no remote-access pathways existence, plus the encouragement of local automakers and tech firms to develop secure telematics modules to minimize foreign reliance. What is China’s role in this new paradigm? To understand the role of China in the EVs and connected vehicles is important to highlight the low labor costs in China, coupled with government subsidies and a well-structured and established supply chain, these three factors gave the Chinese firms huge advantages over their competitors. However, those are not the only factors involved in the equation, the promotion of EVs over internal combustion vehicles and the adoption and development of technologies that turn “simple” vehicles into connected vehicles are important to mention too. All these factors have been well capitalized by Chinese firms, in consequence, China has become the world’s largest EV exporter and somehow a threat for the West. As mentioned throughout the article, the security risks have sparked discussions and concerns, and it is fair, as Chinese-made vehicles have become competitive and technologically well-connected, much, that nowadays are in conditions to fight for the global automotive market. Therefore, there is a clear sense of concern among Western governments, especially in conditions of a politicized world that we live in nowadays. Naturally Beijing argues that bans and investigations on their Chinese-made vehicles are forms of economic protectionism and rejects any claims related to espionage, data leaks or misuse. While, it has also responded by tightening its own domestic rules: foreign vehicles are prohibited from accessing sensitive regions, including areas near government buildings and military facilities. Benefits and challenges for other key players and global automakers Automakers from Korea, Japan or the European and American are being directly benefited from the rising Chinese scrutiny of connected cars, meaning that new export and investment opportunities could be achieved by them. If these countries can materialize transparent software supply chains, strong cybersecurity frameworks, and local data-storage compliance, their advantage would increase. Specifically Korean and Japanese firms – which are proven reliable players with a strong presence worldwide and strengths in battery technology and infotainment systems –, can position themselves as trusted suppliers in those markets that are worried about Chinese-made vehicles and their possible espionage or security risks. On the other hand, however, there are big challenges ahead. If each country or region decides to have proper regulations, major hurdles will appear. For example; compliance costs will rise as automakers must meet different cybersecurity rules across regions; the technology surrounding software auditing, and the transparency of the supply chains itself will require significant investments; the supply chain and design of vehicles will be affected and in consequence production cost will increase; and, if there are different digital standards or rules, it is likely that there could be some limitations in the global interoperability. Conclusions While the rapid growth of EVs worldwide can be considered a good sign for sustainability goals – as they displaced over 1 million barrels per day of oil consumption in 2024 –. Recently there have appeared certain concerns related to security risks – proven or not – trade protectionism and unfair competition. On top of that, the transformation of cars into fully connected digital platforms has created a new paradigm, in which certain nations – mostly western nations – have started to be worried and rethinking their mobility through the lens of national security. In consequence, governments have tightened rules related to data, cybersecurity and foreign software dependencies. This new vision is already changing and transforming the vehicle industry, while the most affected, being the Chinese firms – due the natural competition and geopolitical reasons – there are other global automakers that, if they take the chance, could become key players – as far as they prioritize transparency in supply chains, security and technological trust. The new paradigm has shifted what used to be an ordinary, everyday product into a critical national infrastructure that must be subject to regulation. Finally, this paradigm also highlights the importance of data sovereignty and how important it has become and will be in the future. Referencias Carey, N. (2025, December 2). China floods the world with gasoline cars it can't sell at home. Retrieved from Reuters: https://www.reuters.com/investigations/china-floods-world-with-gasoline-cars-it-cant-sell-home-2025-12-02/ European Commision. (2025, March 5). Industrial Action Plan for the European automotive sector . Retrieved from European Commision: https://transport.ec.europa.eu/document/download/89b3143e-09b6-4ae6-a826-932b90ed0816_en Financial Post. (2025, December 11). Why China's EVs are dangerous to Canada: CVMA. Retrieved from YouTube: https://www.youtube.com/watch?v=WV7bn29lpOQ Grand View Research. (2025). Autonomous Vehicle Market (2025 - 2030). Retrieved from Grand View Research: https://www.grandviewresearch.com/industry-analysis/autonomous-vehicles-market IEA. (2025). Trends in electric car markets. Retrieved from IEA: https://www.iea.org/reports/global-ev-outlook-2025/trends-in-electric-car-markets-2 Introvigne, M. (2024, February 6). Should Chinese Electric Cars Be Banned in the West? Retrieved from Bitter Winter: https://bitterwinter.org/should-chinese-electric-cars-be-banned-in-the-west/?gad_source=1&gad_campaignid=11726773838&gbraid=0AAAAAC6C3PdZ9Jx_edcTzlW0hHoO8yN2D&gclid=CjwKCAiA3L_JBhAlEiwAlcWO59TNJrosoZkG7MwAid0bRuGKs5KY0P7csiXimfUzLlbYshtFMafkdxoCqvQQAvD_Bw Leggett, T. (2025, June 10). China's electric cars are becoming slicker and cheaper - but is there a deeper cost? Retrieved from BBC: https://www.bbc.com/news/articles/cy8d4v69jw6o Meltzer, J. P., & Barron Esper, M. (2025, September 23). Is China circumventing US tariffs via Mexico and Canada? Retrieved from https://www.brookings.edu/articles/is-china-circumventing-us-tariffs-via-mexico-and-canada/#:~:text=Chinese%20intermediate%20goods%20used%20in,to%20the%20production%20of%20new: https://www.brookings.edu/articles/is-china-circumventing-us-tariffs-via-mexico-and-canada/#:~:text=Chinese%20intermediate%20goods%20used%20in,to%20the%20production%20of%20new Navarrete, F. (2024, May 21). Aranceles de EU a autos chinos ponen en aprietos a México. Retrieved from El Financiero: https://www.elfinanciero.com.mx/empresas/2024/05/21/aranceles-de-eu-a-autos-chinos-ponen-en-aprietos-a-mexico/ Oertel, J. (2024, January 25). European Council on Foreign Relations. Retrieved from https://ecfr.eu/article/security-recall-the-risk-of-chinese-electric-vehicles-in-europe/: https://ecfr.eu/article/security-recall-the-risk-of-chinese-electric-vehicles-in-europe/ Radio biafra. (2025). Fearing data leaks, Israel bans Chinese-made cars for army officers. Retrieved from Radio biafra: https://radiobiafra.co/ Schuman, M. (2025, November). China’s EV Market Is Imploding. Retrieved from The Atlantic: https://www.theatlantic.com/international/2025/11/china-electric-cars-market/684887/ Zhang, Z. (2025, December 4). China’s EV dominance sparks EU retaliation. Retrieved from East Asia Forum: https://eastasiaforum.org/2025/12/04/chinas-ev-dominance-sparks-eu-retaliation/

Defense & Security
Caracas (Venezuela) Feb. 18, 2009. The President of the People's Republic of China, Xi Jinping, arrival to Caracas, Venezuela, on official visit in febraury 18, 2009.

Why China is watching Trump’s Venezuela campaign closely

by Tom Harper

Donald Trump’s campaign against Venezuela escalated recently with the US president announcing that the country’s airspace should be considered “closed”. This is a move that has preceded US military interventions in the past, perhaps most notably in Iraq in 2003. It remains to be seen whether Trump’s declaration will be followed by military action or is just a means of raising the pressure on the Venezuelan leader, Nicolás Maduro, in an attempt to force him from office. But regardless of what happens next, what has been notable is the reaction of China. In a December 3 briefing, Chinese foreign ministry spokesperson Lin Jian said that closing Venezuelan airspace would violate international norms and infringe on national sovereignty. Jian added that China rejects interference in Venezuela’s internal affairs “under any pretext” and called on all parties to keep Latin America a “zone of peace”. This stance is no great surprise. China has developed strong relationships with several Latin American countries, including Venezuela, as part of a broader strategy to expand its presence in regions long dominated by the US. Trump’s threats of military action could jeopardise the influence China has built there. China has been involved in Latin America for centuries. But its ties to the region have grown rapidly over the past 25 years or so, with China becoming an indispensable partner to many Latin American countries. Brazil is a clear example of this indispensability. The election of Jair Bolsonaro’s right-wing government in 2018 led to expectations that Brazil would tilt towards Washington. However, such expectations were soon dampened due to China’s role as a major consumer of Brazilian goods. By 2020, China was Brazil’s largest trading partner, accounting for over 30% of total exports from the country. Ties between Brazil and China have only deepened under Bolsonaro’s successor, Luiz Inácio Lula da Silva. This has been helped by the intensification of the US-China trade war, which has seen Brazil become a crucial alternative source of agricultural products such as soybeans that China has historically imported from the US. This relationship has enabled China to exert economic pressure on the US. Brazil’s large soybean exports to China have increased the global supply, which has suppressed prices for all suppliers – including those in US. China has been a similarly indispensable partner to Venezuela since the days of Maduro’s predecessor, Hugo Chávez, who took power in the Latin American state in 1999. Chávez was a keen advocate of a multipolar international order, a concept that has gained traction as Beijing’s political and economic power has grown. Over the years, China has become the main destination for Venezuelan oil. In 2024, China bought around 268,000 barrels of oil from Venezuela on average every day – a figure that, in reality, is likely to be higher as Venezuelan oil is routinely mislabelled to bypass US sanctions. Venezuelan oil is key for China. Beijing has been attempting to diversify its sources of natural resources in recent years as part of efforts to retain its global advantage in cheap manufacturing and wean itself off a dependency on Middle Eastern oil. Trump’s threats to intervene militarily in Venezuela may, at least in part, be aimed at challenging Chinese interests. Indeed, the White House issued an official statement on December 2 affirming the Trump administration’s commitment to the Monroe Doctrine. Signed in 1823, the doctrine said the US would reject other countries’ influence in Latin America. A new “Trump Corollary” to the doctrine states that “the American people – not foreign nations nor globalist institutions – will always control their own destiny in our hemisphere”. Challenging Chinese influence Any US military action in Venezuela will probably increase paranoia across the region. Trump warned recently that any country he believes is making illegal drugs destined for the US is vulnerable to a military attack, and singled out Colombia. On December 2, Trump told reporters at the White House that he “heard” Colombia was “making cocaine”. “They have cocaine plants”, he added. The Colombian president, Gustavo Petro, hit back immediately on social media, saying: “To threaten our sovereignty is to declare war”. But China is unlikely to step in militarily to defend countries in Latin America from US aggression. While China has used its developmental influence there to pursue some political objectives – most notably persuading El Salvador, the Dominican Republic and Honduras to renounce diplomatic recognition of Taiwan in recent years – its engagement with Latin America has largely been transactional. China’s strategy in Latin America is driven primarily by economic considerations, and Beijing has generally been reluctant to enter into formal alliances with states there. This hesitance to commit to defending its partners could strain relations with countries in the region that may expect Beijing to support them in the event of a crisis. However, Trump’s Latin America campaign does provide China with some opportunities. Just as European countries concerned about Russia’s expansionist intentions have become a key market for American arms, it’s possible that Latin America becomes a lucrative destination for Chinese weaponry. Venezuela is already buying Chinese arms, varying from riot control equipment to missiles and – possibly in the future – fighter jets. China has also sold military equipment to Argentina, Bolivia and Ecuador. The US appears to be taking an increasingly active interest in Latin America. As outlined in its recently published National Security Strategy, the Trump administration is looking to readjust the US’s “global military presence to address urgent threats” in the western hemisphere. Having carefully built up its influence in Latin America over many years, China’s leadership will be keeping a keen eye on how events unfold there in the months ahead.

Defense & Security
Soldier UAV operator launches army drone with bomb to drop into enemy fortifications and trenches. Concept using military robots in modern warfare.

Unmanned aerial vehicle: geopolitical influence, industrial potential and future perspectives

by World & New World Journal

Introduction An unmanned aerial vehicle (UAV) or unmanned aircraft system (UAS), commonly known as drone, is an aircraft without a human pilot, crew or passenger on board, but rather controlled remotely or autonomously. Drones can be seen as cutting-edge technologies with tremendous ramifications across various fields, including military, security, economics, and logistics – ranging from lightweight consumer drones to advanced autonomous combat platforms – that have transformed global security economics and technological developments. Their proliferation marks a shift in the conduct of warfare, industrial processes, and urban infrastructure design. In this context, this article aims to analyze these dynamics across three domains: geopolitical and security implications, economics and industrial processes, and future technological transformation. I. Geopolitical and Security Perspective: "Game Changers" The Dawn of the Unmanned Warfare Era The past decade — and especially during the conflicts in Ukraine, Gaza, and the Caucasus —has showcased an irreversible shift toward unmanned warfare. Low-cost drones have enabled nations and non-state actors to conduct reconnaissance, precision strikes, and electronic warfare at a fraction of traditional military costs. The democratization of drone warfare erodes conventional military hierarchies by giving smaller nations and even non-state groups asymmetric capabilities (Kania, 2020), (Vision of Humanity, 2024). Figure 1: Use of drones by type. A major consequence of this shift is the emergence of continuous aerial presence, which fundamentally alters operational rhythm and tempo. Previously, only major powers could afford persistent surveillance through manned aircraft or satellites. Today, even insurgent groups can deploy swarms of commercial drones to maintain near-constant observation of enemy movements. This constant presence of drones on the battlefield forces militaries to make decisions much faster and operate as if they are always being watched. As drone technology becomes cheaper and more widely available, it also becomes easier for states or groups to launch low-risk, hard-to-trace attacks without putting their own people in danger. This reduces the barrier to starting or escalating conflicts and makes the overall situation far more unpredictable. On the other hand, despite automation, drone warfare remains heavily dependent on human adaptation, moreover, in practice, drones’ use is constrained by weather, terrain, and limited night capability (Newton, 2025). Nonetheless, and as seen in the Ukraine War, the adaptation, development and improvement of the designs and systems have skyrocketed and shortened from months to weeks. A Paradigm Shift in Modern Warfare Traditional doctrines built around armored vehicles, manned aircraft, and centralized command structures are giving way to distributed, networked, and automated operations. Drones allow for constant ISR (intelligence, surveillance, reconnaissance), rapid kill chains, and battlefield transparency that reduces the effectiveness of concealment and mass maneuver (Biddle & Oelrich, 2016). Swarm technology further accelerates this shift by overwhelming air defenses through algorithmic coordination. On a broader strategic level, unmanned systems are transforming operational art, forcing militaries to rethink how they structure campaigns. Instead of relying on a small number of high-value manned platforms, modern forces must integrate thousands of expendable, semi-autonomous assets into a coherent command-and-control ecosystem. This shift elevates the importance of data fusion, algorithms, and electronic warfare, as success increasingly depends on which side can process information more effectively rather than which side has heavier armor or more firepower. Furthermore, the psychological effects of drone warfare — constant monitoring, unpredictable strikes, and the invisibility of operators — alter the morale and behavior of both soldiers and civilians. In this sense, unmanned warfare not only changes tactics but reshapes the human dimension of conflict. Evolution of Defense Strategies States now are prioritizing anti-drone systems (C-UAS), electronic warfare, and resilient supply chains. Defense strategies emphasize dispersion, decoys, deception, and multi-layered air defense, recognizing that the cost ratio favors attackers using cheap drones against expensive assets. Militaries increasingly incorporate AI-enabled targeting, autonomous perimeter defense, and drone-versus-drone combat (Mehta, 2022). The rapid evolution of offensive drone capabilities has forced governments to pursue a new generation of integrated counter-unmanned systems, blending kinetic interceptors, directed-energy weapons, radio-frequency jamming, and cyber tools. However, the challenge is not merely technological — it is organizational. Modern militaries must revise procurement cycles, adopt flexible doctrine, and restructure units to counter the fast-changing drone threat. For example, some nations are creating dedicated “drone defense battalions” or embedding electronic warfare teams at lower echelons of command. Once more the Ukraine War is a good example: Ukraine’s early-warning systems (so called, “drone walls”) use layered reconnaissance UAVs to identify threats and enhance battlefield visibility, unfortunately, these are highly vulnerable to electronic warfare and radar destruction. More examples include the fiber-optic FPV drones as countermeasure of jamming, or decoy drones to lure air defenses and absorb munitions. (Newton, 2025) The rise of drone warfare also places huge demand on secure communications and resilient digital infrastructure; adversaries increasingly target supply chains, software vulnerabilities, and satellite links that control unmanned systems. Thus, the evolution of defense strategies represents a multi-domain effort that spans hardware, software, organizational culture, and national-level industrial capacity. Major Countries' Competition in Drone Weapon Development The United States, China, Israel, Turkey, and Iran dominate the global drone arms race, while Russia and Ukraine deserve a special mention too. • USA: it focuses on high-tech autonomous systems, for example the MQ-25, Collaborative Combat Aircraft. In addition, according to the Federal Aviation Administration they have an estimated 822,039 drones registered as of July 2025. (FAA, 2025)• China: leads in export volume, offering cost-competitive platforms like the Wing Loong series (Fischer, 2020).• Turkey: gained strategic influence through the Bayraktar TB2, proven in multiple regional conflicts like the Nagorno-Karabakh in 2020 or its use for strategic communications for Ukraine during the ongoing conflict. (Péria-Peigné, 2023)• Israel: its research, development and production of innovative drone technology and exports roughly $500 million worth of UAV-related products per year, have positioned Israel as a world leader in the area. Israel is well known for its indigenous and competitive manufacturing UAVs like the Hermes 450, the Searcher Mk II and the Heron. (Sadot, s.f.)• Iran: their Shahed-136 drone is a low-cost drone that has gained attention internationally as it has shown affordability, precision, long-range, and cheapness during the Ukraine War – deployed by Russia. (Kesteloo, 2025)• Ukraine: has emerged as a leader in tactical warfare, including mass quantities of low-cost First-Person View (FPV) drones for frontline and deep-strike operations. But also, it has implemented “Spider’s Web” operations, which strike deep inside Russia, while using low-cost assets but with strategic and punctual strikes. Ukraine has also expanded into the maritime domain with unmanned surface vessels (USVs) using them with a kamikaze-style operation targeting ships and critical offshore infrastructure in the Black Sea. (Newton, 2025)• Russia: the war has institutionalized an UAV doctrine with mass deployment of FPV drones (Newton, 2025) and the creation – similar to Ukraine – of an Unmanned System Force (USF) aiming to encompass aerial, land and surface drones. (Altman, 2025) II. Economic & Industrial Perspective: “Flying Industrial Revolution” Future Logistics and Delivery Systems Beyond the battlefield, drones are reshaping global economies and enabling new industrial ecosystems. For instance, drones are rapidly transforming last-mile delivery by reducing transportation time, bypassing road congestion, and enabling access to remote or disaster-affected areas. Companies like Amazon, Wing, and Zipline have already demonstrated how unmanned aircraft can deliver medical supplies, parcels, and consumer goods more efficiently than traditional vehicles. As autonomous navigation, battery technology, and payload capacity continue to improve, drones are expected to become critical components of global supply chains, especially in regions where infrastructure is limited or demand for ultra-fast delivery is increasing. Global drone delivery is expected to reach multi-billion-dollar scale by 2030 (PwC, 2023). In the longer term, logistics networks are expected to evolve into hybrid ground–air systems, where drones work alongside autonomous ground vehicles and smart warehouses. These systems could drastically reduce operational costs by automating pickup, sorting, and delivery processes. Integrating drones with AI-driven inventory management and predictive delivery algorithms will allow companies to anticipate demand and route products dynamically. As eVTOL cargo aircraft mature, the concept of “airborne logistics hubs” may also emerge, enabling rapid long-distance transport between distribution centers without the need for airports. Together, these developments point toward a future where aerial logistics are not just an add-on, but a central pillar of modern supply chains. Improving Industrial Efficiency Across agriculture, energy, construction, and mining drones significantly improve efficiency by automating tasks that previously required expensive equipment or manual labor. By replacing manned inspection systems, drones can reduce labor costs, increase safety, and provide data of unprecedented detail (McKinsey, 2022). For example, farmers use drones for precision spraying and crop monitoring, reducing fertilizer and water usage. Energy companies deploy unmanned systems for pipeline inspections and powerline surveys, minimizing downtime and enhancing worker safety. Construction and mining firms rely on drones for site mapping, progress tracking, and 3D modeling, improving project accuracy while lowering operational costs. Beyond task automation, drones are becoming essential to data-driven industrial optimization. Equipped with thermal sensors, LiDAR, and multispectral cameras, unmanned systems can capture high-resolution data that feeds directly into AI analytics platforms. This allows companies to detect inefficiencies, predict equipment failure, and optimize resource allocation in real time. As industries move toward digital twins — virtual models of physical assets — drones will play a key role in continuously updating these systems with accurate spatial and environmental data. The result is a more responsive, efficient, and resilient industrial ecosystem that leverages aerial automation for competitive advantage. Regulatory Environment and Market Growth Regulation remains the single most influential factor shaping the global drone market. Governments are gradually introducing frameworks to enable Beyond Visual Line of Sight (BVLOS) operations, Remote ID tracking, and certification standards for commercial drones. Regions like the European Union have adopted unified risk-based rules through EASA, while the United States continues to refine its Part 107 and UTM integration policies through the FAA. These regulatory milestones are essential for scaling commercial drone usage, as they provide clarity to manufacturers, operators, and investors. As regulatory frameworks mature, they are also becoming a competitive advantage for regions that adopt them early. Countries that implement drone-friendly ecosystems — such as Singapore, the UAE, and Rwanda — are rapidly emerging as hubs for drone research, testing, and deployment. This regulatory momentum encourages multinational companies to establish operations in these markets, accelerating local innovation and talent development. Furthermore, harmonized international standards will make it easier for drone manufacturers to reduce production complexity and expand globally. Ultimately, the pace of market growth will depend not just on technological advancement but on how effectively governments balance innovation with safety, privacy, and public acceptance. Investment Trends Investment in drone-related technologies has surged, driven by the convergence of autonomy, artificial intelligence, and advanced manufacturing. Venture capital firms increasingly fund companies developing autonomous navigation systems, UTM software, battery technology, and specialized industrial drones. Defense investors continue to expand their portfolios into dual-use drone companies, reflecting growing geopolitical interest and national security incentives. Meanwhile, major tech firms and automotive companies are exploring opportunities in cargo drones, eVTOL aircraft, and autonomous mobility ecosystems. Beyond private investment, government funding and public–private partnerships are accelerating drone adoption globally. Many nations are launching test corridors, innovation hubs, and subsidies to attract drone startups and support local manufacturing. This trend is particularly strong in Asia and the Middle East, where governments see drones as strategic tools for digital transformation and economic diversification. As markets mature, investment is shifting from hardware-heavy startups toward software, analytics, and integrated airspace management solutions — reflecting a broader transition from drone manufacturing to drone ecosystems. This shift signals a long-term, sustainable evolution of the drone industry from early experimental phases to full-scale commercial and civil integration. III. Future Technologies The Need for Unmanned Traffic Management (UTM) As drones and future eVTOL air taxis multiply, low-altitude airspace will become increasingly crowded. To prevent collisions and maintain order, UTM frameworks — already being developed by NASA, the FAA, EASA, and ICAO — aim to coordinate autonomous flights using real-time tracking, automated route planning, and digital air corridors (Kopardekar, 2016). These systems will act as the “air-traffic control of the future,” but designed for far larger numbers of smaller, faster-moving vehicles. In addition, as demand grows, it is likely that UTM will evolve into a fully automated, AI-driven airspace ecosystem capable of managing thousands of simultaneous flights with minimal human oversight. Future systems could incorporate weather prediction, dynamic rerouting, and AI-powered detect-and-avoid features, which more than a technical upgrade, would transform the air mobility in the cities worldwide. Global Standardization Competition The need for standard UTM, drone certifications, communication systems, and detect-and-avoid technology is critical, but it also represents a geopolitical contest. The U.S., the European Union, and China are each developing distinct technological ecosystems, hoping their standards will dominate global markets. Whichever region’s standards become the international norm will shape supply chains, aircraft design, and regulatory practices for decades. This competition mirrors earlier battles over telecommunications and 5G. Nations that establish widely adopted drone standards will gain strategic advantages, including influence over global manufacturing, software ecosystems, and aviation governance. As a result, UTM and drone certification are no longer just technical debates — they have become instruments of national power, economic leverage and somehow geopolitical importance. Urban Safety and Privacy Issues In addition, another major concern for cities is the widespread adoption of drones itself, which translates into surveillance risks, noise pollution from frequent flights, and vulnerability to cyberattacks that could compromise flight controls. Therefore, urban areas need strict rules governing data collection, flight paths, and liability in case of accidents to maintain public trust and safety. In the future, cities will also require integrated emergency response protocols, stronger cybersecurity defenses, and digital identity systems for all unmanned aircraft. Public engagement and transparent oversight will play a major role in ensuring that drones enhance urban life without creating new forms of intrusion or risk. Managing these challenges will be essential for the successful adoption of unmanned urban mobility. Integration with Future Urban Infrastructure In line with the previous section, smart cities could incorporate drones into their core infrastructure. For example, vertiports, rooftop landing pads, sensor-equipped air corridors, and digital twins could enable efficient navigation and real-time monitoring. In addition, drones will become essential for urban mobility and public services – from medical or any goods deliveries to emergency response like fire unit responses. As cities evolve, this integration will create a hybrid transportation ecosystem, where ground vehicles, aerial drones, and automated control systems would operate in sync. Urban planning will increasingly consider airspace as a valuable layer of infrastructure, much like roads or power grids. Therefore, collaboration between governments, industry, and technology providers to design cities capable of supporting high-density autonomous air mobility is required. Conclusion Unmanned systems are redefining the global balance of power, transforming industrial processes, and reshaping urban futures. The convergence of autonomy, AI, and networked airspace introduces both unprecedented opportunity and profound risk. Geopolitically, drones dilute traditional military dominance; economically, they catalyze a new airborne industrial revolution; technologically, they push societies toward complex management of shared automated airspace. Future policy, regulation, and innovation will determine whether unmanned systems become drivers of prosperity or vectors of instability. References Altman, H. (2025, November 13). Russia Creates New Military Branch Dedicated to Drone Warfare. The War Zone (TWZ). https://www.twz.com/news-features/russia-creates-new-military-branch-dedicated-to-drone-warfare Amazon. (2023). Prime Air: The Future of Drone Delivery. Amazon Corporate Publications. Biddle, S., & Oelrich, I. (2016). Future Warfare in the Age of Drones. Council on Foreign Relations. Deloitte. (2022). Drones in Industrial Operations: Transforming Asset Inspection and Performance. Deloitte Insights. FAA (Federal Aviation Administration). (2023). Integration of Unmanned Aircraft Systems into the National Airspace System. U.S. Department of Transportation. FAA (Federal Aviation Administration). (2025). Drones. https://www.faa.gov/uas Fischer, S. (2020). China’s Military–Civil Fusion Strategy: A View from Washington. U.S.–China Economic and Security Review Commission. Kania, E. B. (2020). Learning Warfare from the Laboratory: China’s Progress in Military Innovation. Center for a New American Security (CNAS). Kesteloo, H. (2025, September 29). Global Military Drone Race Intensifies as Nations Rush to Copy Iran’s Shahed Design. Medium. https://medium.com/@hayekesteloo/global-military-drone-race-intensifies-as-nations-rush-to-copy-irans-shahed-design-404badf482fb Kopardekar, P. (2016). Unmanned Aircraft System (UAS) Traffic Management (UTM) Concept of Operations. NASA Ames Research Center. McKinsey & Company. (2022). The Commercial Drone Market Outlook: Insights on Market Growth, Industrial Adoption, and Regulation. McKinsey Robotics & Automation Practice. Mehta, A. (2022). Counter-Drone Systems and the Future of Air Defense. Defense News. Newton, M. (2025, November 3). How Are Drones Changing War? The Future of the Battlefield. Center for European Policy Analysis (CEPA). https://cepa.org/article/how-are-drones-changing-war-the-future-of-the-battlefield/ Péria-Peigné, L. (2023, April 17). TB2 Bayraktar: Big Strategy for a Little Drone. IFRI. https://www.ifri.org/en/memos/tb2-bayraktar-big-strategy-little-drone PwC. (2023). Clarity from Above: Global Drone Market Analysis. PwC Global. Roland Berger. (2022). Urban Air Mobility: The Rise of the Drone Economy. Roland Berger Strategy Consultants. Rwanda Civil Aviation Authority. (2021). Regulatory Framework for Drone Delivery and BVLOS Operations. Government of Rwanda. Sadot, U. (n.d.). Proliferated Drones: A Perspective on Israel. Center for a New American Security (CNAS). https://drones.cnas.org/reports/a-perspective-on-israel/ Schmidt, E., Work, R., & Clyburn, M. (2021). Final Report: National Security Commission on Artificial Intelligence. U.S. Government Printing Office. Singer, P. W. (2009). Wired for War: The Robotics Revolution and Conflict in the 21st Century. Penguin Books. Statista. (2023). Global Drone Market Value and Investment Trends. Statista Market Outlook. Vision of Humanity. (2024, June 13). How Drones Have Shaped the Nature of Conflict. https://www.visionofhumanity.org/how-drones-have-shaped-the-nature-of-conflict/ Wing (Alphabet). (2023). Autonomous Delivery Networks and Future Logistics. Wing Technical Publications. Zipline. (2022). Operational Impact of Automated Medical Delivery by Drone. Zipline International Case Studies.

Defense & Security
Lima, Peru - August 12, 2012: Seizure of drug or cocaine cargo in a truck with international destination. Packages filled with cocaine and the fight against drug trafficking.

Drug trafficking as a transnational system of power: origins, evolution, and perspectives

by World & New World Journal

Drug trafficking is the illegal trade, in large quantities, of drugs or narcotics (RAE, 2025). However, while this definition is accurate, it is insufficient to describe the complexity of a global phenomenon that transcends borders and involves the production, purchase, and distribution of illicit substances. Drug trafficking has developed hand in hand with global trade and interconnection (Saldaña, 2024). In other words, the evolution of drug trafficking is closely linked to globalization, which has strengthened the logistical, technological, and financial networks that enable its expansion. Therefore, more than isolated crime, drug trafficking must be understood as a transnational system of power that feeds on globalization itself. Drug Trafficking as a Transnational System of Power Drug trafficking is described by some authors as a profoundly complex transnational phenomenon resulting from globalization (Luna Galván, Thanh Luong, & Astolfi, 2021). This phenomenon involves and connects global networks of production, logistics, financing, and consumption, all made possible by economic interdependence, information technologies, and established global logistical routes. These authors analyze drug trafficking from a multidimensional perspective, identifying seven interrelated spheres that sustain this activity: the economic (money laundering and investment diversification), institutional (corruption and institutional capture), organizational (organized criminal networks and advanced logistics), social (presence in territories with state vacuums and community legitimization), technological (use of cryptomarkets, encryption, and innovation), geopolitical (route adaptability and resilience against state policies), and cultural (narratives and subcultures that normalize illicit practices) (Luna Galván, Thanh Luong, & Astolfi, 2021). These dimensions form a web of relationships in which criminal groups not only control the flow of drugs but also influence economic and political structures. As Interpol (n.d.) warns, this global network undermines and erodes the political and economic stability of the countries involved, while also fostering corruption and generating irreversible social and health effects. Furthermore, drug trafficking is intertwined with other crimes — such as money laundering, corruption, human trafficking, and arms smuggling — thus forming a globalized criminal ecosystem, a global issue and a national security concern for nations worldwide. Origins and historical context There are records of the use of entheogenic drugs for ritual or medicinal purposes in Mesoamerican cultures — such as the Olmecs, Zapotecs, Mayas, and Aztecs (Carod Artal, 2011) — as well as in Peru (Bussmann & Douglas, 2006), the Amazon region, and even today among the Wixárika culture in Mexico (Haro Luna, 2023). Likewise, there was widespread and diverse drug use among the ancient Greeks and Romans, including substances such as mandrake, henbane, belladonna, cannabis, and opium, among others (Pérez González, 2024). However, modern drug trafficking can trace its origins to the First Opium War (1839–1842) between the Chinese Empire (Qing Dynasty) and the British Empire, marking the first international conflict directly linked to the drug trade. During the second half of the 19th century and the early 20th century, several drugs —such as heroin, cocaine, cannabis, and amphetamines — made their debut in the pharmaceutical field, being used in medicines and therapeutic remedies (López-Muñoz & Álamo González, 2020). This period is considered the pharmaceutical revolution, characterized by the emergence of researchers, research centers, and major discoveries in the field. During that time, the term “drug” began to be associated with “addiction.” The pharmaceutical revolution had its epicenter in Germany; however, it was the British and Americans who promoted its expansion (Luna-Fabritius, 2015) and contributed to the normalization of psychoactive substance consumption. Military promotion, use and dependence Armed conflicts — from the U.S. Civil War (1861–1865) to the First World War (1914–1918) — played a key role in spreading and promoting the military use of psychoactive substances. For instance, stimulants such as alcohol, cocaine, amphetamines, and methamphetamines were used to combat sleep, reduce fatigue, boost energy, and strengthen courage, while depressants like opium, morphine, and marijuana were used to relieve combat stress and mitigate war trauma (Marco, 2019). The dependence that developed led to a process of expansion among the civilian population, which entered a period of mass experimentation that often resulted in substance abuse and chemical dependency (Courtwright, 2001). In response, the first restrictive laws emerged, particularly in the United States (López-Muñoz & Álamo González, 2020). However, the high demand for certain substances, such as opium, gave rise to the search for markets capable of meeting that demand. Thus, Mexico — influenced by Chinese immigration that introduced the habit of smoking opium in the country — became, by the 1940s, the epicenter of poppy cultivation and opium processing in the region known as the Golden Triangle (Sinaloa, Durango, and Chihuahua). It became the main supplier for drug markets in the United States and other parts of the continent, at times providing up to 90% of the demand during periods of shortage (Sosa, 2025). Even during World War II (1939–1945) — when the traditional supply of heroin and morphine to Europe was disrupted — Mexico strengthened its role in the illicit trade by providing smoking opium and processed morphine or heroin. These developments, alongside the implementation of opiate regulations in Mexico, helped consolidate and structure Mexican drug trafficking, which has persisted for more than sixty years (Sosa, 2025). Social expansion and regulatory restrictions The end of World War II brought stricter restrictions and regulations, but that did not prevent socio-cultural movements such as the hippie movement (in the 1960s) from adopting the use of marijuana, hashish, LSD, and hallucinogenic mushrooms (Kiss, 2025) without facing severe repercussions. That same hippie movement — which promoted pacifism and opposed the Vietnam War (1955–1975) — in one way or another encouraged drug use among young people. Moreover, the demand for substances by returning veterans led to the internationalization of drug markets, fostering, for example, the heroin trade from Southeast Asia (Laos, Myanmar, and Thailand) (Saldaña, 2024). The Nixon administration and the US “War on Drugs” The dependency became so severe that it was considered a public health emergency in the United States. On June 18, 1971, Richard Nixon declared the “War on Drugs” at an international level, labeling drug trafficking as “public enemy number one” (Plant & Singer, 2022). Nixon’s strategy combined international intervention with increased spending on treatment and stricter measures against drug trafficking and consumption (Encyclopedia.com, n.d.), along with the creation of the Drug Enforcement Administration (DEA) in 1973. Although the War on Drugs was officially declared in 1971, it had a precedent in 1969 with the failed Operation Intercept, whose goal was to combat marijuana trafficking across the U.S.–Mexico border (M. Brecher, 1972). As part of his international strategy, Nixon launched several operations such as Operation Condor with Mexico (1975 and 1978), Operation Stopgap in Florida (1977), and Operation Fulminante, carried out by Colombian President Julio César Turbay in 1979. Most of these efforts were aimed at combating marijuana trafficking. The results were mixed, but the consequences were significant, as drug traffickers resisted and adapted — giving rise to a more active and violent generation and marking the consolidation of modern drug trafficking. The Consolidation of Modern Drug Trafficking: Colombia and Reagan Era. During the 1980s and 1990s, drug trafficking evolved into a highly organized industry. Figures such as Félix Gallardo [1], Amado Carrillo Fuentes [2], Pablo Escobar [3], Carlos Lehder [4], Griselda Blanco [5], Rafael Caro Quintero [6], and later Joaquín “El Chapo” Guzmán Loera [7], among others (Wikipedia, 2025), symbolized the growing power of the cartels in Colombia and Mexico. During this period, criminal organizations consolidated their operations, and the profits from drug trafficking fueled violence and corruption. Moreover, the struggle for power — not only in Mexico, Colombia, Peru, or the United States but also in other regions of Latin America — and the competition for markets led to greater sophistication, as well as the construction of infrastructure and distribution networks. Pablo Escobar’s famous phrase, “plata o plomo” (“silver or lead”), reflects the immense power and influence that drug traffickers wield, even over governments and authorities. Colombia, through the Cali and Medellín cartels, dominated the production and export of cocaine via a triangulation network that connected through Mexico or the Caribbean, with the final destination being the United States, where the Reagan administration (1981–1989) intensified the War on Drugs, focusing on criminal repression rather than public health. The Reagan’s War on Drugs was characterized for setting aggressive policies and legislative changes in the 1980s which increased the law enforcement and the punishment, as a consequence the prison penalties for drug crimes skyrocketed from 50,000 in 1980 to more than 400,000 by 1997 (HISTORY.com Editors 2017) Mexican cartels consolidation and Mexico’s transition to a consumer nation Around the same time, on the international arena, following the fragmentation of the Guadalajara Cartel in the 1980s, the emergence of new Mexican cartels — the Sinaloa Cartel, Gulf Cartel, Tijuana Cartel, and Juárez Cartel — combined with the downfall of Colombia’s Cali and Medellín cartels in the mid-1990s, catapulted Mexican cartels into prominence. They seized control of trafficking routes and diversified their operations, thus consolidating their role in the global drug market. Later, the September 11, 2001, attacks altered U.S. security policy, affecting border transit, increasing security measures, and tightening inspections along the southern border with Mexico (Rudolph, 2023) — one of the main drug distribution routes into the United States. Although some studies suggest that U.S. security policies at land ports of entry had only marginal pre- and post-9/11 effects (Ramírez Partida, 2014), in reality, these measures significantly impacted Mexico more than the US. Mexico transitioned from being primarily a producer, distributor, and transit country for drugs to also becoming a consumer nation. In 2002, more than 260,000 people were reported to use cocaine, whereas today the number exceeds 1.7 million addicts, according to data from the federal Secretariat of Public Security (Alzaga, 2010). Likewise, the ENCODAT 2016–2017 survey shows that the percentage of Mexican adolescents who had consumed some type of drug increased from 1.6% in 2001 to 6.4% in 2016 (REDIM, 2025). By disrupting one of the main drug distribution routes to the United States, the situation led to drugs being redistributed and sold within Mexican territory. This, combined with the country’s social and economic conditions, facilitated the recruitment of young people by organized crime groups (Becerra-Acosta, 2010) for the domestic distribution of drugs. Mexico and the Contemporary War on Drug Trafficking The escalation of violence caused by the power struggle among Mexican cartels became so critical that President Felipe Calderón (2006–2012) declared an open war against organized crime on December 10, 2006 (Herrera Beltrán, 2006). His strategy involved deploying the armed forces throughout Mexican territory, as well as obtaining financial aid, training, and intelligence through the Mérida Initiative from the United States to support the fight against drug trafficking and organized crime in Mexico and Central America (Embassy of the United States in Mexico, 2011). His successor, Enrique Peña Nieto (2012–2018), shifted the focus toward prevention and civil protection, although he continued the militarization process and the transformation of police institutions (BBC News, 2012). The strategies of Calderón and Peña Nieto — often grouped together — while questioned and criticized (Morales Oyarvide, 2011), achieved significant arrests, including figures such as “La Barbie,” “La Tuta,” “El Menchito,” “El Chapo,” “El Marro,” and “El Ratón.” They also eliminated key figures like Arturo Beltrán Leyva, Ignacio Coronel Villarreal, Antonio Cárdenas Guillén, Heriberto Lazcano Lazcano, and Nazario Moreno González. Later, during the presidency of Andrés Manuel López Obrador (2018–2024), the strategy shifted once again toward a stance of “hugs, not bullets,” showing clear signs of passivity that allowed cartel expansion (Fernández-Montesino, 2025). His successor, Claudia Sheinbaum (2024–2030), on the other hand, has navigated both internal and external pressures (particularly from the United States), seeking to balance intelligence, coordination, and attention to structural causes (Pardo, 2024), although continued militarization suggests a hybrid strategy remains in place. Fentanyl and synthetic drugs: The future of drug trafficking The president of the International Narcotics Control Board (INCB), Jallal Toufiq, said that “the illicit drug industry represents a major global public health threat with potentially disastrous consequences for humankind.” In addition, the 2024 INCB Annual Report found that illicit synthetic drugs are spreading and consumption is increasing, moreover, these could overtake some plant-based drugs in the future. (International Narcotics Control Board 2025) The press release before mentioned also points out that Africa, Middle East, East and Southeast Asia and the Pacific drug markets are increasing, while production in Central America, Peru, Colombia and the Caribbean keeps on developing. On the other hand, the opioid crisis (fentanyl) remains a serious problem for North America and the cocaine keeps affecting Europe with a spillover Africa. (International Narcotics Control Board 2025). The fentanyl crisis in North America is well documented. Data show an increase of 540% in overdose deaths between 2013 and 2016 (Katz 2017), with 20,100 deaths in the USA, while by 2023, the number increase to 72,776 deaths (USA Facts 2025). On the other hand, Canada has reported 53,821 deaths between January 2016 and March 2025 (Government of Canada 2025), while Mexico reported only 114 deaths from 2013 to 2023 (Observatorio Mexicano de Salud Mental y Adicciones 2024). These figures reveal not only the unequal regional impact of the synthetic opioid crisis but also the ongoing adaptation of organized crime networks that sustain and expand these markets. Evolution and Diversification of Organized Crime The phenomenon of adaptation, evolution, and diversification of new illicit markets is not an isolated issue. Experts such as Farah & Zeballos (2025) describe this in their framework Waves of Transnational Crime (COT). The first wave is represented by Pablo Escobar and the Medellín Cartel, pioneers in moving tons of cocaine to the U.S. market through Caribbean routes. The second wave is represented by the Cali Cartel, which perfected the model and expanded trafficking routes through Central America and Mexico — still focusing on one product (cocaine) for one main market (the United States). The third wave is characterized by the criminalization of criminal structures, the use of armed groups (such as the FARC in Colombia), and the use of illicit production and trafficking as instruments of state policy, with clear effects on public policy functioning. At this stage, there is product diversification, with the main market remaining the U.S., but expansion reaching Europe (Farah & Zeballos, 2025). Finally, the fourth wave — the current stage — is defined by total diversification, a shift toward synthetic drugs, and global expansion, involving extra-regional groups (Italian, Turkish, Albanian, and Japanese mafias), where many operations function “under government protection.” This fourth wave offers clear examples of collusion between criminal and political spheres, which is not new. However, the arrest of Genaro García Luna (Secretary of Public Security under Calderón), the links between high-profile Mexican politicians and money laundering or fuel trafficking (Unidad de Investigación Aplicada de MCCI, 2025), and even Trump’s statements claiming that “Mexico is largely governed by cartels” (DW, 2025) reveal a reality in which drug trafficking and criminal organizations are no longer merely producers and distributors of illicit substances. Today, they possess the power and capacity to establish parallel governance systems, exercise territorial control, infiltrate institutions and local economies, and even replace core state functions (Farah & Zeballos, 2025). Future Perspectives and Challenges Currently, drug trafficking and organized crime represent structural threats. It is well known and widely studied what drug trafficking means for public security and health, but it has now also become a threat to politics, democracy, and the rule of law. With divided opinions, many analysts argue that the war on drugs has failed — in addition to being costly and, in many cases, counterproductive (Thomson, 2016). Punitive strategies have generated more violence without truly addressing the social causes behind the phenomenon (Morales Oyarvide, 2011). In this context, a paradigm shift is necessary: drug trafficking should not be approached solely as a security issue, but also as a public health and social development problem. Drug use has been a historical constant, and its total eradication is unrealistic. The key lies in harm-reduction policies, international cooperation, and inclusive economic development. Moreover, organized crime demonstrates adaptive resilience, making its eradication difficult — especially given that its operational capacities are so diversified, it maintains alliances with groups worldwide, and globalization and new technologies continually help it reinvent itself. Furthermore, even political and economic tensions among the United States, Mexico, Canada, and China are now intertwined with the trade of synthetic drugs — particularly fentanyl —, revealing the geopolitical magnitude of the problem (Pierson, 2024). Conclusion In summary, drug trafficking has ceased to be a marginal activity and has become a transnational structure capable of influencing politics, the economy, and society. Its persistence can be explained not only by the profitability of the business but also by social inequality, institutional corruption, and sustained global demand. History demonstrates that repression has not eradicated the problem but rather transformed it. Today, it is essential to rethink drug policies from a comprehensive approach that integrates security, public health, education, and international cooperation. Only through a multidimensional strategy will it be possible to contain a phenomenon that — more than an illicit economy — constitutes a global form of parallel governance that challenges the very foundations of the modern state. Notes[1] Miguel Ángel Félix Gallardo, also known as “El Jefe de Jefes” (“The Boss of Bosses”), “El Padrino” (“The Godfather”), or “The Drug Czar”, was one of the founders of the Guadalajara Cartel. [2] Amado Carrillo Fuentes, known as “El Señor de los Cielos” (“The Lord of the Skies”), was the former leader of the Juárez Cartel. [3] Pablo Escobar was the founder and former leader of the Medellín Cartel. [4] Carlos Lehder was the co-founder of the Medellín Cartel. [5] Griselda Blanco, known as “The Black Widow,” “The Cocaine Queen,” or “La Patrona” (“The Boss”), was a founder of the Medellín Cartel. [6] Rafael Caro Quintero, known as “El Narco de Narcos” (“The Drug Lord of Drug Lords”), was one of the founders of the Guadalajara Cartel. [7] Joaquín Guzmán Loera, known as “El Chapo,” was the former leader of the Sinaloa Cartel. ReferencesAlzaga, Ignacio. 2010. Creció mercado de droga por blindaje en frontera. 23 de Enero. https://web.archive.org/web/20100328122522/http://impreso.milenio.com/node/8707705.BBC News. 2012. México: el plan de Peña Nieto contra el narcotráfico. 18 de Diciembre. https://www.bbc.com/mundo/noticias/2012/12/121218_mexico_pena_nieto_estrategia_seguridad_narcotrafico_jg.Becerra-Acosta, Juan P. 2010. Los ninis jodidos y el narco tentador…. 16 de Agosto. https://web.archive.org/web/20100819043827/http://impreso.milenio.com/node/8816494.Bussmann, Rainer W., y Sharon Douglas. 2006. «Traditional medicinal plant use in Northern Peru: tracking two thousand years of healing culture.» Journal of Ethnobiology and Ethnomedicine 47. doi:https://doi.org/10.1186/1746-4269-2-47.Carod Artal, Francisco Javier. 2011. «Alucinógenos en las culturas precolombinas mesoamericanas.» Neurología 30 (1): 42-49. doi:https://doi.org/10.1016/j.nrl.2011.07.003.Courtwright, David. 2001. «Forces of Habit. Drugs and the Making of the Modern World.» Editado por Cambridge. (Harvard University Press).DW. 2025. Trump dice que México está "gobernado por los carteles". 19 de Febrero. https://www.dw.com/es/trump-dice-que-m%C3%A9xico-est%C3%A1-gobernado-por-los-carteles/a-71666187.Embajada de los Estados Unidos en México. 2011. Iniciativa Mérida. 22 de Junio. http://spanish.mexico.usembassy.gov/es/temas-bilaterales/mexico-y-eu-de-un-vistazo/iniciativa-merida.html.Encyclopedia.com. s.f. President Nixon Declares "War" on Drugs. https://www.encyclopedia.com/science/medical-magazines/president-nixon-declares-war-drugs?utm_source=chatgpt.com.Farah, Douglas, y Pablo Zeballos. 2025. ¿Por qué el crimen organizado es cada vez más grave en América Latina? 19 de Septiembre. https://latinoamerica21.com/es/por-que-el-crimen-organizado-es-cada-vez-mas-grave-en-america-latina/.Fernández-Montesino, Federico Aznar. 2025. México y la guerra contra el narcotráfico. 20 de Mayo. https://www.defensa.gob.es/documents/2073105/2564257/Mexico_2025_dieeea36.pdf/1d38d679-f529-7d1e-130c-71a71cf0447c?t=1747593702946.Government of Canada. 2025. Opioid- and Stimulant-related Harms in Canada. 23 de September. Último acceso: 5 de November de 2025. https://health-infobase.canada.ca/substance-related-harms/opioids-stimulants/.Haro Luna, Mara Ximena. 2023. Los hongos en la cultura wixárika. https://arqueologiamexicana.mx/mexico-antiguo/los-hongos-en-la-cultura-wixarika.Herrera Beltrán, Claudia. 2006. El gobierno se declara en guerra contra el hampa; inicia acciones en Michoacán. 12 de Diciembre. https://www.jornada.com.mx/2006/12/12/index.php?section=politica&article=014n1pol.HISTORY.com Editors. 2017. Just Say No. 31 de May. Último acceso: 5 de November de 2025. https://www.history.com/articles/just-say-no.International Narcotics Control Board. 2025. Press release: The deadly proliferation of synthetic drugs is a major threat to public health and is reshaping illicit drug markets, says the International Narcotics Control Board. 4 de March. Último acceso: 5 de November de 2025. https://www.incb.org/incb/en/news/press-releases/2025/the-deadly-proliferation-of-synthetic-drugs-is-a-major-threat-to-public-health-and-is-reshaping-illicit-drugs-markets--says-the-international-narcotics-control-board.html#:~:text=In%20its%202024%20Annu.Interpol. s.f. Tráfico de drogas. https://www.interpol.int/es/Delitos/Trafico-de-drogas.Katz, Josh. 2017. The First Count of Fentanyl Deaths in 2016: Up 540% in Three Years. 2 de September. Último acceso: 5 de November de 2025. https://www.nytimes.com/interactive/2017/09/02/upshot/fentanyl-drug-overdose-deaths.html?smid=tw-nytimes&smtyp=cur.Kiss, Teresa. 2025. Movimiento hippie. 18 de Octubre. https://concepto.de/movimiento-hippie/.López-Muñoz, Francisco, y Cecilio Álamo González. 2020. Cómo la heroína, la cocaína y otras drogas comenzaron siendo medicamentos saludables. 25 de June. https://theconversation.com/como-la-heroina-la-cocaina-y-otras-drogas-comenzaron-siendo-medicamentos-saludables-140222.Luna Galván, Mauricio, Hai Thanh Luong, y Elisa Astolfi. 2021. «El narcotráfico como crimen organizado: comprendiendo el fenómeno desde la perspectiva trasnacional y multidimensional.» Revista De Relaciones Internacionales, Estrategia y Seguridad 199-214. doi:https://doi.org/10.18359/ries.5412.Luna-Fabritius, Adriana. 2015. «Modernidad y drogas desde una perspectiva histórica.» Revista mexicana de ciencias políticas y sociales 60 (225). https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-19182015000300021.M. Brecher, Edward. 1972. Chapter 59. The 1969 marijuana shortage and "Operation Intercept". https://www.druglibrary.org/Schaffer/library/studies/cu/CU59.html.Marco, Jorge. 2019. Cocaína, opio y morfina: cómo se usaron las drogas en las grandes guerras del siglo XX. 7 de Diciembre. https://www.bbc.com/mundo/noticias-50687669.Morales Oyarvide, César. 2011. El fracaso de una estrategia: una crítica a la guerra contra el narcotráfico en México, sus justificaciones y efectos. Enero-Febrero. https://nuso.org/articulo/el-fracaso-de-una-estrategia-una-critica-a-la-guerra-contra-el-narcotrafico-en-mexico-sus-justificaciones-y-efectos/.Observatorio Mexicano de Salud Mental y Adicciones. 2024. Informe de la demanda y oferta de fentanilo en México: generalidades y situación actual. Abril. Último acceso: 2025 de November de 2025. https://www.gob.mx/cms/uploads/attachment/file/910633/Informe_Fentanilo_abril_2024.pdf.Pardo, Daniel. 2024. Cómo es el plan de seguridad que Claudia Sheinbaum anunció en plena crisis de violencia en México. 8 de Octubre. https://www.bbc.com/mundo/articles/c1wn59xe91wo.Peréz González, Jordi. 2024. Del opio al cannabis. Drogas en Grecia y Roma, una peligrosa adicción de plebeyos y emperadores. 19 de Enero. https://historia.nationalgeographic.com.es/a/drogas-grecia-roma-peligrosa-adiccion-plebeyos-emperadores_14533.Pierson, David. 2024. El fentanilo tiene otro auge, ahora como arma diplomática de Donald Trump contra China. 26 de Noviembre. https://www.nytimes.com/es/2024/11/26/espanol/mundo/fentanilo-china-trump.html.Plant, Michael, y Peter Singer. 2022. Why drugs should be not only decriminalised, but fully legalised. August. https://www.newstatesman.com/ideas/2022/08/drugs-should-be-decriminalised-legalised.Ramírez Partida, Héctor R. 2014. «Post-9/11 U.S. Homeland Security Policy Changes and Challenges: A Policy Impact Assessment of the Mexican Front.» Norteamérica 9 (1). https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-35502014000100002.Real Academia Española. 2025. narcotráfico. https://www.rae.es/diccionario-estudiante/narcotr%C3%A1fico.REDIM. 2025. Consumo de alcohol, tabaco y drogas en la infancia y adolescencia en México (2023). 16 de Mayo. https://blog.derechosinfancia.org.mx/2025/05/16/consumo-de-alcohol-tabaco-y-drogas-en-la-infancia-y-adolescencia-en-mexico-2023/.Rudolph, Joseph R. 2023. 9/11 and U.S. immigration policy. https://www.ebsco.com/research-starters/law/911-and-us-immigration-policy.Saldaña, Eduardo. 2024. ¿Qué es el narcotráfico? 2024 de Febrero. https://elordenmundial.com/que-es-narcotrafico/.Sosa, Fabián. 2025. La llegada del opio a México, la historia que dio inicio al narcotráfico en el país. 2 de Agosto. https://www.infobae.com/mexico/2025/08/02/la-llegada-del-opio-a-mexico-la-historia-que-dio-inicio-al-narcotrafico-en-el-pais/#:~:text=Su%20aparici%C3%B3n%20en%20M%C3%A9xico%20se,utilizada%20para%20tratar%20sus%20heridas.Thomson, Stéphanie. 2016. Los expertos opinan: la guerra contra las drogas ha sido un fracaso. ¿Es hora de legalizarlas? 7 de Diciembre. https://es.weforum.org/stories/2016/12/los-expertos-opinan-la-guerra-contra-las-drogas-ha-sido-un-fracaso-es-hora-de-la-legalizacion/.Unidad de Investigación Aplicada de MCCI. 2025. Huachicol Fiscal. https://contralacorrupcion.mx/anuario-de-la-corrupcion-2025-gobierno-de-sheinbaum/huachicol-fiscal-corrupcion-mexico/.USA Facts. 2025. Are fentanyl overdose deaths rising in the US? 25 de October. Último acceso: 5 de November de 2025. https://usafacts.org/articles/are-fentanyl-overdose-deaths-rising-in-the-us/.Wikipedia. 2025.

Defense & Security
New Delhi, India, Jan 20 2025: Indian Army's T-90 Bhishma is a modern main battle tank (MBT) participating in the rehearsal for the Republic Day Parade 2025 at Kartavya Path,

Reforging The Arsenal: India's Defence Industry Transformation

by Darshit Thakar

India is the fastest-growing major economy in the world, and according to the Global Firepower Index, the Indian Armed Forces are the 4th strongest in the world. But when we look at SIPRI data, we can find that since 2011, India has been the largest defence equipment importer in the world. If we look at India's neighborhood, it's been very hostile since Independence. India fought four major wars with Pakistan — 1948, 65, 71, and 99 — and many skirmishes, Operation Sindoor being the most recent one. With China, it fought a war in 1962 and many skirmishes, the most recent one in Galwan valley in the early 2020s. This kind of environment, and India being a rising global power, demands it to have some self-sufficiency in weapons manufacturing. A Brief History of Defence Policy At Independence, India enjoyed an early advantage over non-western states. India was the crown jewel of the British Empire, and to sustain control over it, Britain established lots of arms factories. But when India got independence, everything changed. Jawaharlal Nehru was sworn in as the first Prime Minister. He was a member of the Fabian Society and strongly believed in socialism, so he got everything centralized and worked in similar way as the Soviet Union. There was private participation, but it was limited to only small-scale industries. Defence was the government arena. There were DRDO (Defence Research and Development Organisation), DPSUs (Defence Public Sector Undertakings), and Ordnance Factories. DRDO was responsible for designing, the DPSUs made complex weapon systems, while Ordnance Factories made ammunition, firearms, artillery shells, etc. However, this highly centralised socialist model, though well-intentioned, restricted the flexibility to build upon the industrial base India had inherited from the British era. In 1991, India initiated LPG (Liberalisation, Privatisation, and Globalisation) reforms to liberalize the economy. Private players were allowed in the defence sector from 2001 onwards, but there wasn't a lot of momentum for the next 15 years. Momentum began to rise only after 2014 when reforms and policy incentives actively encouraged private participation. Current Reforms Since assuming power in 2014, Prime Minister Narendra Modi’s government has made a determined attempt to strengthen the Indian arms industry and transform the country’s image from the world’s largest arms importer to a major exporter of defence equipment. To realize this goal, the government has announced many reform measures under the ‘Make in India’ initiative and ‘Atmanirbhar Bharat Abhiyan’ (self-reliant India mission). These measures cover virtually every facet of the Indian defence economy, spanning structures, acquisition processes, industrial regulations, and budgetary provisions. During the 1999 Kargil War and 2001 Operation Parakram, India found operational constraints, and there was a recommendation to create a Chief of Defence Staff (CDS) who would function as the head of all three services. In 2019, the government created the post of Chief of Defence Staff (CDS), which is touted as the most significant defence reform since Independence. Among all the responsibilities, the CDS is also assigned the task of “promoting the use of indigenous equipment by the Services.” The Department of Military Affairs (DMA), which works under the guidance of the CDS, made a list of 500 pieces of equipment that should be produced indigenously. These lists include several big-ticket items such as missiles, fighter aircraft, helicopters, warships, radars, and a range of munitions. The government also announced the long-overdue corporatisation of the OFs that were earlier functioning as government arsenals. The decision involved converting 41 OFs into seven distinct DPSUs. As corporate entities, the new DPSUs will enjoy greater autonomy in decision-making and be accountable for their performance. However, while corporatisation has begun to improve accountability, the impact of these changes is still uneven, and many DPSUs continue to face legacy inefficiencies. As the government wanted to increase the acquisition of arms made in India, it announced the Defence Procurement Procedure (DPP) in 2016. The DPP-2016 emphasized indigenisation by giving primacy to the domestic industry over foreign contractors. It also made an attempt to decrease procurement timelines and increase the overall effectiveness of the procurement process. To enhance the role of the private sector in defence production, the DPP-2016 also simplified the ‘Make’ procedure and created space for new Strategic Partnership (SP) guidelines, which were separately released in 2017. In 2020, the government announced the Defence Acquisition Procedure (DAP). Building on the DPP-2016, the DAP-2020 focused on higher levels of indigenisation and innovation through the participation of Indian industry, including startups and small and medium enterprises. New outfits like the Innovations for Defence Excellence (iDEX) and the Defence Innovation Organisation (DIO) have been created to encourage start-ups and micro, small and medium enterprises (MSMEs) to promote defence industrialisation. The government has also introduced several measures to improve the ease of doing business in the defence manufacturing sector. It streamlined the industrial licensing process for the private sector. It also focused on liberalising the defence foreign direct investment (FDI) regime by enhancing the earlier foreign equity cap from a maximum of 26 percent under the automatic route, first to 49 percent and subsequently to 74 percent. The government has also brought out a standard operating procedure to formalise the process of defence export authorisation; allowed the private sector to use government-run facilities to test their equipment; launched two defence industrial corridors; and created a dedicated web portal, SRIJAN, so that the DPSUs and the armed forces can upload previously imported items for indigenisation by domestic entities. Impact of the Policy Following several reforms, the defence industry has made certain progress. The most visible indicator of this progress is the near-continuous increase in production turnover.  The value of defence production has surged to a record high of ₹1,27,434 crore (~$15.2 billion), marking an impressive 174% increase from ₹46,429 crore in 2014-15, according to data from all Defence Public Sector Undertakings (DPSUs), other public sector units manufacturing defence items, and private companies. The Ministry of Defence has signed a record 193 contracts in 2024-25, with the total contract value surpassing ₹2,09,050 crore (~$24.8 billion), nearly double the previous highest figure. Of these, 177 contracts, accounting for 92 percent, have been awarded to the domestic industry, amounting to ₹1,68,922 crore (~$20.1 billion), which is 81 percent of the total contract value. Defence exports have surged from ₹686 crore in FY 2013-14 to an all-time high of ₹23,622 crore (~$2.76 billion) in FY 2024-25, marking a 34-fold increase over the past decade. India is now exporting arms, ammunition, and related items to over 85 countries, with 100 Indian firms participating in international sales. Some of the major items exported include “Dornier-228, 155 mm Advanced Towed Artillery Guns, BrahMos Missiles, Akash Missile System, Radars, Simulators, Mine Protected Vehicles, Armoured Vehicles, PINAKA Rockets & Launchers, Ammunitions, Thermal Imagers, Body Armours, besides Systems, Line Replaceable Units and Parts & components of Avionics and Small Arms.” Challenges Even though India has made noticeable progress, challenges still persist. According to SIPRI, in 2011 India was responsible for 14% of global arms imports — making it the largest importer. Fast forward to 2024, it still accounts for 8.3% of global arms imports — the second largest, just behind war-torn Ukraine. While this decline in share indicates progress, the absolute value of imports remains high due to India’s expanding defence budget and modernisation drive. Even though the industry has grown, it hasn't fully absorbed the appetite for equipment required by the armed forces. On the export front, despite registering a noticeable increase in international arms sales, the industry is far from the target set by the government. The biggest challenge in meeting the government’s export target comes from the DPSUs, which have been rising slowly to the expectations. Some recent attempts to export major systems have not met with success. It faces tough competition from countries like Turkey (~$7.2 billion in defence exports for 2024), South Korea (~$20 billion in defence exports for 2024) and Israel(~$14.8 billion in 2024). The Indian defence industry, despite having a large production and R&D base, lacks the technological depth to design/manufacture major systems and critical parts, components, and raw materials, which are eventually imported. Moreover, the reforms announced by the Modi Government haven't been implemented fully. Given India’s bureaucratic system, overcoming the delays in implementation will remain a key challenge in the foreseeable future. Global Parallels in Defence Industrialisation India's transition from a state-dominated, import-reliant defence ecosystem to a more hybrid, self-reliant model invites comparisons with other emerging powers that have successfully navigated similar paths. South Korea offers a stark contrast through its aggressive export-oriented strategy: starting in the 1970s amid threats from North Korea, Seoul invested heavily in R&D (allocating over 4% of GDP annually in recent years) and leveraged chaebol conglomerates like Hyundai and Hanwha to build integrated supply chains, transforming from an importer to a top-10 global exporter with $20 billion in annual sales by 2024, including K9 howitzers and T-50 trainers. Turkey, facing NATO dependencies and regional instabilities, adopted agile policies under its Defence Industry Agency (SSB), mandating high domestic content (up to 70% in major programs) and integrating SMEs via incentives and technology transfers, propelling exports to $7.2 billion in 2024 through platforms like Bayraktar drones. Israel, constrained by size and hostile neighbors, pioneered a niche innovation ecosystem via public-private partnerships, mandatory military service feeding talent into firms like Rafael and IAI, and venture capital-driven R&D, yielding $14.8 billion in exports focused on high-tech systems such as Iron Dome. Unlike India's historically centralized DPSUs and gradual private inclusion, these models emphasize export discipline, rapid policy iteration, and SME/startup ecosystems—lessons India could adapt by accelerating iDEX funding, enforcing stricter local content in DAP procurements, and fostering chaebol-like consortia to bridge technological gaps and compete globally. Conclusion The Narendra Modi government has sought to break the inertia of snail-like defence reforms that were going on since India's Independence. Under the banner of Atmanirbhar Bharat, it has pushed to cut imports and boost local production. Defence exports have begun to grow. More importantly, private companies and start-ups have entered what was once a tightly guarded public sector preserve. A more competitive ecosystem is slowly taking shape. Yet the road to self-reliance remains long. If India can integrate private innovation with public manufacturing and reduce bureaucratic delays, it could transform from being the world’s largest importer to a key global supplier in the multipolar era. Sourceshttps://www.orfonline.org/research/india-s-defence-industry-achievements-and-challengeshttps://www.orfonline.org/research/a-decade-of-defence-reforms-under-modihttps://www.pib.gov.in/PressReleasePage.aspx?PRID=2116612https://indiasworld.in/reforming-defence-production-faster-and-deeper/https://theprint.in/defence/india-second-largest-arms-importer-after-ukraine-reliance-on-russia-declines-says-sipri-report/2541373/https://www.pib.gov.in/PressNoteDetails.aspx?NoteId=154617&ModuleId=3https://www.cnbc.com/2024/12/04/as-global-defense-spending-surges-south-korean-arms-makers-look-like-a-clear-winnerhttps://www.defensenews.com/global/europe/2025/02/04/turkeys-defense-exports-hit-record-high-of-7.1-billion-in-2024/https://www.defensenews.com/global/mideast-africa/2025/06/05/israel-announces-defense-export-record-15-billion-in-2024/https://www.globalfirepower.com/countries-listing.php

Defense & Security
AI US China Technology War as Chinese and American Technology competition for technological dominance and artificial intelligence trade war or national security risk as a 3D illustration.

The high-Tech Cold War: US-China Rivalry and the Battle for Global Innovation

by Eraj Farooqui

Since the 1970s, the US-China relationship has been defined by a combination of cooperative and competitive objectives. Competitive interests, however, have prevailed, resulting in a rising competition between the two countries. (Pillsbury, 2015) Candidates in the 2016 presidential election treated China as an adversary, with Donald Trump's China-bashing becoming a trademark of his campaign. Rivalry with China has become the organising premise of American foreign policy under Trump's administration. Republicans and Democrats differ on most issues, but they agree on the need to change America's approach towards China. This has sparked speculation about whether the US-China relationship has devolved into a possibly violent clash or a new Cold War. The Trump administration has openly announced a shift in US policy towards China, with Matt Pottinger claiming that the US has modified its China policy to emphasise competition. Former Vice President of Trump Pence stated that the United States will combat China aggressively on all fronts, including economic, military, diplomatic, political, and ideological. This statement is regarded as "the declaration of a new Cold War." (Pence’s, 2018) Former Trump advisor Stephen K. Bannon has declared economic war on China, blaming its exports on the American working and middle classes. Many people agree that China is economically dominating America, and the US government and industry have done little to solve the situation. Globalists such as Madeline Albright, Tom Friedman, and Fareed Zakaria have grown increasingly concerned about China's lack of reciprocity in economic dealings with the United States. David Lampton, a pro-engagement advocate, has criticised China's WTO membership for increasing bilateral trade surpluses. (Staff R. , 2017) The second stage began when Donald Trump determined to halt Chinese commercial and technological advancements, renouncing liberal internationalism in favor of a new grand strategy against China. (Drezner D. R., 2021) The growing view of Xi Jinping as a harsh leader with an aggressive foreign policy contributes to the sense of an ideological clash. China and the United States have initiated an unconstrained war for bilateral, regional, and global dominance, ushering in a new age of strategic conflict that has yet to be fully defined. (Rudd, 2020) The US-China conflict appears to be a Cold War, and any return to a pre-2017 environment of "strategic engagement" with Beijing is no longer politically viable. (Rudd, 2020)However, (Zakaria, 2019) does not feel that the liberal international order has deteriorated as much as is widely assumed, and China is far from a grave threat to the liberal international system. Despite the best intentions of both countries, the US-China relationship is more likely to devolve into economic and military competition. (Lake, 2018) China's strategy aims to modernize its industrial capacity and secure its position as a global powerhouse in high-tech industries. The strategy aims to reduce reliance on foreign technology imports, increase Chinese-domestic content of core materials, and upgrade its dominant position in major strategic industries, such as pharmaceutical, automotive, aerospace, semiconductors, and most importantly, IT and robotics. The 14th Five-Year Plan of China (2021-2025) emphasizes high-quality growth driven by green and high-tech industries, service sectors, and domestic consumption. The US judged China's old growth model as generating a somewhat balanced win-win relationship between the two economies, based on "comparative advantage" and "cost-benefit" evaluations. However, Beijing's new growth model, particularly the "Made in China 2025" aspiration, is perceived as competition with the US service and knowledge economy, resulting in trade and high-tech warfare between the two countries since 2018. (Bernal-Meza L. X., China-US rivalry: a new Cold War or capitalism’s intra-core competition?, 2021) The US business community, once a staunch supporter of engagement, has complained that China has hacked American industrial secrets, created barriers to American firms investing in China, enforced regulations that discriminate against foreigners, maintained high tariffs that should have been reduced decades ago, and blocked American Internet businesses. In a rare joint statement by the allies, the intelligence chiefs of the Five Eyes countries convened on Tuesday to charge China with stealing intellectual property and using artificial intelligence to hack and spy on the countries. (Bing, 2023) The officials from the United States,Britain,Canada,Australia and Huawei,for example,has tight relations with the Party and has been accused of stealing intellectual property as well as spying on Western countries. The United States is concerned about Huwaie's 5G supremacy, which is why it’s CEO, Meng Wan Zhou, was arrested in Canada. Indeed, its importance was highlighted when the United States imposed restrictions restricting, and in some cases prohibiting, Chinese telecoms operations in the American market, and launched a global effort to persuade friends, partners, and others to follow suit. Thus, while President Trump allowed one company (ZTE) a respite from what appeared to be a ban that would put it out of business, later American limitations on Huawei threatened to destroy China's premier international technology company's global viability. (Goldstein, 2020) When it comes to both green technology and chips, it is now at the center of American politics. The CHIPS Act, approved by Congress last year, included $52 billion in grants, tax credits, and other subsidies to stimulate American chip production. That's the kind of industrial policy that would make Hamilton gape and clap. Over the next few years and decades, China will pour vast sums of money into its own industrial strategy programmes, spanning a wide spectrum of cutting-edge technology. According to one Centre for Strategic and International Studies researcher, China already spends more than 12 times as much of its GDP on industrial programmes as the United States. (BROOKS, 2023) Certain social media sites, such as Facebook and Google, are prohibited in China.In the United States, there is a restriction on TIKTOK and WECHAT. To counter China, the United States has implemented a number of statutes, including the: 1.COMPETES Act 2020.: The House Science, Space, and Technology Committee decided to advance the America Competes Act of 2022, which intends to improve America's scientific and technology efforts in the twenty-first century in order to compete with China in vital fields. The bipartisan Act is divided into eleven sections, with Division K headed "Matters Related to Trade." Trade Adjustment Assistance, Import Security and Fairness Act, National Critical Capabilities Review, Modification and Extension of Generalized System of Preferences, Reauthorization of the American Manufacturing Competitiveness Act of 2016 and Other Matters, and Temporary Duty Suspensions and Reductions are the seven sections of the Act. President Joe Biden has indicated his support for the Act, arguing that it will strengthen America's supply chains and reenergize the economy's innovation engine, allowing it to compete with China and the rest of the globe for decades to come. 2.Chips and Science Act 2022: President Joe Biden signed the Chips and Science (or CHIPS) Act into law, promising local semiconductor producers more than $50 billion to expand home output and "counter China." (Cosgrove, 2023) 3.The United States passed the Inflation Reduction Act 2022: Although China now dominates clean technology manufacturing, the Inflation Reduction Act contains provisions geared primarily at strengthening the United States' clean energy supply chain. Furthermore, the global transition to clean technology such as solar panels and electric vehicles is unavoidable and ongoing as they become more affordable than fossil-fueled alternatives and countries take action to achieve their Paris climate obligations. (NUCCITELLI, 2023) CHIP War After failing to achieve an agreement with Chinese regulators, Intel cancelled a $5.4 billion takeover deal with Israel-based Tower Semiconductor. China is one of Intel's most important markets, and on July 3, Beijing announced a license requirement for exporters of gallium and germanium, rare-earth metals used in semiconductor manufacturing. The chip war is mostly motivated by the United States' concerns about China's military exploitation of semiconductor technology. However, China's military sector has a key weakness: most of its cutting-edge applications rely on foreign technological inputs, particularly microprocessor exports. China will be the world's largest buyer of semiconductor manufacturing equipment in 2021, accounting for 26% of worldwide demand. Biden established an export license requirement in October 2022, limiting China's access to semiconductor innovations manufactured by US corporations. In July 2023, Japan officially prohibited the sale of 23 types of semiconductor equipment to China, which is significantly more widespread than the US restriction, impeding China's development of advanced chips and basic chips used in technology such as automobiles and smartphones. The Netherlands Standing Committee on Foreign Trade and Development Cooperation said in September that it will begin limiting its semiconductor technology exports to China. According to Nikkie Asia, this new legislation would prohibit the Dutch ASML from exporting innovative chip manufacturing methods without first getting government-approved licenses. (CHENG TING-FANG, 2023) These export limitations have pushed Beijing to retaliate, with China's most recent regulation on gallium and germanium shipments serving as a direct retaliation to the US' global allies. According to the New York Times Magazine, Taiwan manufactures more than 90% of the world's most advanced microchips and could risk armed confrontation if China goes on the offensive in the future. (Palmer, 2023) Former national security advisor Robert O'Brien, on the other hand, believes that in the case of an impending invasion,the US would destroy Taiwan's semiconductor manufacturers rather than allow them to fall into the hands of China. The chip battle has further pushed Taiwan into an awkward position in the changing geopolitical landscape. (Carr, 2023) The Biden administration intends to restrict shipments of advanced artificial intelligence chips designed by Nvidia to China as part of a broader set of actions aimed at preventing Beijing from gaining advanced US technologies to enhance its military. The action is intended to address regulatory gaps and limit China's access to advanced semiconductors, which might feed AI advances and sophisticated computers crucial to Chinese military purposes. Gina Raimondo, Secretary of Commerce, emphasised that the administration's goal is not to harm Beijing economically. (Alexandra Alper, 2023) In the words of Lampton, "There was a widespread public perception that the Sino-American economic playing field had been unfair to Americans, with the assertion that the American economy was hollowed out, in part due to overt and covert technology transfer to China" (Lampton, 2015) . China's new growth strategy is leading to more rivalry than complementarity in the China-US economic partnership. The fact that "China's achievement in moving up in the global supply and value chains has led to Beijing's larger share of global surplus and the reduction of the profit margin for traditional core states" has disturbed the United States. (Li X. , 2020) As Lenin would have argued, the dynamics of the US-China rivalry are an inter-imperial rivalry driven by inter-capitalist struggle. Competition for the global market could quickly escalate into escalating confrontations of zones of influence, if not war. Conclusion The US-China rivalry is characterised by a complex interplay of economic, technological, and ideological issues. Although the relationship resembles a new Cold War, some argue that it is best understood as a capitalist intra-core competition driven by inter-imperial rivalry. As Lenin foresaw, competition for global markets may escalate into conflicts over areas of control. The contest is likely to last and have an impact on the global order for many years to come since both nations have made large investments in industrial strategy and technology. Advanced semi-conductors and AI chips are necessary for the next race for technological supremacy. 6G telecom and quantum computing. The globe was forced to protect the supply chain for rare earth materials due to this high-tech rivalry. Since they are currently the epicentre of the world's military and economic might. For many years to come, its influence will shape international politics, trade disputes, and technological advancements. Global struggle for these minerals is anticipated in the twenty-first century, much like the wars for oil and gas in the twentieth. Rare earths will be the focus of the twenty-first century. Mineral-rich nations like Brazil, India, Australia, and Vitenam will also become strategically significant for other reasons. As competition for these resources intensifies, international relations will shift and geopolitical alignment will result. 5Gs is no longer the focus of this new technical cold war. It now comes down to controlling the basic materials that enable technology. For this reason, JD Vance adds, "Give us your financial resources, and we'll take care of you." In the trade and technology conflict that has intensified since the Biden Administration increased the restrictions on sales of cutting-edge American technology to China, the Pentagon has designated rare earth as a strategic mineral that is essential for US defence.In response to US technology sanctions, China restricted the export of rare earth materials.It has nothing to do with economics, but rather with military supremacy on a worldwide scale. This is how the US sees the discovery of these rare earth minerals. Donald Trump is threatening Canada, Greenland, and Ukraine for this reason. Due to their large stockpiles of rare earth materials, they are able to protect the global supply chain in this way.Interestingly, however, China produces 63% of rare earth minerals and refines 83% of them. It can store 44 million metric tonnes of reserves in this manner. The US would still have 4-5 million tonnes of metric reserves if it were to seize the deposits of Greenland, Canada, and Ukraine.Thus, they are negligible compared to 44 million metric tonnes in China. If China wisely controls its rare earth export strategy, it will be powerful enough to remind the world of its might without being overly harsh. Then it can demonstrate that Beijing is just as adept at using resources as Washington is at using dollars or sanctions. However, if the world manages to get past it or if China's grip wanes, its greatest advantage may begin to diminish. The next few months are critical because tanks and missiles are not being used in the largest power fight this time. Minerals and magnets will be used to combat it. Bibliography Alexandra Alper, K. F. (2023, October 18). Biden cuts China off from more Nvidia chips, expands curbs to other countries. Retrieved from Reuters: https://www.reuters.com/technology/biden-cut-china-off-more-nvidia-chips-expand-curbs-more-countries-2023-10-17/Bernal-Meza, L. X. (2021, May 1). China-US rivalry: a new Cold War or capitalism’s intra-core competition? Revista Brasileira de Política Internacional, vol. 64, no. 1. Retrieved from https://www.redalyc.org/journal/358/35866229009/html/#B39Bing, Z. S. (2023, May 23). Chinese hackers spying on US critical infrastructure, Western intelligence says. Retrieved from Reuters: https://www.reuters.com/technology/microsoft-says-china-backed-hacker-targeted-critical-us-infrastructure-2023-05-24/BROOKS, D. (2023, March 23). The Cold War With China Is Changing Everything. Retrieved from The NewYork Times: https://www.nytimes.com/2023/03/23/opinion/cold-war-china-chips.htmlCarr, E. (2023, August 22). The 2023 US–China Chip War: The Nexus Of High Tech And Geopolitics. Retrieved from Forbes: https://www.forbes.com/sites/earlcarr/2023/08/22/uschina-chip-war-the-nexus-of-high-tech-and-international-relations/?sh=618bc5ed1bd3CHENG TING-FANG, L. L.-B. (2023, June 30). Netherlands unveils chip tool export curbs in fresh blow to China. Retrieved from Nikkei Asia: https://asia.nikkei.com/Business/Tech/Semiconductors/Netherlands-unveils-chip-tool-export-curbs-in-fresh-blow-to-ChinaCosgrove, L. (2023, May 5). Lawmakers Tout Effect of CHIPs Act in US Competition with China. Retrieved from THE EPOCH TIMES: https://www.theepochtimes.com/us/lawmakers-tout-effect-of-chips-act-in-us-competition-with-china-5243151Drezner, D. R. (2021, May/June 13). The end of grand strategy. Retrieved from Foreign Affairs,: https://www.foreignaffairs.com/articles/world/2020-04-13/end-grand-strategyGoldstein, A. (2020). US–China Rivalry in the twenty-first century: Déjà vu and Cold War II. China International Strategy Review volume 2,, 48-62.Kautsky, K. (1914, September 11). Ultra-imperialism. Der Imperialismus," Die Neue Zeit, 32 (1914), Vol. 2, 908-922. Retrieved from https://www.marxists.org/archive/kautsky/1914/09/ultra-imp.htmLake, D. A. (2018). Economic openness and great power competition: lessons for China and the United States. The Chinese Journal of International Politics 11, no. 3, 237-70.Lake, D. A. (2018). Economic openness and great power competition: lessons for China and the United States. The Chinese Journal of International Politics 11, no. 3, 237-270.Lampton, D. (2015, June 2). David Lampton on “A Tipping Point in U.S.-China Relations”. Retrieved from COUNCIL PACIFIC AFFAIRS: https://www.councilpacificaffairs.org/news-media/security-defense/dr-david-lampton-on-a-tipping-point-in-u-s-china-relations/Li, X. (2020). The rise of China and its impact on world economic stratification and re-stratification. Cambridge Review of International Affairs 34, no. 4 , 530-50.NUCCITELLI, D. (2023, September 20). The Inflation Reduction Act is reducing U.S. reliance on China. Retrieved from The YALE Climate Connection: https://yaleclimateconnections.org/2023/09/the-inflation-reduction-act-is-reducing-u-s-reliance-on-china/Palmer, A. W. (2023, August 11). An Act of War’: Inside America’s Silicon Blockade Against China. Retrieved from The NewYork Times Magazine : https://www.nytimes.com/2023/07/12/magazine/semiconductor-chips-us-china.htmlPence’s, P. J. (2018, October 5). China Speech Seen as Portent of ‘New Cold War’. Retrieved from New York Times. : https://www.nytimes.com/2018/10/05/world/asia/pence-china-speech-cold-war.htmlPillsbury, M. (2015). The Hundred-Year Marathon: China's Secret Strategy to Replace America as the Global Superpower . Henry Holt and Co.Rudd, K. (2020, May 6). The coming post-COVID anarchy. Retrieved from Foreign Affairs: https://www.foreignaffairs.com/articles/united-states/2020-05-06/coming-post-covid-anarchyStaff, R. (2017, August 17). Trump adviser Bannon says U.S. in economic war with China: media. Retrieved from Reuters: https://www.reuters.com/article/us-usa-china-bannon-idUSKCN1AX0DEZakaria, F. (2019, December 6). The new China Scare: why America shouldn’t panic about its latest challenger. Retrieved from Foreign Affairs: https://www.foreignaffairs.com/articles/china/2019-12-06/new-china-scare 

Defense & Security
USA and China competing in AI supremacy, represented by chess pieces on a world map highlighting technological rivalry. AI wars between USA and china concept.

Emerging global AI order: a comparative analysis of US and China's AI strategic vision

by Hammad Gillani

Introduction   The 21st century global politics has now taken a new shape with the advent of artificial intelligence (AI). The traditional nature of great power rivalry revolves around military maneuvers, defensive-offensive moves, and weapons deployment to challenge each other, maintaining their respective hegemony over the international arena. The revival of artificial intelligence has reshaped the conventional great power game.(Feijóo et al. 2020) From now onwards, whenever the strategic circles discuss the security paradigm, AI has to be its part and parcel. The emergence of AI has altered the status quo, where major powers are now shifting towards AI-based technology. As the most basic function of AI is to create such machines and platforms that can perform tasks more proficiently than humans, it has the ability to enhance decision-making, increase efficiency, and reduce the likely risk of human errors. But at the same time, risks are also lingering.   The United States (US) and the People's Republic of China (PRC) are considered to be the main players of great power politics. Their rivalry has long been centered around territorial conflicts and maritime contests. With the PRC claiming most of the territories in the South China Sea and East China Sea, the US, under its Indo-Pacific Strategy (2022), has challenged the Chinese assertion.(Hassan and Ali 2025) But what the world has witnessed is that both economic hegemons have been avoiding any direct military conflict with each other. The most prominent area where both the US and the PRC are now in a continuous competition is the technological domain. China has always maintained an edge over the US in the respective field due to the fact that it holds most of the world’s known rare earth minerals—a key to technological superiority. Through trade barriers, i.e., tariffs, quotas, etc., and restricting trade with prominent Chinese companies, the US has always tried to contain technological developments in China.(Wang and Chen 2018)   “The reality is that both China and the United States are focused on getting the infrastructure necessary to win the so-called AI race. Now, whether it’s actually a race is a separate question, but data, energy, and human capital are all critical inputs to this. The massive investment infrastructure is top of mind for leaders in both countries as they seek to do it. China’s access to the advanced technology and semiconductors is going to be a key cornerstone in this regard.”(Sacks, 2025) US and China have placed AI at the center of their national policies and global strategies. Both have been introducing various policy papers, strategies, and action plans for the advancements in the field of artificial intelligence and how to counter the side. Now, the international arena is witnessing two parallel AI setups: one created by the US and the other by China. As both are tremendously investing in research, development, and innovation in artificial intelligence, their national narratives and global plans are competing with each other, further exacerbating the international AI landscape.   This paper aims to critically analyze key policies highlighted under the national action plans and strategies launched by the US and the PRC, respectively. Applying the theoretical lens of constructivism, which deals with the role of ideas, norms, and values in shaping the international system, the paper will demonstrate key differences between the AI strategies of the US and China and how their ideological beliefs shape their respective AI policies. Moreover, the analysis will provide expert views on the future landscape of the AI race, its relation to the Great Game, and its political, economic, and military repercussions for the rest of the world. Furthermore, the analysis will mostly rely on expert interviews, key excerpts from official administrative documents, and research findings. This study will also provide insights into the Trump 2.0 administration’s policy outlooks vis-à-vis Beijing’s National AI policy.   America’s AI Action Plan 2025   President Trump unveiled his administration’s national strategy on artificial intelligence on 23rd July 2025. Entitled as “Winning the Race: America’s AI Action Plan”, this strategy is a long-term road map to counter and contain China’s growing profile in the tech world, in particular the AI.(White House, 2025) The title of the strategy explicitly announces that the US has entered into the global AI race. Under this strategy, the United States does not want to eliminate China, rather the US desires to lead the AI world as a core nation, while the PRC should operate as a periphery nation. On July 15 2025, while addressing the AI Summit in Pittsburgh, President Donald Trump stated, “The PRC is coming at par with us and we would not let it happen. We have the great chips and we have everything great. And, we will be fighting them in a friendly fashion. I have a great relationship with President Xi and we smile at the back and forth, but we are leading…...”(AFP, 2025)   America’s AI Action Plan: Key Pillars   A. Accelerate AI Innovation   This first pillar of the AI national strategy by the US deals with the fact that AI should be integrated into every sector of American lives. From the grassroots level to the national or international level, the US should be a leading AI power. AI innovation states that any type of barrier, i.e., legal, regulatory, or domestic constraints, must be eradicated at first to promote, enhance, and boost AI innovation in the US. The strategy clearly states the innovation in artificial intelligence to be the fundamental step towards AI global dominance. The American beliefs, values and norms hold much significance in this regard. This strategy laid down the framework where AI platforms and models should have to align with the US democratic principles, including free speech, equality, transparency, and recognition. This means that the US AI action plan will operate under the umbrella of capitalist ideology.(White House, 2025)   Another most important feature in the field of AI innovation is the conglomeration of public-private ventures. Both the governmental authorities and public institutions are provided with such policies and frameworks to integrate AI platforms into their day-to-day operations. Creating an AI ecosystem is the cornerstone of this strategy.(White House, 2025) It aims to build an American workforce mastered in AI capabilities, defense forces and their key platforms integrated with AI, and provide a secure and safe environment to national and international investors, thus encouraging them to increase their investments in the US. Last but not least, the development of various departments countering the unethical use of AI, i.e., deep fakes, thus securing the national sovereignty and integrity of the homeland.   Principal Deputy Director of the Office of Science and Technology Policy (OSTP), Lynne Parker, while highlighting the significance of the US 2025 AI Action Plan, stated, “The Trump Administration is committed to ensuring the United States is the undeniable leader in AI technology. This plan of action is our first move to enhance and preserve the US AI interest, and we are eager to receive our public perception and viewpoints in this regard.”(House, 2025) The AI innovation drive is indicative of the US being a liberal-democratic and entrepreneurial society. It has an innovation culture that focuses on open research, leadership in the private sector, and ethics based on its national myth of freedom, individualism and technological optimism.   B. Building the AI Infrastructure   This is the most crucial pillar of the US AI Action Plan 2025. From propagating the idea of AI innovation, the next step is to build a strong, secure, and renowned infrastructure to streamline the policy guidelines highlighted in the national AI strategy. This includes the development of indigenous AI factories, companies, data facilities, and their integration into the American energy infrastructure. The most significant step highlighted in this pillar is the construction of indigenous American semiconductor manufacturing units.(White House, 2025) Now what does it mean? As of today, China is considered to be the center of semiconductor manufacturing. Semiconductors are the basic units of any technology, i.e., weapons, aircraft, smartphones, etc. The US has long been importing semiconductor chips from China. Integration of the US energy infrastructure with that of the AI facilities is the ultimate objective of this strategy. Immense energy-producing units, i.e., electricity, under the ‘National Energy Emergency Act’ would be established to provide a continuous supply of electricity to AI data centers and facilities without any hindrance.(House, 2025)   But the Trump 2.0 administration, under its protectionist policies, aspires to restrict imports from China and build a domestic semiconductor processing unit. Highlighting the American dependence on Chinese chips, the American chemist and politician John Moolenaar stated, “The Trump administration has made one thing abundantly clear: we must reassert control over our own economic destiny. That’s not isolationism; that’s common sense. The Chip Security Act, outbound investment restrictions, and stronger export controls—those aren’t closing ourselves off. They are about ensuring America isn’t subsidizing or facilitating our own decline. The Chinese Communist Party (CCP) is using American capital to fund aircraft carriers, fighter jets, and AI systems that target our allies and threaten our freedoms.”(Moolenaar, 2025)   The norm of decentralized innovation is applied in developing the infrastructure, and it empowers universities, startups, and private corporations. This is an expression of confidence in market mechanisms and civil liberties, which is in line with its social values of open innovation and competition.   C. AI Diplomacy and Security   The last pillar of the US AI national action plan is to collaborate with international partners and allies. This simply means to export American AI technology to strategic partners and those with common interests. This will, as a result, give rise to new types of groupings known as ‘AI Alliances.”(White House, 2025) The Global Partnership on AI (GPAI), QUAI AI Mechanism, and US-EU Trade and Technology Council are some of its best manifestations. Like the security and defense partnerships, the AI alliances will enable the US and the West to encircle the PRC in the tech world, where strong western collaborations and partnerships would hinder the PRC from becoming the tech giant or from excelling in AI production. It Encourages responsible AI governance and a democratic form of AI standards of the US, which are based on its self-perception as a global governor of the liberal values.   Thus, in order to enhance AI-related exports to allies, the US has established various institutions, including the US International Development Finance Corporation (DFC). The US AI diplomacy aims to counter China’s growing footprints in the international bodies and institutions.(State 2023) As these global bodies are a key to spreading particular norms and values, shaping the public perception, and framing the global order, the US wants to challenge Chinese entrenchments in these organizations through political and diplomatic coalitions and groupings. Doing this, the West will be able to propagate their version of the global AI order. This means capitalism vs. communism will now be clearly visible in the global AI race between the economic hegemons.   The US Vice President J.D. Vance, while addressing the European Union (EU) leaders in Paris explicitly stated, “The US really wants to work with its European allies. And we wish to start the AI revolution with an attitude of cooperation and transparency. However, international regulatory frameworks that encourage rather than stifle the development of AI technology are necessary to establish that kind of trust. In particular, we need our European allies to view this new frontier with hope rather than fear.”(Sanger 2025) In case of security, the strategy aims to establish various AI Safety Institutes (AISIs) to reduce or eliminate the risk of AI-related accidents, which include errors in AI platforms, most specifically in the AI-operated weapon systems, and the unethical use of AI programs, i.e., generative AI or LLMs. Similarly, the strategy emphasized the danger posed by the non-state actors. These violent actors must be restrained from acquiring such advanced yet sophisticated technology.(White House, 2025)   China’s New Generation Artificial Intelligence Development Plan   For the first time in July 2017, the PRC launched its long-term national AI vision 2030, entitled “New Generation Artificial Intelligence Development Plan,” which is comprised of all the policies, guidelines, and measures to be taken by the Chinese Communist Party (CCP) to foster its AI developments.(Council 2017) China’s AI 2030 vision is none other than the extension of the idea that President Xi Jinping circulated in 2012 regarding China’s future role in the field of Artificial Intelligence (AI). This strategy aims to strengthen China’s AI footprints in the international arena. Ranging from investments to infrastructure, this plan of action explicitly declared to develop the PRC into the hub of AI innovation and investment by 2030. This plan of action is determined to bring about a profit of $160 billion by 2030.(O’Meara 2024) While addressing the Politburo Study Session on 25th April 2025, the Chinese President Xi Jinping noted, “To gain a head start and secure a competitive edge in AI, it is a must to achieve breakthroughs in basic theories, methodologies, and tools. By leveraging AI to drive the transformation of scientific research paradigms, we can speed up achieving breakthroughs in scientific and technological innovation in all sectors.”(Agency 2025)   China’s AI Vision 2030: Key Objectives   A. AI Leadership (2020)   The PRC has successfully accomplished this objective. Under this pillar, China has established significant AI infrastructure, including key facilities and data centers, coming at par with the US. Within this, the CCP urged the academic institutions to promote, enhance, and foster research in the AI domain, which resulted in the major developments in the sectors of big data, swarm intelligence, and super artificial intelligence.(Council 2017) China has successfully established its domestic AI industrial complex worth $22 billion. Various educational institutions, i.e., Tsinghua, Peking, etc., and major companies, i.e., Baidu, iFlyTek, etc., have now completely transformed into AI hubs where research, innovation, and practices are conducted through highly advanced AI platforms.   Commenting on the US-China AI leadership contest, Dr. Yasar Ayaz, the Chairman and Central Project Director of the National Center for AI at NUST, Islamabad, explicitly remarked, “Efficiency is the new name of the game now. Chinese AI inventions and developments clarify the fact that even with the smaller number of parameters, you could achieve the same kind of efficiency that others with an economic edge are achieving.”(Ayaz 2025) The AI leadership symbolically builds the socially constructed narrative of the Chinese Dream and national rejuvenation into the need to overcome the century of humiliation and take its place in the world order. Here, AI leadership is not just a technical objective but a discursive portrayal of the Chinese self-concept of being a technologically independent and morally oriented civilization.   B. AI Technology (2025)   The second most important objective of China’s AI Vision 2030 is to reach a level of tech supremacy in the international arena by 2025. Major work areas include localization of chip industries, advancements in semiconductors and robot manufacturing, etc. The first phase of 2020 basically laid the infrastructural foundation of the plan, while this phase deals with the development and innovation of key AI-operated platforms, including robots, health equipment, and quantum technology.(Council 2017) Another most crucial feature of the 2025 phase is to establish various AI labs throughout mainland China. This would result in the integration of AI into different public-private sectors, i.e., finance, medical, politics, agriculture, etc. Last but not least, a civil-military collaboration is described to be a cornerstone in this regard.   The AI-operated platforms would be utilized by both civil and military institutions, thus preserving the PRC’s national security and safety. Giving remarks over China’s technological edge, Syed Mustafa Bilal, a technology enthusiast and research assistant at the Centre for Aerospace and Security Studies (CASS), added, “China, which for the longest time has been criticized for having a technologically closed-off ecosystem, is now opting for an open-source approach. That was evident by the speeches of Chinese officials at the Global AI Action Summit, in which they tried to frame China’s AI strategy as being much more inclusive as compared to the West. And one illustration of that is the ironic way in which deep search is currently furthering OpenAI's initial selfless objective of increasing AI adoption worldwide.”(Bilal 2025) Thus, the AI vision of China reflects ideational promises of social order, central coordination, and a moral government, ideals that are based on its political culture and civilization background.   C. AI Innovation Hub (2030)   By 2030, China aims to be at the epicenter of global AI innovations, development, and investments. The PRC’s political, economic, and defense institutions will be governed under AI overhang. The most significant feature of this phase is to counter the US-led AI order by challenging the US and the West in various international bodies like the International Telecommunication Union (ITU). The main tenet of China’s 2030 vision is to transform it into a completely AI-driven economy—an AI economic giant.(Council 2017) As the PRC is ruled by the communist regime of President Xi Jinping, China aspires to counter the Western-led AI order through instigating its communist values, including high surveillance, strict national policies, and population control. By avoiding a completely liberal, free speech AI environment in mainland China, the CCP aims to come on par with the US by having authoritative control over its people, thus maintaining its doctrine of ‘techno self-reliance.’   Giving his insights on the new global AI order and the ideological rift between the US and China, Dr. Wajahat Mehmood Qazi, advisor on AI and digital transformation to the private tech companies and faculty member at the COMSATS University, Lahore, explicated, “Yes, there is a digital divide, but the interesting part over here is this: the world is evolving, so this big divide is no more about the decentralization or the centralization. If we look at how China is promoting openness by releasing its foundation models, at the same time the ecosystem of their LM models or AI is still in close proximity. Whereas, the western world is having a different narrative. They are talking about the openness of the models, but at the same time it’s more market-driven. In my view, we are entering into a world where innovation requires openness and closed methods simultaneously.”(Qazi 2025)   The concept of innovation with Chinese features is used to describe a socially constructed attempt to exemplify another approach to technological modernity, which combines dictatorial rule and developmental prosperity. It is a mirror image of self-concept in China as a norm entrepreneur that wants to legitimize its system of governance and impact the moral and technological discourse of AI at the global scale.   Conclusion   The constructivist perspective informs us that the competition between Washington and Beijing is not predetermined; it is being conditioned by the perceptions, suspicion, and competing versions that can be rebuilt through dialogue and mutual rules. The ideological divide can be overcome by creating inclusive tools of AI governance, with transparency, ethical principles, and shared responsibility in their focus. The common ground created through the establishment of a mutual conception of the threats and the ethical aspects of AI will enable the United States and China to leave the zero-sum game on AI and enter into a model of normative convergence and accountable innovation. Constructivism thereby teaches us that cooperation in AI is not just a strategic requirement but also a social option, which is constructed on shifting identities and the recognition of global interdependence with each other.   The great power competition is now in its transformative phase, bypassing the traditional arms race for a more nascent yet powerful AI race. In the context of the US-China contest, administrations on both sides are trying their utmost to launch, implement, and conclude critical national strategies and formulations in the field of artificial intelligence. Both are moving forward at a much greater pace, thus developing advanced technologies in the political, economic, and military domains. Be it China’s Deep Seek or the Western Chat GPT, be it Trump’s Stargate project or Xi’s AgiBot, both are investing heavily into the tech-AI sector. Despite this contest, both economic giants also need joint efforts and collaborations in various matters of concern. Until now, it’s been very difficult to declare which will lead the global AI order. The chances of a global AI standoff are there.ReferencesAFP. 2025. “Trump Vows to Keep US Ahead in AI Race with China.” The News International. Accessed July 24, 2025. https://www.thenews.com.pk/latest/1328672-trump-vows-to-keep-us-ahead-in-ai-race-with-china.Agency, Xinhua News. 2025. “20th Collective Study Session of the CCP Central Committee Politburo.” Center for Security and Emerging Technology, 1–3.Ayaz, Dr. Yasar. 2025. “Global AI Rivalry: U.S vs China.” PTV. Accessed July 24, 2025. https://www.youtube.com/watch?v=_82MMzI_g2c&t.Bilal, Syed Mustafa. 2025. “Global AI Rivalry: U.S vs China.” PTV. Accessed July 24, 2025. https://www.youtube.com/watch?v=_82MMzI_g2c&t.Council, State. 2017. “Next Generation Artificial Intelligence Development Plan.https://digichina.stanford.edu/work/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/.Feijóo, Claudio, Youngsun Kwon, Johannes M. Bauer, Erik Bohlin, Bronwyn Howell, Rekha Jain, Petrus Potgieter, Khuong Vu, Jason Whalley, and Jun Xia. 2020. “Harnessing Artificial Intelligence (AI) to Increase Wellbeing for All: The Case for a New Technology Diplomacy.” Telecommunications Policy 44 (6). https://doi.org/10.1016/j.telpol.2020.101988.Hassan, Abid, and Syed Hammad Ali. 2025. “Evolving US Indo-Pacific Posture and Strategic Competition with China.” Policy Perspectives 22 (1). https://doi.org/10.13169/polipers.22.1.ra4.House, White. 2025. “Declaring a National Energy Emergency – The White House.” Accessed July 24, 2025. https://www.whitehouse.gov/presidential-actions/2025/01/declaring-a-national-energy-emergency/.House, White. 2025. “Public Comment Invited on Artificial Intelligence Action Plan – The White House.” Accessed July 24, 2025. https://www.whitehouse.gov/briefings-statements/2025/02/public-comment-invited-on-artificial-intelligence-action-plan/.Moolenaar, John. 2025. “The 2025 B.C. Lee Lecture Featuring Congressman John Moolenaar.” Accessed July 24, 2025. https://www.youtube.com/watch?v=QIIUZlaKofU.O’Meara, Sean. 2024. “China Ramps Up AI Push, Eyes $1.4tn Industry By 2030.” Asia Financial. Accessed July 24, 2025. https://www.asiafinancial.com/china-ramps-up-ai-push-eyes-1-4tn-industry-by-2030-xinhua.Qazi, Dr. Wajahat Mehmood. 2025. “Global AI Rivalry: U.S vs China.” PTV. Accessed July 24, 2025. https://www.youtube.com/watch?v=_82MMzI_g2c&t=.Sacks, Samm. 2025. “China’s Race for AI Supremacy - YouTube.” Accessed July 24, 2025. https://www.youtube.com/watch?v=xaccSxP8pOQ&t=8s.Sanger, David E. 2025. “Vance, in First Foreign Speech, Tells Europe That U.S. Will Dominate A.I.” THe NewYork Times. Accessed July 24, 2025. https://www.nytimes.com/2025/02/11/world/europe/vance-speech-paris-ai-summit.html.State, US Department of. 2023. “Enterprise Artificial Intelligence Strategy,” no. October, 103–13. https://www.state.gov/wp-content/uploads/2023/11/Department-of-State-Enterprise-Artificial-Intelligence-Strategy.pdfWang, You, and Dingding Chen. 2018. “Rising Sino-U.S. Competition in Artificial Intelligence.” China Quarterly of International Strategic Studies 4 (2): 241–58. https://doi.org/10.1142/S2377740018500148.White House. 2025. “Winning the Race: America’s AI Action Plan.” https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf

Defense & Security
Former Taliban fighters return arms

Paralysing the State: Taliban's strategy of controlled chaos

by Sajad Ahanger

The fall of Kabul with the Afghan Taliban’s return to power in August 2021 was not an end to the long standing Afghan crisis but rather turned into a more complex challenge for Afghans at large & for Taliban leaders alike. The Taliban had to transform from a nimble insurgency to a functioning state. Nearly three years on, it is clear that the group’s strategy for maximizing relevance is not based on building a prosperous nation but on a dangerous and calculated paralysis. Both internally, through draconian social policies and externally through provocative engagements, the current regime is placing its ideology above the interests of the general populace. This approach, recently highlighted by a deadly skirmish with nuclear-armed Pakistan, threatens to freeze Afghanistan in a state of perpetual crisis, sacrificing its people’s future for the regime’s ideological purity and survival.   The Pakistan Conundrum: A Calculated Maneuvering.The recent escalation along the Durand Line with Pakistan served as a stark reminder of the Taliban’s precarious external posture. The exchange of fire, which included airstrikes within mainland Afghanistan and mortar shelling, resulting in casualties on both sides, was not a fight among equals.  Pakistan possesses one of the world's largest and most battle-hardened militaries, backed by a nuclear arsenal. Its conventional military capabilities from a modern air force to sophisticated artillery and armour can not be compared with the Taliban’s minimal and largely infantry-based forces, who possess no air force, limited air defence, and very basic command and control structures.   For the Taliban to engage in such a conflict, even briefly, seems suicidal. However, this is where their insurgency mindset becomes apparent. Their power does not lie in matching Pakistan’s might but in leveraging asymmetry. A direct, conventional war is unwinnable, but a low-intensity conflict along the border, leveraging their ideological kinship with Tehreek i Taliban Pakistan (TTP) factions is a tool of influence. The subsequent ceasefire agreement, brokered through backchannel dialogues involving Turkiye & Qatar was a tactical retreat, not a strategic surrender.   Immediately after the truce, the Taliban leadership felt compelled to issue clarifications to its own population. This narrative management is crucial. It underscores the regime’s primary audience, its own hardline base and the wider Afghan populace, which remains afraid of foreign domination. The entire episode was a high-stakes performance, demonstrating defiance to solidify internal legitimacy while avoiding a full-scale war that would be catastrophic for the fledgling regime. The costs of such a war for Pakistan would be significant—economic disruption, a massive refugee crisis, and further destabilisation of its own restive western regions. For Afghanistan, it would be existential, leading to immediate state collapse and humanitarian catastrophe.   Internal Paralysis: The War on Half the Population   The Taliban’s internal policy is catastrophically self-sabotaging too. The most glaring example of state paralysis is the systematic eradication of women’s rights, particularly the access to education. By banning girls from secondary school and university, the Taliban are not just enforcing a brutal societal code, they are actively paralysing the state’s potential.   This policy effectively keeps away half of the nation’s human capital. It ensures a future with fewer doctors, engineers, teachers, and administrators, crippling almost all long-term economic development or social progress. The health system, already on life support, cannot function without female staff in a gender-segregated society. This is not merely repression, it is institutionalised crime against humanity. The regime, by its own decree, is preventing itself from building the skilled workforce necessary for society to function smoothly. This creates a controlled, paralysed society where the regime’s ideological control is prioritised over the state’s functional capacity.   The Geopolitical Tightrope: Beijing and Moscow’s Cautious Gaze   The Taliban’s isolation is not absolute. Its relationships with China and Russia are pragmatic alliances of convenience, yet they are tied with unspoken conditions. Beijing is primarily interested in stability which eventually leads to integrating Afghanistan into its Belt and Road Initiative, particularly as an extension of the China-Pakistan Economic Corridor (CPEC). China values the Taliban’s promise to not host Uyghur separatists and offers economic and diplomatic engagement in return. However, the ongoing internal instability which has already cost a huge oil extraction deal, &  ties to groups like TTP, which threaten Pakistan, makes Beijing stay on alert.   Similarly, Russia seeks to use the Taliban as a barricade against the spread of ISIS-Khorasan (ISIS-K), which it sees as a threat to its interests in Central Asian allies. It engages with the Taliban for intelligence sharing but like China, it withholds full diplomatic recognition. Both powers are playing a long game, providing just enough engagement to keep the Taliban engaged and prevent complete state failure, but not enough to legitimize its worst excesses. They are investing in the idea of a stable Afghanistan, not necessarily in the Taliban’s model of governance.   The Thirst for Recognition and the umbrella of sanctions   Taliban’s central quandary, the desperate thirst for international recognition to get away from sanctions. The frozen assets abroad, the collapse of the formal banking sector and the aid-dependent economy are a direct result of the regime’s policies. The international community’s conditions for recognition, forming an inclusive government, respecting human rights, and severing ties with terrorist groups are precisely what the Taliban’s base rejects.   Therefore, they have chosen a path of managed paralysis, maintaining a firm grip on power through internal suppression and external defiance, hoping to wait out the international community and force a recognition on their own terms. They are betting that the world’s fear of a completely failed state, a haven for terrorists and a source of uncontrollable refugee flow will eventually outweigh its principled objections to their governance.   Conclusion   In an era defined by profound global realignment, sustainable statecraft necessitates avoiding international isolation, a burden no state can long bear. The Taliban’s current orientation however, blatantly violates this principle, presenting a multi layered threat to regional stability and global security. Central to this crisis is the regime’s unwavering prioritization of a rigid ideology over the sustainability of global security and the welfare of its own population. This doctrinal commitment manifests in a dangerously irresponsible foreign policy, including active support for transnational terrorist groups like the Tehrik i Taliban Pakistan (TTP) and the Balochistan Liberation Army (BLA). By engaging in war-mongering with a nuclear-armed Pakistan, the Taliban not only invites an existential retaliatory war that could draw in global powers but also demonstrates a reckless disregard for regional security balance. This external belligerence is compounded by a foreign policy confined to the conditional alignment with only Russia and China only, a model not suitable for navigating the transitional nature of contemporary global power dynamics.   The consequences of this ideological inflexibility are catastrophically domestic too. The Afghan people bear the harshest price, suffering under a reign of terror and a collapsing economy. A profound food security crisis has left millions malnourished and desperate. This immense internal suffering does not merely constitute a humanitarian tragedy, it actively generates a threat to global peace. A starving, disenfranchised, and radicalized population becomes a fertile recruiting ground for international terrorist networks. As misery deepens, the potential grows for Afghanistan to export not just ideological inspiration but also a desperate, battle-hardened cadre of extremists, who could destabilize far beyond its borders. Thus, the Taliban’s preference for ideology over pragmatic statecraft creates a vicious cycle. This path is unsustainable, promising only further devastation for Afghanistan and heightened peril for the world.References CARNEGIE ENDOWMENT FOR INTERNATIONAL PEACE.(2023).Russia’s Growing Ties With Afghanistan Are More Symbolism Than Substancehttps://carnegieendowment.org/russia-eurasia/politika/2023/09/russias-growing-ties-with-afghanistan-are-more-symbolism-than-substance?lang=enHUMAN RIGHTS WATCH.(2024Taliban’s Attack on Girls’ Education Harming Afghanistan’s Futurehttps://www.hrw.org/news/2024/09/17/talibans-attack-girls-education-harming-afghanistans-futureLOWY INSTITUTE.(2025).Afghanistan must tread a narrow path to stabilityhttps://www.lowyinstitute.org/the-interpreter/afghanistan-must-tread-narrow-path-stabilityNiKKEI ASIA. (2025).Taliban cancel oilfield deal with Chinese in Afghanistan's northhttps://asia.nikkei.com/economy/taliban-cancel-oilfield-deal-with-chinese-in-afghanistan-s-northSCIENCE DIRECTUpdate on the state of food security and safety in Afghanistan: A reviewhttps://www.sciencedirect.com/science/article/abs/pii/S2949824425001545WILSON CENTER.(2024)Mining for Influence: China's Mineral Ambitions in Taliban-Led Afghanistanhttps://www.wilsoncenter.org/blog-post/mining-influence-chinas-mineral-ambitions-taliban-led-afghanistan